STGIPS14K60

SLLIMM[™] small low-loss intelligent molded module IPM, 3-phase inverter, 14 A, 600 V short-circuit rugged IGBT

Datasheet - production data

Features

- IPM 14 A, 600 V 3-phase IGBT inverter bridge including control ICs for gate driving and freewheeling diodes
- Short-circuit rugged IGBTs
- V_{CE(sat)} negative temperature coefficient
- 3.3 V, 5 V, 15 V CMOS/TTL inputs comparators with hysteresis and pull-down / pull-up resistors
- Undervoltage lockout
- Internal bootstrap diode
- Interlocking function
- Smart shutdown function
- Comparator for fault protection against overtemperature and overcurrent
- DBC substrate leading to low thermal resistance
- Isolation rating of 2500 V_{rms/}min
- UL Recognized: UL1557 file E81734

Table 1. Device summary

Order code	Marking	Package	Packing
STGIPS14K60	GIPS14K60	SDIP-25L	Tube

April 2015

DocID15927 Rev 9

This is information on a product in full production.

Applications

- 3-phase inverters for motor drives
- Home appliances, such as washing machines, refrigerators, air conditioners and sewing machines

Description

This intelligent power module provides a compact, high performance AC motor drive in a simple, rugged design. Combining ST proprietary control ICs with the most advanced short-circuit-rugged IGBT system technology, this device is ideal for 3-phase inverters in applications such as home appliances and air conditioners. SLLIMM[™] is a trademark of STMicroelectronics.

Contents

1	Inter	nal block diagram and pin configuration
2	Elec	trical ratings
	2.1	Absolute maximum ratings 5
	2.2	Thermal data
3	Elec	trical characteristics7
	3.1	Control part
	3.2	Waveform definitions
4	Sma	rt shutdown function13
5	Арр	lications information15
	5.1	Recommendations 16
6	Pacl	cage information
	6.1	SDIP-25L package information17
	6.2	Packing information
7	Revi	sion history

1

Internal block diagram and pin configuration

Figure 1. Internal block diagram

Pin n°	Symbol	Description
1	OUT _U	High side reference output for U phase
2	V _{boot U}	Bootstrap voltage for U phase
3	LINU	Low side logic input for U phase
4	HINU	High side logic input for U phase
5	V _{CC}	Low voltage power supply
6	OUT _V	High side reference output for V phase
7	V _{boot V}	Bootstrap voltage for V phase
8	GND	Ground
9	LINV	Low side logic input for V phase
10	HIN_V	High side logic input for V phase
11	OUT _W	High side reference output for W phase
12	V _{boot W}	Bootstrap voltage for W phase
13	LINW	Low side logic input for W phase
14	HIN _W	High side logic input for W phase
15	SD / OD	Shut down logic input (active low) / open drain (comparator output)
16	CIN	Comparator input
17	N _W	Negative DC input for W phase
18	W	W phase output
19	Р	Positive DC input
20	N _V	Negative DC input for V phase
21	V	V phase output
22	Р	Positive DC input
23	NU	Negative DC input for U phase
24	U	U phase output
25	Р	Positive DC input

Table 2. Pin description

Figure 2. Pin layout (bottom view)

2 Electrical ratings

2.1 Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{PN}	Supply voltage applied between P - N_U , N_V , N_W	450	V
V _{PN(surge)}	Supply voltage (surge) applied between P - $\rm N_{U},$ $\rm N_{V},$ $\rm N_{W}$	500	V
V _{CES}	Each IGBT collector emitter voltage ($V_{IN}^{(1)} = 0$)	600	V
$\pm I_{C}^{(2)}$	Each IGBT continuous collector current at $T_{C} = 25^{\circ}C$	14	А
$\pm I_{CP}^{(3)}$	Each IGBT pulsed collector current	30	А
P _{TOT}	Each IGBT total dissipation at $T_{C} = 25^{\circ}C$	42	W
t _{scw}	Short circuit withstand time, $V_{CE} = 0.5 V_{(BR)CES}$ T _J = 125 °C, $V_{CC} = V_{boot}$ = 15 V, $V_{IN (1)}$ = 0 ÷ 5 V	5	μs

Table 3. Inverter part

1. Applied between HIN_i , $\overline{LIN_i}$ and G_{ND} for i = U, V, W

2. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

3. Pulse width limited by max junction temperature

Table 4. Control part

Symbol	Parameter	Min. Max.		Unit
V _{OUT}	Output voltage applied between OUT _U , OUT _V , OUT _W - GND	V _{boot} - 21	V _{boot} + 0.3	V
V _{CC}	Low voltage power supply	- 0.3	21	V
V _{CIN}	Comparator input voltage	- 0.3	V _{CC} + 0.3	V
V _{boot}	Bootstrap voltage	- 0.3	620	V
V _{IN}	Logic input voltage applied between HIN, LIN and GND	- 0.3	15	V
V _{SD/OD}	Open drain voltage	- 0.3	15	V
dV _{OUT} /dt	Allowed output slew rate		50	V/ns

Table 5. Total system

Symbol	Parameter	Value	Unit
V _{ISO}	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, t = 60 sec.)	2500	V
Тj	Power chips operating junction temperature	- 40 to 150	°C
Т _С	Module case operation temperature	- 40 to 125	°C

2.2 Thermal data

Table 6. Thermal data

Symbol	Parameter	Value	Unit
P	Thermal resistance junction-case single IGBT	3	°C/W
R _{thJC}	Thermal resistance junction-case single diode	5.5	°C/W

3 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Mana	Collector-emitter	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \div 5 \text{ V},$ $I_C = 7 \text{ A}$	-	2.1	2.5	v
V _{CE(sat)} saturation voltage	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \div 5 \text{ V},$ $I_{C} = 7 \text{ A}, T_{J} = 125 \text{ °C}$	-	1.8			
I _{CES}	Collector-cut off current (V _{IN} ⁽¹⁾ = 0 "logic state")	$V_{CE} = 550$ V, $V_{CC} = V_{Boot} = 15$ V	-		150	μA
V _F	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_C = 7 \text{ A}$	-		2.1	V
Inductive	load switching time and	energy				
t _{on}	Turn-on time		-	270		
t _{c(on)}	Crossover time (on)	$V_{DD} = 300 \text{ V},$ $V_{CC} = V_{boot} = 15 \text{ V},$ $V_{IN}^{(1)} = 0 \div 5 \text{ V},$ $I_C = 7 \text{ A}$	-	130		Ī
t _{off}	Turn-off time		-	520		ns
t _{c(off)}	Crossover time (off)		-	140		Ī
t _{rr}	Reverse recovery time		-	130]
Eon	Turn-on switching losses	(see <i>Figure 5</i>)	-	150		
E _{off}	Turn-off switching losses		-	110		μJ

Table	7.	Inverter	part
-------	----	----------	------

1. Applied between HIN_i, $\overline{\text{LIN}}_{i \text{ and }} G_{\text{ND}}$ for i = U, V, W ($\overline{\text{LIN}}$ inputs are active-low).

Note: t_{ON} and t_{OFF} include the propagation delay time of the internal drive. $t_{C(ON)}$ and $t_{C(OFF)}$ are the switching time of IGBT itself under the internally given gate driving condition.

Figure 3. Switching time test circuit

Note: Figure 4 "Switching time definition" refers to HIN inputs (active high). For LIN inputs (active low), VIN polarity must be inverted for turn-on and turn-off.

3.1 Control part

Table 8. Low voltage power supply (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC_hys}	V _{CC} UV hysteresis		1.2	1.5	1.8	V
V _{CC_thON}	V _{CC} UV turn ON threshold		11.5	12	12.5	V
V _{CC_thOFF}	V _{CC} UV turn OFF threshold		10	10.5	11	V
I _{qccu}	Undervoltage quiescent supply current				450	μA
I _{qcc}	Quiescent current				3.5	mA
V _{ref}	Internal comparator (CIN) reference voltage		0.5	0.54	0.58	V

Table 9. Bootstrapped voltage (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BS_hys}	V _{BS} UV hysteresis		1.2	1.5	1.8	V
$V_{BS_{thON}}$	V _{BS} UV turn ON threshold		11.1	11.5	12.1	V
$V_{BS_{thOFF}}$	V _{BS} UV turn OFF threshold		9.8	10	10.6	V
I _{QBSU}	Undervoltage V _{BS} quiescent current	$\frac{V_{BS} < 9 V}{SD/OD} = 5 V; \overline{LIN} \text{ and}$ HIN = 5 V; C _{IN} = 0		70	110	μA
I _{QBS}	V _{BS} quiescent current	$V_{BS} = 15 V$ $\overline{SD}/OD = 5 V; \overline{LIN} \text{ and}$ $HIN = 5 V; C_{IN} = 0$		200	300	μA
R _{DS(on)}	Bootstrap driver on resistance	LVG ON		120		W

Table 10. Logic inputs (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{il}	Low logic level voltage		0.8		1.1	V
V _{ih}	High logic level voltage		1.9		2.25	V
I _{HINh}	HIN logic "1" input bias current	HIN = 15 V	110	175	260	μA
I _{HINI}	HIN logic "0" input bias current	HIN = 0 V			1	μA
I _{LINI}	LIN logic "1" input bias current	$\overline{\text{LIN}} = 0 \text{ V}$	3	6	20	μA
I _{LINh}	LIN logic "0" input bias current	LIN = 15 V			1	μA
I _{SDh}	SD logic "0" input bias current	SD = 15 V	30	120	300	μA
I _{SDI}	SD logic "1" input bias current	$\overline{SD} = 0 V$			3	μA
Dt	Dead time	see Figure 7		600		ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{ib}	Input bias current	V _{CIN} = 1 V			3	μA
V _{ol}	Open drain low level output voltage	I _{od} = 3 mA			0.5	V
t _{d_comp}	Comparator delay	\overline{SD} /OD pulled to 5 V through 100 k Ω resistor		90	130	ns
SR	Slew rate	$C_{L} = 180 \text{ pF}; R_{pu} = 5 \text{ k}\Omega$		60		V/µsec
t _{sd}	Shut down to high / low side driver propagation delay	$V_{OUT} = 0, V_{boot} = V_{CC},$ $V_{IN} = 0 \text{ to } 3.3 \text{ V}$	50	125	200	
t _{isd}	Comparator triggering to high / low side driver turn-off propagation delay	Measured applying a voltage step from 0 V to 3.3 V to pin CIN _i	50	200	250	ns

Table	e 11. Sense comparator char	racteristics (V _{CC} = 15 V unl	ess oth	erwise s	pecified)

Table 12. Truth table

Condition	Logic input (V _I)			Output		
Condition	SD/OD	LIN	HIN	LVG	HVG	
Shutdown enable half-bridge tri-state	L	х	х	L	L	
Interlocking half-bridge tri-state	н	L	Н	L	L	
0 ''logic state" half-bridge tri-state	н	н	L	L	L	
1 "logic state" low side direct driving	н	L	L	н	L	
1 "logic state" high side direct driving	н	н	н	L	н	

Note: X: don't care

1. Simulated curves refer to typical IGBT parameters and maximum $\mathrm{R}_{\mathrm{thj-c.}}$

3.2 Waveform definitions

Figure 7. Dead time and interlocking waveforms definitions

4 Smart shutdown function

The STGIPS14K60 integrates a comparator for fault sensing purposes. The comparator has an internal voltage reference Vref connected to the inverting input, while the non-inverting input, available on pin (CIN), can be connected to an external shunt resistor in order to implement a simple over-current protection function. When the comparator triggers, the device is set in shutdown state and both its outputs are set to low-level leading the halfbridge in tri-state. In the common overcurrent protection architectures the comparator output is usually connected to the shutdown input through a RC network, in order to provide a mono-stable circuit, which implements a protection time that follows the fault condition. Our smart shutdown architecture allows to immediately turn-off the output gate driver in case of overcurrent, the fault signal has a preferential path which directly switches off the outputs. The time delay between the fault and the outputs turn-off is no more dependent on the RC values of the external network connected to the shutdown pin. At the same time the DMOS connected to the open-drain output (pin SD/OD) is turned on by the internal logic which holds it on until the shutdown voltage is lower than the logic input lower threshold (Vil). Finally the smart shutdown function provides the possibility to increase the real disable time without increasing the constant time of the external RC network.

Figure 8. Smart shutdown timing waveforms

Applications information 5

Figure 9. Typical application circuit

5.1 Recommendations

- Input signal HIN is active high logic. A 85 kΩ (typ.) pull down resistor is built-in for each high side input. If an external RC filter is used, for noise immunity, pay attention to the variation of the input signal level.
- Input signal /LIN is active low logic. A 720 kΩ (typ.) pull-up resistor, connected to an internal 5 V regulator through a diode, is built-in for each low side input.
- To prevent the input signals oscillation, the wiring of each input should be as short as possible.
- By integrating an application specific type HVIC inside the module, direct coupling to MCU terminals without any opto-coupler is possible.
- Each capacitor should be located as nearby the pins of IPM as possible.
- Low inductance shunt resistors should be used for phase leg current sensing.
- Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
- The SD/OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see Section 4: Smart shutdown function for detailed info).

Symbol	Parameter	Conditions	Valu			Unit
Symbol	Symbol Parameter Conditions		Min.	Тур.	Max.	Unit
V _{PN}	Supply voltage	Applied between P-Nu, Nv, Nw		300	400	V
V _{CC}	Control supply voltage	Applied between V _{CC} -GND	13.5	15	18	V
V _{BS}	High side bias voltage	Applied between V _{BOOTi} - OUT _i for i = U, V, W	13		18	V
t _{dead}	Blanking time to prevent Arm-short	For each input signal	1			μs
f _{PWM}	PWM input signal	-40°C < T _c < 100°C -40°C < T _j < 125°C			20	kHz
T _C	Case operation temperature				100	°C

Table 13. Recommended operating conditions

Note: For further details refer to AN3338.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Please refer to dedicated technical note TN0107 for mounting instructions.

6.1 SDIP-25L package information

Figure 10. SDIP-25L package outline

DocID15927 Rev 9

Table 14.	SDIP-25L	mechanical	data
		meenamoar	autu

Dim		mm	
Dim.	Min.	Тур.	Max.
A	43.90	44.40	44.90
A1	1.15	1.35	1.55
A2	1.40	1.60	1.80
A3	38.90	39.40	39.90
В	21.50	22.00	22.50
B1	11.25	11.85	12.45
B2	24.83	25.23	25.63
С	5.00	5.40	6.00
C1	6.50	7.00	7.50
C2	11.20	11.70	12.20
C3	2.90	3.00	3.10
е	2.15	2.35	2.55
e1	3.40	3.60	3.80
e2	4.50	4.70	4.90
e3	6.30	6.50	6.70
D		33.30	
D1		5.55	
E		11.20	
E1		1.40	
F	0.85	1.00	1.15
F1	0.35	0.50	0.65
R	1.55	1.75	1.95
Т	0.45	0.55	0.65
V	0°		6°

6.2 Packing information

Figure 11. SDIP-25L packing information (dimensions are in mm.)

7 Revision history

Date	Revision	Changes	
25-Jun-2009	1	Initial release.	
05-Aug-2009	2	Reduced V _{CE(sat)} value on <i>Table 7</i> .	
15-Jun-2010	3	Document status promoted from preliminary data to datasheet. Updated package mechanical data, <i>Table 7: Inverter part,</i> <i>Figure 5: Maximum IC(RMS) current vs. switching frequency</i> <i>and Figure 6: Maximum IC(RMS) current vs. fSINE (1).</i> Minor text changes to improve readability.	
08-Nov-2010	4	Updated <i>Table 3, 5, 8, 9, 10</i> and <i>Table 11.</i> Modified: <i>Figure 5</i> and <i>Figure 6</i> .	
09-Mar-2011	5	Updated title with SLLIMM [™] in cover page, added SDIP-25L tube dimensions <i>Figure 11 on page 19</i> .	
04-Nov-2011	6	Updated title with SLLIMM [™] (small low-loss intelligent molded module) IPM, 3-phase inverter - 14 A, 600 V short-circuit rugged IGBT in cover page and SDIP-25L mechanical data <i>Table 14 on page 17, Figure 10 on page 17.</i>	
28-Aug-2012	7	Modified: Min. and Max. value <i>Table 4 on page 5</i> . Updated: <i>Figure 11 on page 19</i> . Added: <i>Figure 12 on page 20</i> .	
02-May-2013	8 Updated: <i>Figure 3 on page 8.</i> Modified: <i>Section 4</i> and <i>Figure 8 on page 14.</i>		
15-Apr-2015	9	Text edits and formatting changes throughout document Updated <i>Figure 2: Pin layout (bottom view)</i> Updated <i>Section 6: Package information</i>	

Table 15. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID15927 Rev 9

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STGIPS14K60