

潮州三环（集团）股份有限公司
CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD
地址：中国广东省潮州市凤塘三环工业城 邮编（Post Code）：515646
ADD:Sanhuan Industrial District,Fengtang Chaozhou,Guangdong,China

SPECIFICATION FOR APPROVAL

CUSTOMER: _____

PARTNAME: Multilayer Chip Ceramic Capacitor

SPECIFICATION: _____

APPROVAL SHEET NO.: DRAAW108M/2

ISSUED DATE: _____

MANUFACTURER			CUSTOMER		
APPROVED	CHECKED	PREPARED	APPROVED	CHECKED	PREPARED
Sun Peng	Wang Binbin	Chen Jiarui			

Chaozhou Three-Circle (Group) Co.,Ltd

Address 1: Fengtang Third-Circle Industrial City, Chaozhou City, Guangdong Province, China
(Chaozhou Headquarters)

Address 2: Nanchong City Gaoping District, Qingxi Street, Nanchong City, Sichuan Province
(Nanchong Base)

Address 3: Third-Circle Technology Building, Jiazitang Community, Phoenix Street, Guangming District, Shenzhen (Shenzhen Base)

Tel: 86-768-6855932

Fax: 86-768-6855921

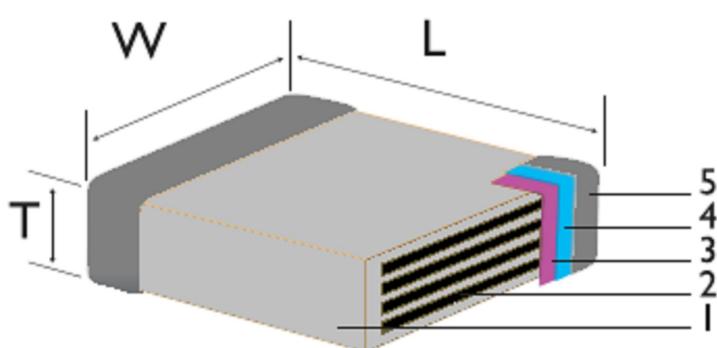
Web: [HTTP://WWW.CCTC.CC](http://WWW.CCTC.CC)

Document Serial No.		DRAAW108M/2		Page	39
Document Name		Specification for Multilayer Ceramic Chip Capacitor		Set date	2012.01
Version	Change Date	Pages	Content of Change		Registrant
B/0	2012/01/11	38	New Set		Qianjun Fang
B/1	2012/08/11	36	Added the carrier tape dimension of 2225 and 1808 sizes		Binbin Wang
C/0	2013/01/10	39	Version Change		Binbin Wang
D/0	2014/01/06	39	Updated the SGS Report		Binbin Wang
E/0	2014/05/06	44	Version Change		Guoxin Zhang
F/0	2015/02/10	44	Version Change		Guoxin Zhang
G/0	2016/05/15	44	Version Change		Guoxin Zhang
H/0	2017/07/01	44	Version Change		Guoxin Zhang
I/0	2020/02/12	44	Version Change		Guoxin Zhang
J/0	2021/01/07	39	Add 0201 size and X6S/X7T dielectrics; deleted dimensions above 1210 size		Guoxin Zhang
J/1	2021/03/25	39	Added the specification model of 0201 size and COG dimension		Guoxin Zhang
K/0	2022/03/18	39	Version Change		Guoxin Zhang
K/1	2022/06/28	41	Version Change		Jiarui Chen
K/2	2022/08/29	59	Updated the range of capacitance		Jiarui Chen
K/3	2022/11/28	59	Added requirements of the RoHS, REACH and HF		Jiarui Chen
L/0	2023/1/16	59	Version Change		Jiarui Chen
L/1	2023-02-01	57	Update capacity		Jiarui Chen
L/2	2023-02-24	57	Update 0105 capacity		Jiarui Chen
L/3	2023-05-13	54	Update capacity, increase the tolerance range of crest welding and reflow welding, and add the introduction of standard remarks		Jiarui Chen
M/0	2023-09-15	61	Update capacity, Shenzhen base address and medium box package size		Jiarui Chen
M/1	2023-12-08	50	Update capacity、Belt size		Guoxin Zhang
M/2	2024-04-19	50	Update capacity		Jiarui Chen

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Catalog

1. Types of Capacitor and Dielectric Material.....	3
2. Product Frame.....	3
3. General Product Parts Numbering System.....	4
4. Product Capacitance Range.....	5
Size 0105(0402).....	5
Size 0201(0603).....	6
Size 0402(1005).....	7
Size 0603(1608).....	8
Size 0805(2012).....	11
Size 1206(3216).....	14
Size 1210(3225).....	17
Size 1812(4532).....	19
Size 2220(5750).....	20
5. Dimensions.....	22
6. Specification and Test Condition.....	24
7. Packing.....	35
8. Precautions on the use of MLCC.....	39

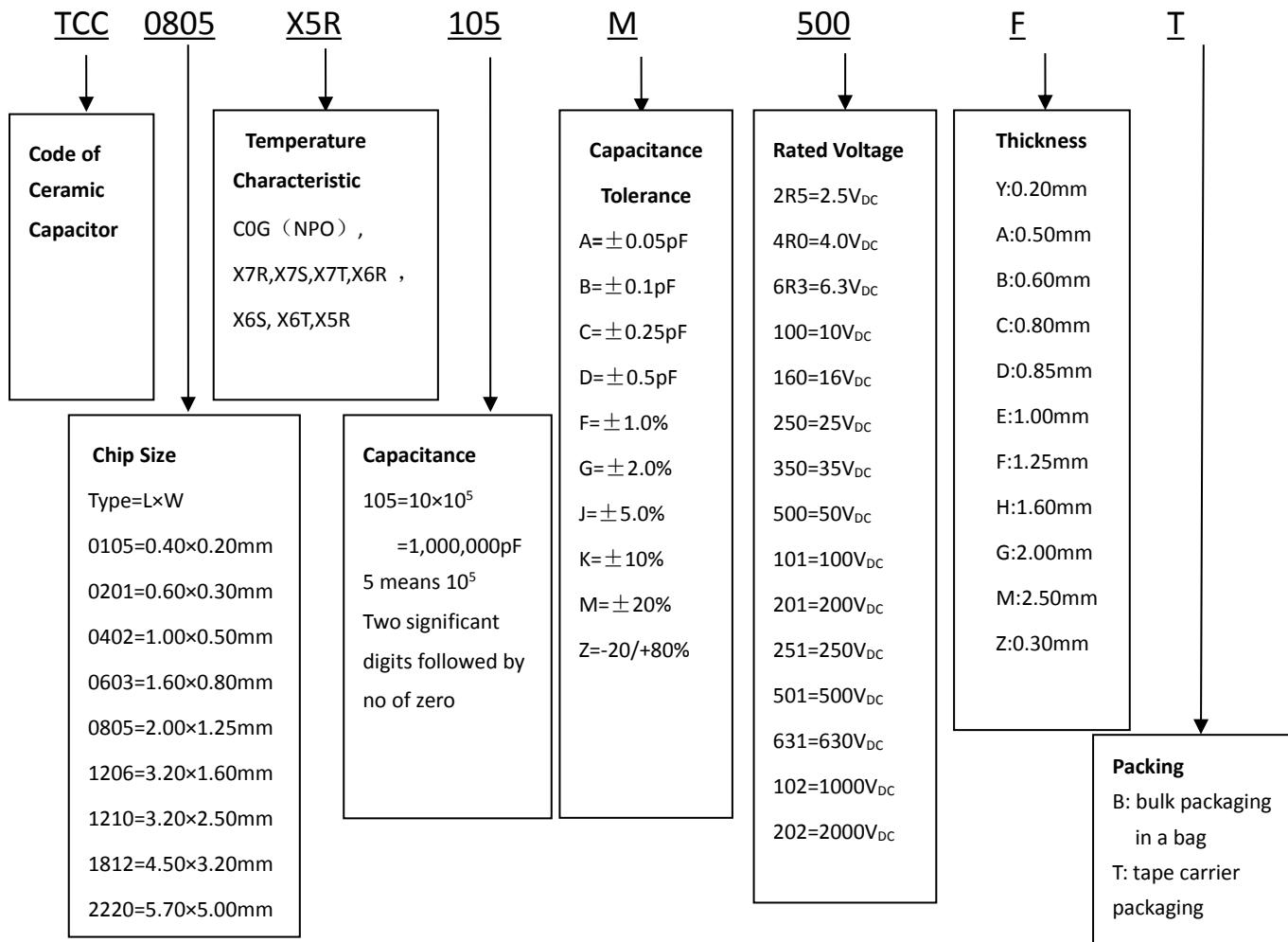

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

1. Types of Capacitor and Dielectric Material

※COG (or NPO) : The capacitor of this kind dielectric material is considered as Class I capacitor, including general capacitor and high frequency COG capacitor。The electrical properties of COG capacitor are the most stable one and have little change with temperature, voltage and time. They are suited for applications where low-losses and high-stability are required, such as filters, oscillators, and timing circuits.

※ X7R、X7S、X7T、X6R、X6S、X6T、X5R: material is a kind of material has high dielectric constant. The capacitor made of this kind material is considered as Class II capacitor whose capacitance is higher than that of class I . These capacitors are classified as having a semi-stable temperature characteristic and used over a wide temperature range, such in these kinds of circuits, DC-blocking, decoupling, bypassing, frequency discriminating etc.

2. Product Frame



No:	Name
1	Ceramic dielectric
2	Inner electrode
3	Outer electrode
4	Nickel
5	Tin

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

3. General Product Parts Numbering System

(example)

Dielectrics Characteristic Group of Product

Dielectrics	Operating Temperature Range	Temperature Characteristic
COG (NPO)	-55°C~+125°C	0±30ppm/°C
X7R	-55°C~+125°C	±15%
X7S	-55°C~+125°C	±22%
X7T	-55°C~+125°C	+22/-33%
X6R	-55°C~+105°C	±15%
X6S	-55°C~+105°C	±22%
X6T	-55°C~+105°C	+22/-33%
X5R	-55°C~+85°C	±15%

SPECIFICATION FOR APPROVAL	Document No.						
	DRAAW108M/2						

4. Product Capacitance Range

Size 0105(0402)

Cp/V _{no}	0105(0402)							
	COG系列		X7R系列		X5R系列			
25	16	10	6.3	25	16	10	6.3	25
0R1	Y	Y	Y	Y	Y	Y	Y	Y
0R2	Y	Y	Y	Y	Y	Y	Y	Y
0R3	Y	Y	Y	Y	Y	Y	Y	Y
0R4	Y	Y	Y	Y	Y	Y	Y	Y
0R5	Y	Y	Y	Y	Y	Y	Y	Y
0R6	Y	Y	Y	Y	Y	Y	Y	Y
0R7	Y	Y	Y	Y	Y	Y	Y	Y
0R8	Y	Y	Y	Y	Y	Y	Y	Y
0R9	Y	Y	Y	Y	Y	Y	Y	Y
1R0	Y	Y	Y	Y	Y	Y	Y	Y
1R1	Y	Y	Y	Y	Y	Y	Y	Y
1R2	Y	Y	Y	Y	Y	Y	Y	Y
1R3	Y	Y	Y	Y	Y	Y	Y	Y
1R5	Y	Y	Y	Y	Y	Y	Y	Y
1R6	Y	Y	Y	Y	Y	Y	Y	Y
1R8	Y	Y	Y	Y	Y	Y	Y	Y
2R0	Y	Y	Y	Y	Y	Y	Y	Y
2R2	Y	Y	Y	Y	Y	Y	Y	Y
2R4	Y	Y	Y	Y	Y	Y	Y	Y
2R7	Y	Y	Y	Y	Y	Y	Y	Y
3R0	Y	Y	Y	Y	Y	Y	Y	Y
3R3	Y	Y	Y	Y	Y	Y	Y	Y
3R6	Y	Y	Y	Y	Y	Y	Y	Y
3R9	Y	Y	Y	Y	Y	Y	Y	Y
4R0	Y	Y	Y	Y	Y	Y	Y	Y
4R3	Y	Y	Y	Y	Y	Y	Y	Y
4R7	Y	Y	Y	Y	Y	Y	Y	Y
5R0	Y	Y	Y	Y	Y	Y	Y	Y
5R1	Y	Y	Y	Y	Y	Y	Y	Y
5R6	Y	Y	Y	Y	Y	Y	Y	Y
6R0	Y	Y	Y	Y	Y	Y	Y	Y
6R2	Y	Y	Y	Y	Y	Y	Y	Y
6R8	Y	Y	Y	Y	Y	Y	Y	Y
7R0	Y	Y	Y	Y	Y	Y	Y	Y
7R5	Y	Y	Y	Y	Y	Y	Y	Y
8R0	Y	Y	Y	Y	Y	Y	Y	Y
8R2	Y	Y	Y	Y	Y	Y	Y	Y
9R0	Y	Y	Y	Y	Y	Y	Y	Y
9R1	Y	Y	Y	Y	Y	Y	Y	Y
100	Y	Y	Y	Y	Y	Y	Y	Y
120	Y	Y	Y	Y	Y	Y	Y	Y
180	Y	Y	Y	Y	Y	Y	Y	Y
220	Y	Y	Y	Y	Y	Y	Y	Y
330	Y	Y	Y	Y	Y	Y	Y	Y
390					Y	Y	Y	Y
470					Y	Y	Y	Y
680					Y	Y	Y	Y
101					Y	Y	Y	Y
181					Y	Y	Y	Y
221					Y	Y	Y	Y
241					Y	Y	Y	Y
271					Y	Y	Y	Y
331					Y	Y	Y	Y
471					Y	Y	Y	Y
681					Y	Y	Y	Y
751					Y	Y	Y	Y
102					Y	Y	Y	Y
152						Y	Y	Y
222						Y	Y	Y
332						Y	Y	Y
472						Y	Y	Y
682						Y	Y	Y
103						Y	Y	Y

Above capacitance for reference only, actual capacitance range depends on the use requirement.

三环集团

— SINCE 1970 —

潮州三环（集团）股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址：中国广东省潮州市凤塘三环工业城 邮编（Post Code）：515646

ADD:Sanhuan Industrial District,Fengtang Chaozhou,Guangdong,China

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Size 0201(0603)

Above capacitance for reference only, actual capacitance range depends on the use requirement.

电话 (Tel) : (0768) 6855932
电子邮箱 (E-mail) : gyc@cctc.cc

传真 (Fax) : (0768) 6859265
网址 (Website) : www.cctc.cc

三环集团

— SINCE 1970 —

潮州三环（集团）股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址：中国广东省潮州市凤塘三环工业城 邮编（Post Code）：515646

ADD:Sanhuan Industrial District,Fengtang Chaozhou,Guangdong,China

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Size0402 (1005)

Above capacitance for reference only, actual capacitance range depends on the use requirement.

电话 (Tel) : (0768) 6855932
电子邮箱 (E-mail) : gyc@cctc.cc

传真 (Fax) : (0768) 6859265
网址 (Website) : www.cctc.cc

SPECIFICATION FOR APPROVAL							Document No.											
							DRAAW108M/2											

Size 0603(1608)

Cp\VDC	COG系列							X7R系列							X7S系列									
	500	250	200	100	50	35	25	250	200	100	50	35	25	16	10	6.3	250	200	100	50	35	25	16	10
0R2	C	C	C	C	C	C	C																	
0R3	C	C	C	C	C	C	C																	
0R4	C	C	C	C	C	C	C																	
0R5	C	C	C	C	C	C	C																	
0R6	C	C	C	C	C	C	C																	
0R7	C	C	C	C	C	C	C																	
0R8	C	C	C	C	C	C	C																	
0R9	C	C	C	C	C	C	C																	
1R0	C	C	C	C	C	C	C																	
1R1	C	C	C	C	C	C	C																	
1R2	C	C	C	C	C	C	C																	
1R3	C	C	C	C	C	C	C																	
1R5	C	C	C	C	C	C	C																	
1R6	C	C	C	C	C	C	C																	
1R8	C	C	C	C	C	C	C																	
2R0	C	C	C	C	C	C	C																	
2R2	C	C	C	C	C	C	C																	
2R4	C	C	C	C	C	C	C																	
2R7	C	C	C	C	C	C	C																	
3R0	C	C	C	C	C	C	C																	
3R3	C	C	C	C	C	C	C																	
3R6	C	C	C	C	C	C	C																	
3R9	C	C	C	C	C	C	C																	
4R0	C	C	C	C	C	C	C																	
4R3	C	C	C	C	C	C	C																	
4R7	C	C	C	C	C	C	C																	
5R0	C	C	C	C	C	C	C																	
5R1	C	C	C	C	C	C	C																	
5R6	C	C	C	C	C	C	C																	
6R0	C	C	C	C	C	C	C																	
6R2	C	C	C	C	C	C	C																	
6R8	C	C	C	C	C	C	C																	
7R0	C	C	C	C	C	C	C																	
7R5	C	C	C	C	C	C	C																	
8R0	C	C	C	C	C	C	C																	
8R2	C	C	C	C	C	C	C																	
9R0	C	C	C	C	C	C	C																	
9R1	C	C	C	C	C	C	C																	
100	C	C	C	C	C	C	C																	
120	C	C	C	C	C	C	C																	
150	C	C	C	C	C	C	C																	
180	C	C	C	C	C	C	C																	
200	C	C	C	C	C	C	C																	
220	C	C	C	C	C	C	C																	
270	C	C	C	C	C	C	C																	
300	C	C	C	C	C	C	C																	
330	C	C	C	C	C	C	C																	
390	C	C	C	C	C	C	C																	
470	C	C	C	C	C	C	C																	
560	C	C	C	C	C	C	C																	
680	C	C	C	C	C	C	C																	
820	C	C	C	C	C	C	C																	

Above capacitance for reference only, actual capacitance range depends on the use requirement.

SPECIFICATION FOR APPROVAL								Document No.											
								DRAAW108M/2											

Size 0603(1608)

Cp/VDC	COG系列							X7R系列							X7S系列									
	500	250	200	100	50	35	25	250	200	100	50	35	25	16	10	6.3	250	200	100	50	35	25	16	10
101	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
121	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
151	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
181		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
201		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
221		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
271		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
331		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
391		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
471		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
561			C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
681			C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
821			C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
102			C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
152			C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
182			C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
222			C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
272				C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
332				C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
472				C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
562				C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
682				C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
103				C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
153								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
183								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
223								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
273								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
333								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
393								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
473								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
563								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
683								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
104								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
154								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
184								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
224								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
274								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
334								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
474								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
684								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
105								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
225								C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
475									C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
106									C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	
226									C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	

Above capacitance for reference only, actual capacitance range depends on the use requirement.

潮州三环（集团）股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址：中国广东省潮州市凤塘三环工业城 邮编 (Post Code) : 515646

ADD: Sanhuan Industrial District, Fengtang Chaozhou, Guangdong, China

SPECIFICATION FOR APPROVAL	Document No.											
	DRAAW108M/2											

Size 0603(1608)

Cp/VDC	X7T系列								0603(1608)						X5R系列									
	250	200	100	50	35	25	16	10	250	200	100	50	35	25	16	10	250	200	100	50	35	25	16	10
101	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
121	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
151	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
181	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
201	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
221	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
271	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
331	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
391	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
471	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
561	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
681	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
821	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
102	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
152	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
182	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
222	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
272	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
332	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
472	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
562	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
682	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
103	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
153		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
183		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
223		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
273		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
333		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
393		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
473		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
563		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
683		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
104		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
154		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
184		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
224		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
274		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
334		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
474		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
684		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
105		C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
225			C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
475				C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
106					C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C
226						C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C

Above capacitance for reference only, actual capacitance range depends on the use requirement.

三环集团

— SINCE 1970 —

潮州三环（集团）股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址：中国广东省潮州市凤塘三环工业城 邮编（Post Code）：515646

ADD:Sanhuan Industrial District,Fengtang Chaozhou,Guangdong,China

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Size 0805(2012)

Above capacitance for reference only, actual capacitance range depends on the use requirement.

电话 (Tel) : (0768) 6855932
电子邮箱 (E-mail) : gyc@cctc.cc

传真 (Fax) : (0768) 6859265
网址 (Website) : www.cctc.cc

SPECIFICATION FOR APPROVAL												Document No.													
												DRAAW108M/2													

Size 0805(2012)

Cp/V _{DC}	COG系列												X7R系列												X7S系列																			
	630	500	250	200	100	50	35	25	16	1000	630	500	250	200	100	50	35	25	16	10	6.3	1000	630	500	250	200	100	50	35	25	16	10	6.3											
101	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B									
121	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B									
151	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B									
181	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B									
201	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B									
221	B	B	B	B	B	B	B	B	B	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D									
271	B	B	B	B	B	B	B	B	B	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D									
331	B	B	B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	B/D	B/D	B/D	B/D	B/D	B/D											
391	D	D	B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
471	D	D	B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
561	F	F	B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
681	F	F	B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
821	F	F	B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
102	F	F	B	B	B	B	B	B	B	F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
152			B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
182			B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
222			B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
272			B	B	B	B	B	B	B	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
332			B/D	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F																		
472			B/D	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F																		
562			B/D	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F																		
682			B/D	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F																		
103			D	D	D	D	D	D	D	F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F											
153										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
183										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
223										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
273										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
333										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
393										D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
473										D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
563										D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
683										D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
104										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
154										F	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D							
184										F	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D							
224										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
274										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
334										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
474										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
684										F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F	D/F										
105										F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F							
225										F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F							
475										F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F							
106																																												
226																																												
476																																												

三环集团 — SINCE 1970 —

潮州三环（集团）股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址：中国广东省潮州市凤塘三环工业城 邮编（Post Code）：515646

地址：中国广东省潮州市凤塘三环工业城 邮编（Post Code）：515046
ADD: Sanhuan Industrial District Fengtang Chaozhou Guangdong China

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Size 0805(2012)

Above capacitance for reference only, actual capacitance range depends on the use requirement.

电话 (Tel) : (0768) 6855932
电子邮箱 (E-mail) : gyc@cctc.cc

传真 (Fax) : (0768) 6859265
网址 (Website) : www.cctc.cc

SPECIFICATION FOR APPROVAL											Document No.										
											DRAAW108M/2										

Size 1206(3216)

Cp/V _{dc}	1206 (3216)												X7R系列											
	2000	1000	630	500	250	200	100	50	35	25	16	2000	1000	630	500	250	200	100	50	35	25	16	10	6
0R5	D	D	D	D	D	D	D	D	D	D	D													
1R0	D	D	D	D	D	D	D	D	D	D	D													
1R1	D	D	D	D	D	D	D	D	D	D	D													
1R2	D	D	D	D	D	D	D	D	D	D	D													
1R3	D	D	D	D	D	D	D	D	D	D	D													
1R5	D	D	D	D	D	D	D	D	D	D	D													
1R6	D	D	D	D	D	D	D	D	D	D	D													
1R8	D	D	D	D	D	D	D	D	D	D	D													
2R0	D	D	D	D	D	D	D	D	D	D	D													
2R2	D	D	D	D	D	D	D	D	D	D	D													
2R4	D	D	D	D	D	D	D	D	D	D	D													
2R7	D	D	D	D	D	D	D	D	D	D	D													
3R0	D	D	D	D	D	D	D	D	D	D	D													
3R3	D	D	D	D	D	D	D	D	D	D	D													
3R6	D	D	D	D	D	D	D	D	D	D	D													
3R9	D	D	D	D	D	D	D	D	D	D	D													
4R0	D	D	D	D	D	D	D	D	D	D	D													
4R3	D	D	D	D	D	D	D	D	D	D	D													
4R7	D	D	D	D	D	D	D	D	D	D	D													
5R0	D	D	D	D	D	D	D	D	D	D	D													
5R1	D	D	D	D	D	D	D	D	D	D	D													
5R6	D	D	D	D	D	D	D	D	D	D	D													
6R0	D	D	D	D	D	D	D	D	D	D	D													
6R2	D	D	D	D	D	D	D	D	D	D	D													
6R8	D	D	D	D	D	D	D	D	D	D	D													
7R0	D	D	D	D	D	D	D	D	D	D	D													
7R5	D	D	D	D	D	D	D	D	D	D	D													
8R0	D	D	D	D	D	D	D	D	D	D	D													
8R2	D	D	D	D	D	D	D	D	D	D	D													
9R0	D	D	D	D	D	D	D	D	D	D	D													
9R1	D	D	D	D	D	D	D	D	D	D	D													
100	D	D	D	D	D	D	D	D	D	D	D													
120	D	D	D	D	D	D	D	D	D	D	D													
150	D	D	D	D	D	D	D	D	D	D	D													
180	D	D	D	D	D	D	D	D	D	D	D													
200	D	D	D	D	D	D	D	D	D	D	D													
220	D/E/	D	D	D	D	D	D	D	D	D	D													
270	D/E/	D	D	D	D	D	D	D	D	D	D													
300	D/E/	D	D	D	D	D	D	D	D	D	D													
330	D/E/	D	D	D	D	D	D	D	D	D	D													
390	D/E/	D	D	D	D	D	D	D	D	D	D													
470	D/E/	D	D	D	D	D	D	D	D	D	D													
560	D/E/	D	D	D	D	D	D	D	D	D	D													
680	D/E/	D	D	D	D	D	D	D	D	D	D													
820	D/E/	D	D	D	D	D	D	D	D	D	D													

Above capacitance for reference only, actual capacitance range depends on the use requirement.

SPECIFICATION FOR APPROVAL																Document No.															
																DRAAW108M/2															

Size 1206(3216)

Capacitance (pF)	COG 系列															X7R 系列															X7S 系列														
	2000	1000	630	500	250	200	100	50	35	25	16	2000	1000	630	500	250	200	100	50	35	25	16	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3										
101	D/E/	D/E	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
121	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
151	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
181	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
201	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
221	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
271	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
331	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
391	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
471	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
561	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
681	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
821	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
102	D/E	D	D	D	D	D	D	D	D	D	D	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F	D	D	D	D	D	D									
152		D	D	D	D	D	D	D	D	D	D	H	H	H	H	H	H	H	D	D	D	D	D	D	H	H	H	H	H	H	F	F	F	F	F	F									
182		D	D	D	D	D	D	D	D	D	D	H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
222		D	D	D	D	D	D	D	D	D	D	H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
272		D	D	D	D	D	D	D	D	D	D	H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
332		D	D	D	D	D	D	D	D	D	D	H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
472		D	D	D	D	D	D	D	D	D	D	H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
562		D	D	D	D	D	D	D	D	D	D	H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
682		D	D	D	D	D	D	D	D	D	D	H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
103		D	D	D	D	D	D	D	D	D	D	H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
153												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
183												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
223												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
273												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
333												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
393												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
473												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
563												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
683												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
104												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
154												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
184												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
224												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
274												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
334												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
474												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
684												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
105												H	H	F	F	F	F	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
205												H	H	F	F	F	F	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
225												H	H	F	F	F	F	F	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
475												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
106												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									
226												H	H	H	H	H	H	H	F	F	F	F	F	F	D	D	D	D	D	D	F	F	F	F	F	F									

三环集团 — SINCE 1970 —

— SINCE 1970 —

潮州三环（集团）股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址：中国广东省潮州市凤塘三环工业城 邮编（Post Code）：515646

ADD:Sanhuan Industrial District,Fengtang Chaozhou,Guangdong,China

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Size 1206(3216)

Above capacitance for reference only, actual capacitance range depends on the use requirement.

电话 (Tel) : (0768) 6855932

传真 (Fax) : (0768) 6859265
网址 (Website) : www.cctc.cc

三环集团 — SINCE 1970 —

— SINCE 1970 —

潮州三环（集团）股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址：中国广东省潮州市凤塘三环工业城 邮编（Post Code）：515646

ADD:Sanhuan Industrial District,Fengtang Chaozhou,Guangdong,China

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Size 1210(3225)

Above capacitance for reference only, actual capacitance range depends on the use requirement.

电话 (Tel) : (0768) 6855932
电子邮件 (E-mail) : gyc@cctc.cc

传真 (Fax) : (0768) 6859265
网址 (Website) : www.cctc.cc

潮州三环（集团）股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址：中国广东省潮州市凤塘三环工业城 邮编 (Post Code) : 515646

ADD: Sanhuan Industrial District, Fengtang Chaozhou, Guangdong, China

SPECIFICATION FOR APPROVAL														Document No.													
														DRAAW108M/2													

Size 1210(3225)

Cp V _{dc}	XTT系列														XG系列														XK系列													
	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3			
221	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
271	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
331	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
391	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
471	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
561	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
681	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
821	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
102	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
152	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
182	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
222	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
272	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
332	G	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
472	G	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
562	G	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
682	G	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
103	G	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
153	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F			
223	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
333	M	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
473	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
563	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
683	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
104	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
154	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
224	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
334	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
374	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
474	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
684	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
105	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
225	H	H	M	H	H	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M			
475	H	H	M	H	H	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M			
106	H	H	M	H	H	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M			
226	H	H	M	H	H	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M			
476	H	H	M	H	H	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M			
477	H	H	M	H	H	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M			
107	H	H	M	H	H	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M	M			

电话 (Tel) : (0768) 6855932
电子邮箱 (E-mail) : gyc@cctc.cc

传真 (Fax) : (0768) 6859265
网址 (Website) : www.cctc.cc

SPECIFICATION FOR APPROVAL													Document No.												
													DRAAW108M/2												

Size 1812(4532)

Cp V _{DC}	X7R系列													1812(4532)													X7S系列																			
	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3							
471	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F								
561	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
681	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
821	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
102	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
222	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
332	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
472	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
562	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
682	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
103	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
153	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
223	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
333	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
473	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H								
563	H	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G											
683	G/M	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G											
104	G/M	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G											
224	G/M	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G											
334																																														
474																																														
684																																														
105																																														
225																																														
475																																														
106																																														
226																																														

Above capacitance for reference only, actual capacitance range depends on the use requirement.

潮州三环(集团)股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址:中国广东省潮州市凤塘三环工业城 邮编(Post Code) : 515646

ADD: Sanhuan Industrial District, Fengtang Chaozhou, Guangdong, China

SPECIFICATION FOR APPROVAL														Document No.													
														DRAAW108M/2													

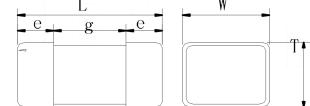
Size 1812(4532)

Cp V _{DC}	XTT系列														X6S系列														XSR系列													
	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3	2000	1000	630	500	250	200	100	50	35	25	16	10	6.3			
471	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F	F		
561	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
681	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
821	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
102	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
222	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
332	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
472	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
562	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
682	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
103	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
153	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
223	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
333	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
473	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
226	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H			
563	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G	H/G						
683	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M						
104	G/M	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H						
224	G/M	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H	G/H						
334	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M						
474	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M						
106	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M						
226	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M						

Above capacitance for reference only, actual capacitance range depends on the use requirement.

电话 (Tel) : (0768) 6855932
电子邮箱 (E-mail) : gyc@cctc.cc

传真 (Fax) : (0768) 6859265
网址 (Website) : www.cctc.cc


SPECIFICATION FOR APPROVAL												Document No.											
												DRAAW108M/2											

Size 2220(5750)

C _p V _{dc}	X7T系列												2220(5750)												X5R系列											
	2000	1000	630	500	250	200	100	50	35	25	2000	1000	630	500	250	200	100	50	35	25	2000	1000	630	500	250	200	100	50	35	25						
221	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
271	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
331	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
391	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
471	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
561	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
681	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
821	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
102	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
222	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
332	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
472	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
562	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
682	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
103	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
153	F/H	F/H	H	H	H	H	H	H	H	H	F/H	F/H	H	H	H	H	H	H	H	H	G	F/H	F/H	H	H	H	H	H	H	H	H					
223	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	G	H	H	H	H	H	H	H	H	H	H	H					
333	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	G	H	H	H	H	H	H	H	H	H	H	H					
473	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H				
563	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
683	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
104	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
224	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
334	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
474	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
684	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
105	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
225	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
475	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
685	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
106	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					
226	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M	G/M					

Above capacitance for reference only, actual capacitance range depends on the use requirement.

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

5. Dimensions

Chip Size: 0105、0201、0402、0603、0805、1206、1210、1812、2220.

Type	L	W	e	g min	T (mm) /Code	
	(mm)	(mm)	(mm)	(mm)		
0105	0.40±0.02	0.20±0.02	0.06~0.15	0.1	0.20±0.02	Y
0105	0.40-0/0.1	0.20-0/0.1	0.06~0.15	0.1	0.20-0/0.1	Y
0201	0.60±0.03	0.30±0.03	0.1~0.2	0.2	0.30±0.03	Z
0201	0.60-0.03/+0.1	0.30-0.03/+0.1	0.1~0.2	0.2	0.30-0.03/+0.1	Z
0402	1.00±0.1	0.50±0.1	0.15~0.3	0.4	0.50±0.1	A
0402	1.00-0.05/+0.2	0.50-0.05/+0.2	0.15~0.3	0.4	0.50-0.05/+0.2	A
0402	1.00-0.05/+0.25	0.50-0.05/+0.25	0.15~0.3	0.4	0.50-0.05/+0.25	A
0603	1.60±0.10	0.80±0.10	0.2~0.6	0.5	0.80±0.10	C
0603	1.60±0.20	0.80±0.20	0.2~0.6	0.5	0.80±0.20	C
0603	1.60-0/+0.3	0.80-0/+0.3	0.2~0.6	0.5	0.80-0/+0.3	C
0805	2.00±0.10	1.25±0.10	0.2~0.7	0.7	0.60±0.10	B
					0.85±0.10	D
					1.25±0.10	F
0805	2.00±0.20	1.25±0.20	0.2~0.7	0.7	0.60±0.10	B
					0.85±0.20	D
					1.25±0.20	F
0805	2.00-0/+0.3	1.25-0/+0.3	0.2~0.7	0.7	1.25-0/+0.3	F

*¹ Identification: The model identification of this type is 1uF and above specifications of product size.

*² Identification: The model identification of this type is 100nF and above specifications of product size.

*³ Identification: The model identification of this type is 4.7uF and above specifications of product size.

*⁴ Identification: The model identification of this type is 10nF and above specifications of product size.

*⁵ Identification: The model identification of this type is 10uF and above specifications of product size.

潮州三环(集团)股份有限公司

CHAOZHOU THREE-CIRCLE(GROUP)CO.,LTD

地址:中国广东省潮州市凤塘三环工业城 邮编(Post Code) : 515646

ADD:Sanhuan Industrial District,Fengtang Chaozhou,Guangdong,China

SPECIFICATION FOR APPROVAL	Document No.		
	DRAAW108M/2		

Type	L	W	e	g min	T (mm) /Code		
	(mm)	(mm)	(mm)	(mm)			
1206	3.20±0.20	1.60±0.20	0.3~0.8	1.6	0.85±0.10	D	
					1.00±0.10	E	
					1.25±0.20	F	
					1.60±0.20	H	
1206	3.20±0.30	1.60±0.30	0.3~0.8	1.6	0.85±0.10	D	*1
					1.00±0.10	E	
					1.25±0.20	F	
					1.60±0.30	H	
1210	3.20±0.30	2.5±0.20	0.3~0.8	1.6	0.85±0.10	D	
					1.25±0.20	F	
					1.60±0.20	H	
					2.00±0.20	G	
					2.50±0.30	M	
1210	3.20±0.40	2.5±0.30	0.3~0.8	1.6	0.85±0.10	D	*1
					1.25±0.20	F	
					1.60±0.30	H	
					2.00±0.30	G	
					2.50±0.30	M	
1812	4.50±0.30	3.2±0.30	0.3~1.5	2.5	1.25±0.20	F	
					1.60±0.20	H	
					2.00±0.20	G	
					2.50±0.30	M	
1812	4.50±0.40	3.2±0.40	0.3~1.5	2.5	1.25±0.20	F	*1
					1.60±0.20	H	
					2.00±0.20	G	
					2.50±0.30	M	
2220	5.70±0.40	5.0±0.40	0.3~1.1	3.5	1.25±0.20	F	
					1.60±0.20	H	
					2.00±0.20	G	
					2.50±0.30	M	

*1 Identification:The model identification of this type is 1uF and above specifications of product size.

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6. Specification and Test Condition

6.1 Appearance

Dielectrics	Specification	Testing Condition
COG (NPO) /X7R/X5R/X7T/X6S/X6 R/X7S/X6T	$l \leq 1/8L, w \leq 1/8W, t \leq 1/8T$ (None is acceptable, All judged unqualified)	Visual inspection.

Reference Standard:IEC60384-21:2014

6.2 Dimensions

Dielectrics	Specification	Testing Condition
COG (NPO) /X7R/X5R/X7T/X6S/X6 R/X7S/X6T	Within the specified dimensions	Using calipers on micrometer

Reference Standard:IEC60384-21:2014

6.3 Capacitance

Dielectrics	Specification	Testing Condition
COG (NPO)	Within the specified tolerance A: $\pm 0.05\text{pF}$; B: $\pm 0.1\text{pF}$; C: $\pm 0.25\text{pF}$; D: $\pm 0.5\text{pF}$; J: $\pm 5\%$	$1.0 \pm 0.2\text{Vrms}, 1\text{MHz} \pm 10\%$ ($C > 1000 \text{ pF}$, $1.0 \pm 0.2\text{Vrms}, 1\text{KHz} \pm 10\%$,)
X7R/X5R/X7T /X6S/X6R/X7S/ X6T	Within the specified tolerance J: $\pm 5\%$; K: $\pm 10\%$; M: $\pm 20\%$	$1.0 \pm 0.2\text{Vrms}, 1\text{KHz} \pm 10\%$ ($C_p > 10\mu\text{F}$, $0.5 \pm 0.1\text{Vrms}, 120 \pm 24\text{Hz}$)

Remarks: Testing temperature: $25^\circ\text{C} \pm 3^\circ\text{C}$, testing humidity: $< 70\%RH$; Aging treatment is required for the specifications of class II medium. Conditions: the capacitor is heat/treated at 150°C for 1 hour and placed for 48 hours before measuring.

Reference Standard:IEC60384-21:2014

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.4 Dissipation Factor

Dielectrics	Specification				Testing Condition																																																																									
C0G (NPO)	Cp<30pF, Q≥400+20Cp; Cp≥30pF, Q≥1000				1.0±0.2Vrms, 1MHz±10%, 25°C (Cp>1000pF, 1.0±0.2Vrms, 1KHz±10%)																																																																									
X7R/X5R/X7T /X6S/X6R/X7S/X 6T	<table border="1"> <thead> <tr> <th>Type</th> <th>U_R</th> <th>Range of capacitance</th> <th>DF</th> </tr> </thead> <tbody> <tr> <td rowspan="2">0105</td> <td rowspan="2">/</td> <td>C≤0.01μF</td> <td>≤7%</td> </tr> <tr> <td>C>0.01μF</td> <td>≤10%</td> </tr> <tr> <td rowspan="2">0201</td> <td rowspan="2">/</td> <td>C≤0.01μF</td> <td>≤7%</td> </tr> <tr> <td>C>0.01μF</td> <td>≤10%</td> </tr> <tr> <td rowspan="2">0402</td> <td rowspan="2">/</td> <td>C≤0.1μF</td> <td>≤7%</td> </tr> <tr> <td>C>0.1μF</td> <td>≤10%</td> </tr> <tr> <td rowspan="4">0603</td> <td rowspan="2">≤25V</td> <td>C≤0.47μF</td> <td>≤7%</td> </tr> <tr> <td>C>0.47μF</td> <td>≤10%</td> </tr> <tr> <td rowspan="2">>25V</td> <td>C≤0.1μF</td> <td>≤5%</td> </tr> <tr> <td>0.1μF<C≤0.22μF</td> <td>≤7%</td> </tr> <tr> <td rowspan="4">0805</td> <td rowspan="2">≤25V</td> <td>C>0.22μF</td> <td>≤10%</td> </tr> <tr> <td>C≤1μF</td> <td>≤7%</td> </tr> <tr> <td rowspan="2">>25V</td> <td>C>1μF</td> <td>≤10%</td> </tr> <tr> <td>C≤0.47μF</td> <td>≤7%</td> </tr> <tr> <td rowspan="4">1206</td> <td rowspan="2">≤25V</td> <td>C>0.47μF</td> <td>≤10%</td> </tr> <tr> <td>C<2.2μF</td> <td>≤7%</td> </tr> <tr> <td rowspan="2">>25V</td> <td>2.2μF≤C≤47μF</td> <td>≤10%</td> </tr> <tr> <td>C<1μF</td> <td>≤7%</td> </tr> <tr> <td rowspan="2">1210</td> <td rowspan="2">/</td> <td>1μF≤C≤47μF</td> <td>≤10%</td> </tr> <tr> <td>C<2.2μF</td> <td>≤7%</td> </tr> <tr> <td rowspan="2">1812</td> <td rowspan="2">/</td> <td>2.2μF≤C≤47μF</td> <td>≤10%</td> </tr> <tr> <td>C<2.2μF</td> <td>≤7%</td> </tr> <tr> <td rowspan="2">2220</td> <td rowspan="2">/</td> <td>2.2μF≤C≤47μF</td> <td>≤10%</td> </tr> <tr> <td>C<2.2μF</td> <td>≤7%</td> </tr> </tbody> </table>	Type	U _R	Range of capacitance	DF	0105	/	C≤0.01μF	≤7%	C>0.01μF	≤10%	0201	/	C≤0.01μF	≤7%	C>0.01μF	≤10%	0402	/	C≤0.1μF	≤7%	C>0.1μF	≤10%	0603	≤25V	C≤0.47μF	≤7%	C>0.47μF	≤10%	>25V	C≤0.1μF	≤5%	0.1μF<C≤0.22μF	≤7%	0805	≤25V	C>0.22μF	≤10%	C≤1μF	≤7%	>25V	C>1μF	≤10%	C≤0.47μF	≤7%	1206	≤25V	C>0.47μF	≤10%	C<2.2μF	≤7%	>25V	2.2μF≤C≤47μF	≤10%	C<1μF	≤7%	1210	/	1μF≤C≤47μF	≤10%	C<2.2μF	≤7%	1812	/	2.2μF≤C≤47μF	≤10%	C<2.2μF	≤7%	2220	/	2.2μF≤C≤47μF	≤10%	C<2.2μF	≤7%	1.0±0.2Vrms, 1KHz±10%, (Cp>10μF, 0.5±0.1Vrms, 120±24Hz)			
Type	U _R	Range of capacitance	DF																																																																											
0105	/	C≤0.01μF	≤7%																																																																											
		C>0.01μF	≤10%																																																																											
0201	/	C≤0.01μF	≤7%																																																																											
		C>0.01μF	≤10%																																																																											
0402	/	C≤0.1μF	≤7%																																																																											
		C>0.1μF	≤10%																																																																											
0603	≤25V	C≤0.47μF	≤7%																																																																											
		C>0.47μF	≤10%																																																																											
	>25V	C≤0.1μF	≤5%																																																																											
		0.1μF<C≤0.22μF	≤7%																																																																											
0805	≤25V	C>0.22μF	≤10%																																																																											
		C≤1μF	≤7%																																																																											
	>25V	C>1μF	≤10%																																																																											
		C≤0.47μF	≤7%																																																																											
1206	≤25V	C>0.47μF	≤10%																																																																											
		C<2.2μF	≤7%																																																																											
	>25V	2.2μF≤C≤47μF	≤10%																																																																											
		C<1μF	≤7%																																																																											
1210	/	1μF≤C≤47μF	≤10%																																																																											
		C<2.2μF	≤7%																																																																											
1812	/	2.2μF≤C≤47μF	≤10%																																																																											
		C<2.2μF	≤7%																																																																											
2220	/	2.2μF≤C≤47μF	≤10%																																																																											
		C<2.2μF	≤7%																																																																											

Remarks: Testing temperature:25°C±3°C, testing humidity:<70%RH; Aging treatment is required for the specifications of class II medium. Conditions: the capacitor is heat/treated at 150°C for 1 hour and placed for 48 hours before measuring.

Reference Standard:IEC60384-21:2014

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.5 Insulation Resistance

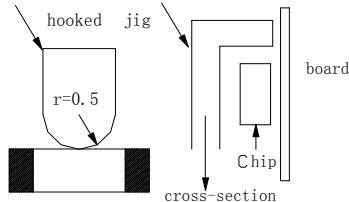
Dielectrics	Specification	Testing Condition
COG (NPO) /X7R/X5R /X7T/X6S/X7S/X 6R/X6T	$U_R \leq 50V$, More than $10 G\Omega$ or $100\Omega \cdot F / CR$, whichever is smaller.	$U_R \leq 50V$ $U=U_R$; Charge Time: 60 ± 5 sec Charge/discharge current: $50mA_{max}$ Temperature: $25^{\circ}C$
COG (NPO) /X7R/X7T /X6S/X7S/X5R/X 6R/X6T	$U_R > 50V$, More than $4 G\Omega$ or $100\Omega \cdot F / CR$, whichever is smaller.	$U_R \leq 400V$ $U=U_R$ $U_R > 400V$ $U=400V$; Charge Time: 60 ± 5 sec Charge/discharge current: $50mA_{max}$ Temperature: $25^{\circ}C$
Remarks: Testing temperature: $25^{\circ}C \pm 3^{\circ}C$, testing humidity: $< 70\%RH$.		

Reference Standard: IEC60384-21:2014

6.6 Dielectric Strength

Dielectrics	Rated voltage range	Measuring Method
COG (NPO)	$U_R \leq 50V$	Force 300% Rated voltage for 5second. Max current should not exceed 50 mA.
X7R/X5R/X7T /X6S/X7S/X6R/X6T	$U_R \leq 50V$	Force 250% Rated voltage for 5second. Max current should not exceed 50 mA.
COG (NPO) /X7R/X7S/X7T/X5R /X6R/X6S/X6T	$100V \leq U_R < 500V$	Force 200% Rated voltage for 5second. Max current should not exceed 50 mA.
	$500V \leq U_R < 2000V$	Force 150% Rated voltage for 5second. Max current should not exceed 50 mA.
	$U_R \geq 2000V$	Force 120% Rated voltage for 5second. Max current should not exceed 30 mA.

Reference Standard: IEC60384-21:2014


SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.7 Temperature Coefficient of Capacitance

Dielectrics	Specification	Testing Condition									
C0G(NPO)	Temperature coefficient within $\pm 30\text{ppm}/^\circ\text{C}$; Cp drift within $\pm 0.2\%$ or $\pm 0.05\text{pF}$	Measure capacitance under follow table list temperature: Heat at $140\sim 150^\circ\text{C}$ for 1 hour , Leave at room temperature for 24 hours and then measure. The test voltage is 1Vrms max.									
		步骤 STEP	C0G, X7R,X7T	X6S	X5R	X7S					
		1	25 ± 2	25 ± 2	25 ± 2	25 ± 2					
		2	-55 ± 3	-55 ± 3	-55 ± 3	-55 ± 3					
		3	25 ± 2	25 ± 2	25 ± 2	25 ± 2					
X7R/X5R/X 6R	Capacitance change within $\pm 15\%$	4	125 ± 3	105 ± 3	85 ± 3	125 ± 3					
		5	25 ± 2	25 ± 2	25 ± 2	25 ± 2					
		1)	COG The capacity drift is calculated by dividing the capacitance capacity measured in step 3 by the difference between the maximum and minimum errors measured in steps 1,3, and 5. The calculation of the temperature coefficient is based on the capacitance measurement in step 3.								
X7T/X6T	Capacitance change within $+22\%$, -33%	2)	X7R/X7S/ X7T /X5R/X6R/X6S/X6T Compared with the capacitance capacity at 25°C ,the capacitance capacity changes within the temperature range within the required range.								
Remarks: 0201/223 and above specifications,0402/104 and above specifications,0603/334 and above specifications,0805/105 and above specifications,1206/1210 225 and above specifications,Test Voltage:0.1Vrms											
Reference Standard:IEC60384-21:2014											

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.8 Adhesion

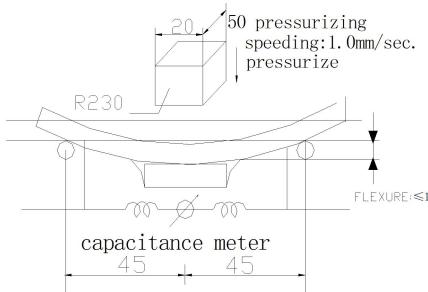
Dielectrics	Specification	Testing Condition
COG (NPO) /X7R/X5R/X7T/X6S /X7S/X6R/X6T	No removal of the terminations or other defect shall occur.	<p>The pressurizing force shall be 6N (=600g*f) and the duration of application shall be 10±1sec. (0201:2N)</p>

Reference Standard:IEC60384-21:2014

6.9 Solderability of Termination

Dielectrics	Specification	Testing Condition
COG (NPO) /X7R/X5R/X7T/X6S /X7S/X6R/X6T	95% min. coverage of both terminal electrodes and less than 5% have pin holes or rough spots.	<p>Solder temperature: 245±5 °C Dipping time: 2±1 seconds. Completely soak both terminal electrodes in solder</p>

Reference Standard:IEC60384-21:2014


6.10 Resistance to leaching

Dielectrics	Specification	Testing Condition
COG (NPO) /X7R/X5R/X7T/X6S /X7S/X6R/X6T	95% min. coverage of both terminal electrodes and less than 5% have pin holes or rough spots. No remarkable visual damage.	<p>Solder temperature: 270±5 °C preheated: 120 °C~150 °C/60sec Dipping time: 10±1 seconds. Completely soak both terminal electrodes in solder</p>

Reference Standard:IEC60384-21:2014

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.11 Bending

Dielectrics	Specification	Testing Condition
COG (NPO)	No remarkable visual damage Cp change within $\pm 5.0\%$ or $\pm 0.5\text{pF}$, whichever is larger.	Solder the capacitor on testing substrate and put it on testing stand. The middle part of substrate shall successively be pressurized by pressuring rod at a rated of about 1.0mm/sec. Until the deflection become means of the 1.0mm.
X7R/X5R/X7T /X6S/X7S/X6R/X 6T	No remarkable visual damage Cp change $\leq \pm 10\%$	

Remarks: Text sample thickness:0201/0402:1.0mm;0603/0805/1206:1.6mm.

Reference Standard:IEC60384-21:2014

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.12 Resistance to Soldering Heat

Dielectrics	Specification	Testing Condition
COG (NPO)	No remarkable visual damage Cp change within $\pm 2.5\%$ or $\pm 0.25\text{pF}$, whichever is larger. DF meets initial standard value. IR meets initial standard value.	Soldering temperature: $270 \pm 5^\circ\text{C}$ Preheating: $120 \sim 150^\circ\text{C}$ 60sec. Dipping time: 10 ± 1 seconds. Measurement to be made after being kept at room temperature for 24 ± 2 (COG) or 48 ± 4 (X7R/X7S/X7T/X5R/X6R/X6S/X6T) hours. Recovery for the following period under the standard condition after test. *Initial measurement for high dielectric constant type Perform a heat treatment at $140 \sim 150^\circ\text{C}$ for 1hr and let sit for 48 ± 4 hrs at room temperature. Perform the initial measurement.
X7R/X7S/X7T/X5R/X6R/X6S/X6T	No remarkable visual damage Cp change within $\pm 7.5\%$ DF meets initial standard value. IR meets initial standard value.	

Reference Standard:IEC60384-21:2014

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.13 Temperature Cycle

Dielectrics	Specification	Testing Condition		
COG (NPO)	No remarkable visual damage Cp change within $\pm 2.5\%$ or $\pm 0.25\text{pF}$, whichever is larger.	To perform 5 cycles of the stated environment		
		Step	Temperature	Time
		1	Min.operating Temp.+0/-3°C	30min
		2	25°C	2~3 min
		3	Max.operating Temp.+3/-0°C	30 min
X7R/X5R/X7T /X6S/X7S/X6R/X6T	No remarkable visual damage Cp change within $\pm 7.5\%$	4	25°C	2~3 min
		Measurement to be made after being kept at room temperature for 24±2hrs (COG) or 48±4hrs (X7R/X7S/X7T/X5R/X6R/X6S/X6T) at room temperature, then measure.		
		*Initial measurement for high dielectric constant type		
		Perform a heat treatment at 140~150°C for 1hr and let sit for 48±4hrs at room temperature.		
		Perform the initial measurement.		

Reference Standard:IEC60384-21:2014

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.14 Moisture Resistance ,steady state

Dielectrics	Specification	Testing Condition
COG (NPO)	No remarkable visual damage Cp change within $\pm 5\%$ or $\pm 0.5\text{pF}$, whichever is larger. Cp<10pF, Q \geq 200+10Cp; 10 \leq Cp<30pF, Q \geq 275+2.5Cp Cp \geq 30pF, Q \geq 350 R*C \geq 1000M Ω or 10 $\Omega\cdot\text{F}$, whichever is smaller	Test temperature: $40\pm 2^\circ\text{C}$ Humidity: 90~95% RH Testing time: 500 $\pm 12\text{hrs}$ Measurement to be made after being kept at room temperature for 24 $\pm 2\text{hrs}$ (COG) or 48 $\pm 4\text{hrs}$ (X7R/X7S/X7T/X5R/X6R/X6S/X6T) *Initial measurement for high dielectric constant type Perform a heat treatment at 140~150 $^\circ\text{C}$ for 1hr and let sit for 48 $\pm 4\text{hrs}$ at room temperature. Perform the initial measurement.
X7R/X7S/X7T/X5R/X6R/X6S/X6T	No remarkable visual damage Cp change within $\pm 12.5\%$ DF: Not more than 2 times of initial value R*C \geq 1000M Ω or 10 $\Omega\cdot\text{F}$, whichever is smaller	

Reference Standard:IEC60384-21:2014

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.15 Damp heat with load

Dielectrics	Specification	Testing Condition
COG (NPO)	No remarkable visual damage Cp change $\leq \pm 7.5\%$ or $\pm 0.75\text{pF}$, whichever is larger. $\text{Cp} < 30\text{pF}$, $\text{Q} \geq 100 + 10/3 * \text{Cp}$ $\text{Cp} \geq 30\text{pF}$, $\text{Q} \geq 200$ $\text{R} * \text{C} \geq 500\text{M}\Omega$ or $5\Omega \cdot \text{F}$, whichever is smaller	Test temperature: $40 \pm 2^\circ\text{C}$ Humidity: 90~95% RH Voltage: $\text{Ur} \leq 500\text{V}$, 100% of the rated voltage; $\text{Ur} > 500\text{V}$, test voltage 500V. Charge/discharge current 50mA max Testing time: $500 \pm 12\text{hrs}$ Measurement to be made after being kept at room temperature for $24 \pm 2\text{hrs}$ (COG) or $48 \pm 4\text{hrs}$ (X7R/X7S/X7T/X5R/X6R/X6S/X6T) *High dielectric constant capacitor: Pretreatment before experiment, heat treatment at 150°C for 1hour, left at room temperature for 48 hours, then measured; Post-experimental treatment, heat treatment at 150°C for 1hour, left at room temperature for 48 hours, then measured.
X7R/X7S/X7T/X5R/X6R/X6S/X6T	No remarkable visual damage Cp change $\leq \pm 12.5\%$ DF: Not more than 2 times of initial value $\text{R} * \text{C} \geq 500\text{M}\Omega$ or $5\Omega \cdot \text{F}$, whichever is smaller	
Remarks: This reliability test is applicable to conventional products only, medium & high voltage products are inapplicable. Reference Standard: IEC60384-21:2014		

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

6.16 Life Test

Dielectrics	Specification	Testing Condition
COG (NPO)	No remarkable visual damage Cp change $\leq \pm 3\%$ or $\pm 0.3\text{pF}$, whichever is larger. $Q \geq 350$ ($C_p \geq 30\text{ pF}$) $Q \geq 275 + (2.5 * C_p)$ ($10\text{ pF} \leq C_p < 30\text{ pF}$) $Q \geq 200 + 10 * C_p$ ($C_p < 10\text{ pF}$) $R * C \geq 1000\text{M}\Omega$ or $5\Omega \cdot F$, whichever is smaller	Test temperature: Max. Operating Temp. $\pm 3^\circ\text{C}$ Voltage: $U_R < 100\text{V}$ 150% of the rated voltage (*Remarks) Charge/discharge current 50mA max Testing time: 1000 hrs Measurement to be made after being kept at room temperature for $24 \pm 2\text{hrs}$ (C0G) or $48 \pm 4\text{hrs}$ (X7R/X7S/X7T/X5R/X6R/X6S/X6T) *High dielectric constant capacitor: Pretreatment before experiment, heat treatment at 150°C for 1hour, left at room temperature for 48 hours, then measured; Post-experimental treatment, heat treatment at 150°C for 1hour, left at room temperature for 48 hours, then measured.
X7R/X7S/X7T/X5R/X6R/X6S/X6T	No remarkable visual damage Cp change $\leq \pm 12.5\%$ DF: Not more than 2 times of initial value $R * C \geq 1000\text{M}\Omega$ or $5\Omega \cdot F$, whichever is smaller	

Remarks: IF $U_R \geq 100\text{V}$, the voltage shall be 1 times the rated voltage.

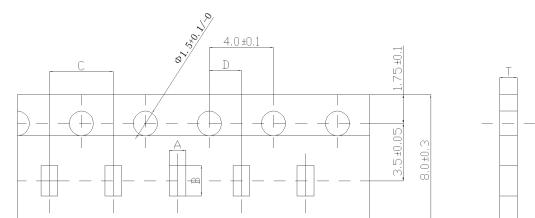
Remarks*: 0201/104 and above specifications, 0402/104 25V and above specifications, 0603/105 25V and above specifications, 0805/225 25V and above specifications, 1206/475 25V and above specifications, 1210/225 25V and above specifications, Test at 1 times rated voltage.

Reference Standard: QDRAA116-G1-2023 (CCTC)

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

7. Packing

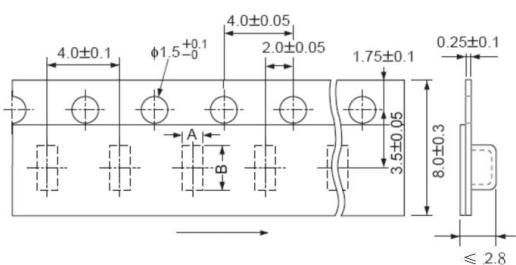
7.1 Bulk Packing

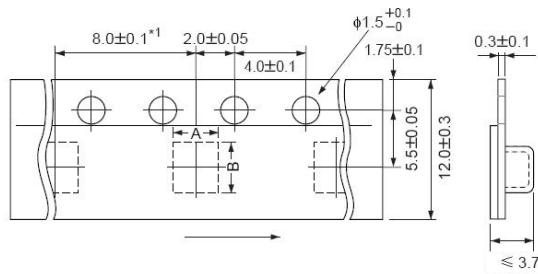

Standard packing 10Kpcs/bag; others are according to customer request.

7.2 Tape Packing

Type	Size (mm)			Number of tape (pcs/reel)	
	L	W	T	Paper Tape	Plastic Tape
0105	0.4	0.2	0.2	20000	N/A
0201	0.6	0.3	0.3	15,000	N/A
0402	1.0	0.5	0.5	10,000	N/A
0603	1.6	0.8	0.8	4,000	N/A
0805	2.0	1.25	≤0.85	4,000	N/A
			>0.85	N/A	3,000
1206	3.2	1.6	≤0.85	4,000	N/A
			0.85 < T ≤ 1.25	N/A	3,000
			1.6	N/A	2,000
1210	3.2	2.5	≤2.0	N/A	2,000
			>2.0	N/A	1500
1812	4.6	3.2	≤2.0	N/A	1,000
			>2.0	N/A	1000
2220	5.7	5.0	≤1.25	N/A	1,000
			>1.25	N/A	700

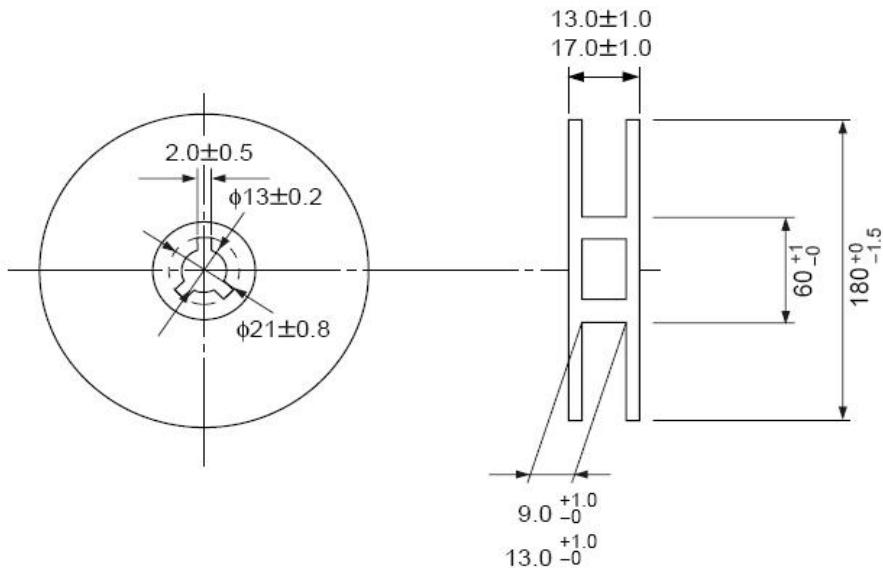
7.2.1 Dimensions of Packing Paper


Type	A	B	C	D	T
0105	0.23±0.03	0.43±0.03	1.0±0.10	1.0±0.05	0.50max
0201	0.40±0.09	0.70±0.09	2.0±0.10	2.0±0.05	0.42max
0402	0.65±0.15	1.20±0.15	2.0±0.10	2.0±0.05	0.8max
0603	1.05±0.15	1.90±0.15	4.0±0.10	2.0±0.10	1.1max
0805	1.55±0.15	2.3±0.15	4.0±0.10	2.0±0.10	1.1max
1206	2.00±0.04	3.5±0.04	4.0±0.10	2.0±0.10	1.1max

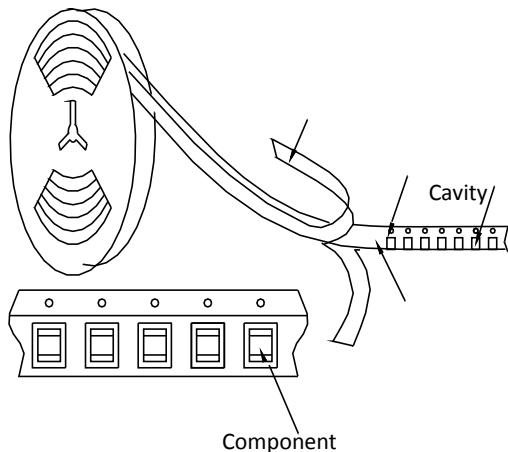

(unit : mm)

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

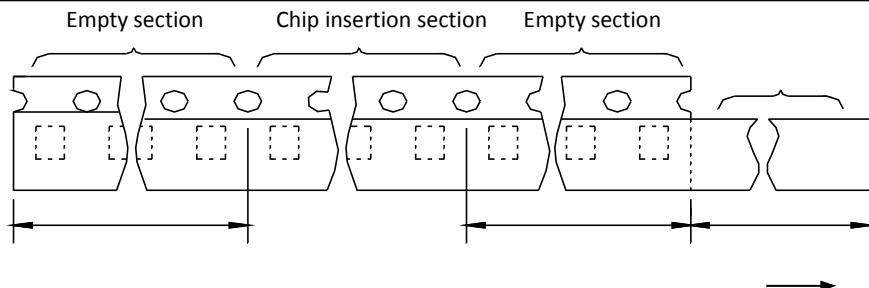
7.2.2 Dimensions of Embossed Packing



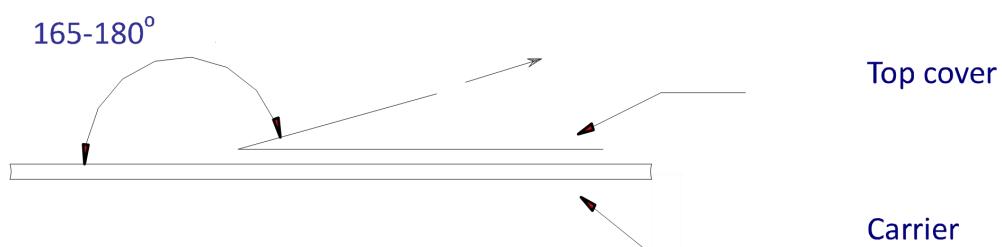
A: 1.40 ± 0.20 B: 2.25 ± 0.20 (0805)
 A: 1.90 ± 0.20 B: 3.50 ± 0.20 (1206)
 A: 2.90 ± 0.30 B: 3.60 ± 0.30 (1210)



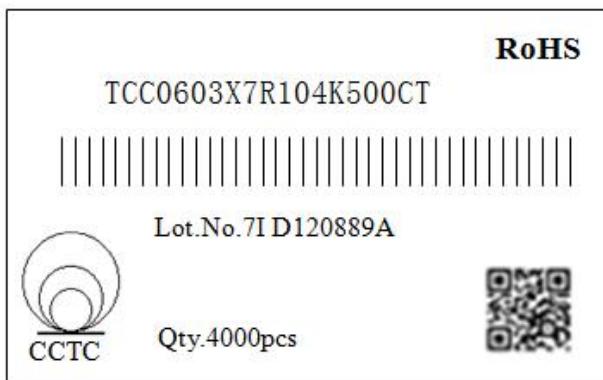
A: 3.60 ± 0.20 B: 5.00 ± 0.20 (1812)
 A: 5.60 ± 0.20 B: 6.10 ± 0.20 (2220)
 (unit : mm)


7.2.3 Dimensions of Reel

7.2.4 Taping Figure



SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2


7.2.5 Taping Method

- ① Tapes for capacitors are wound clockwise. The sprocket holes are to the right as the tape is pulled toward the user.
- ② The top tape and base tape are not attached at the end of the tape for a minimum of 5 pitches.
- ③ Part of the leader and part of the empty tape shall be attached to the end of the tape as follows.
- ④ Missing capacitors number within 0.1% of the number per reel or 1pc, whichever is greater, and are not continuous.
- ⑤ The top tape and bottom tape shall not protrude beyond the edges of the tape and shall not cover sprocket holes.
- ⑥ Cumulative tolerance of sprocket holes, 10 pitches: $\pm 0.3\text{mm}$.
- ⑦ Peeling off force: 0.1 to 0.6N in the direction shown down.

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

7.2.6 Reel Label

The Contents of Label

(1) TCC 0603 X7R 104 K 500 C I
 (1) (2) (3) (4) (5) (6) (7) (8)

(1) Code of Ceramic Capacitor, (2) chip size, (3) dielectrics, (4) capacitance, (5) tolerance, (6) rated voltage, (7) thickness, (8) packing
 (2) Lot. No.: 7ID120889A
 (3) Qty: 4000pcs
 (4) RoHS:GREEN PARTS

7.2.7 Package

7.2.7.1 Carton

7.2.7.1.1 Carton Size

L	W	H
41.0±3cm	38.5±3cm	20.2±3cm

7.2.7.1.2 The Quantity: 240Kpcs /one carton

1 INNER BOX=40,000PCS

1 CARTON=40,000PCS × 6 INNER BOX =240,000PCS

RoHS according to customer request

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

7.2.7.2 Inner Box

7.2.7.2.1 Size

L	W	H
18±1cm	18.5±1cm	11.8±1cm

7.2.7.2.2 The Quantity: 40Kpcs /one carton; 1 REEL=4,000PCS; 1 INNER BOX=4,000PCS × 10REEL =40,000PCS

8. Precautions on the use of MLCC

8.1 PCB Design

8.1.1 Design of Land-patterns

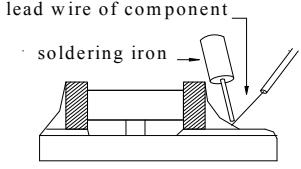
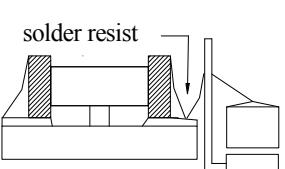
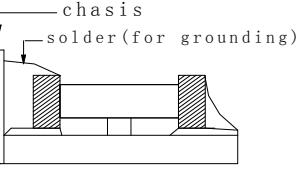
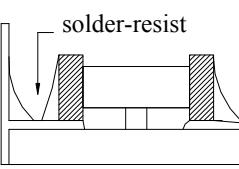
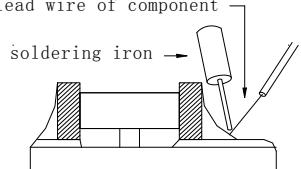
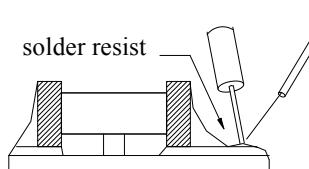

The following diagrams and tables show some examples recommended patterns to prevent excessive solder amounts (larger fillets which above the component end terminations)

Examples of improper pattern designs are also shown.

Recommended land dimensions for a typical chip capacitor land patterns for PCBs

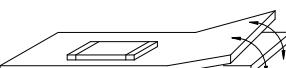
Recommended land dimensions for wave-soldering (unit: mm)

Specification	0603	0805	1206
Size	L	1.6	2.0
	W	0.8	1.25
A	0.8~1.0	1.0~1.4	1.8~2.5
B	0.5~0.8	0.8~1.5	0.8~1.7
C	0.6~0.8	0.9~1.2	1.2~1.6







Recommended land dimensions for reflow-soldering (unit: mm)

SIZE	0105	0201	0402	0603	0805	1206	1210	1812	2220
Size	L	0.4	0.6	1.0	1.6	2.00	3.2	4.5	5.7
	W	0.2	0.3	0.5	0.8	1.25	1.6	3.2	5.0
A	0.16~0.20	0.20~0.25	0.35~0.45	0.6~0.8	0.8~1.2	1.8~2.5	1.8~2.5	2.5~3.4	4.0~4.6
B	0.12~0.18	0.20~0.30	0.40~0.50	0.6~0.8	0.8~1.2	1.0~1.5	1.0~1.5	1.8~2.0	2.0~2.2
C	0.20~0.23	0.25~0.35	0.45~0.55	0.6~0.8	0.9~1.6	1.2~2.0	1.6~3.2	2.3~3.5	3.5~4.8

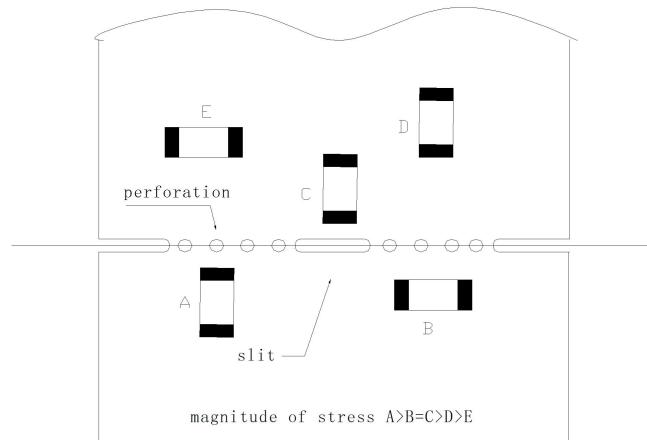
Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns.



Examples of good and bad solder application

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Item	Not recommended	Recommended
Mixed mounting of SMD and leaded component		
Component placement close to the chassis		
Hand-soldering of leaded components near mounted components		

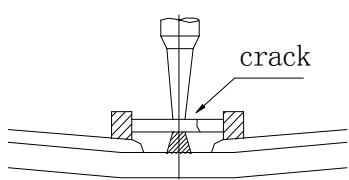
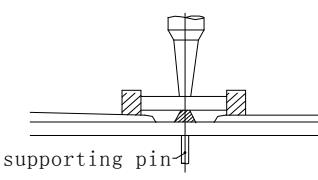
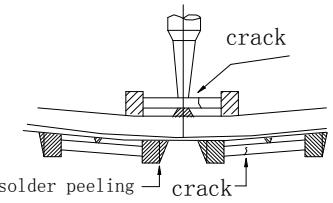
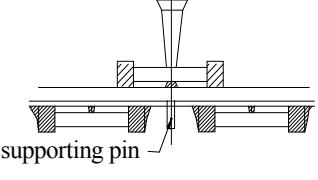

8.1.2 Pattern configurations

The following are examples of good and bad capacitor layout, SMD capacitors should be located to minimize any possible mechanical stresses from board warp or deflection.

	Not recommended	Recommended
Deflection of the board		

To layout the capacitors for the breakaway PC board, it should be noted that the amount of mechanical stresses given depending on capacitor layout. The example below shows recommendations for better design.

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

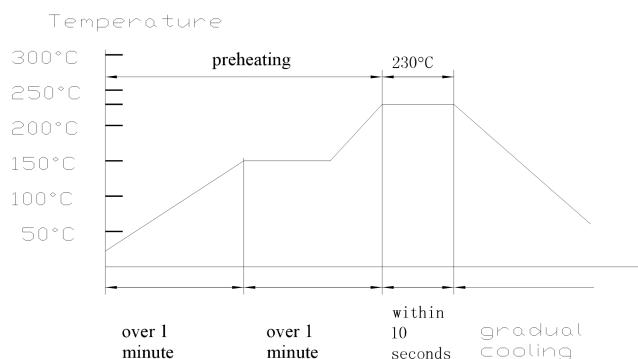
When breaking PC boards along their perforations, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, silt, grooving, and perforation. Thus, any ideal SMD capacitor layout must also consider the PCB splitting procedure.

8.2 Considerations for automatic placement

Adjustment of mounting machine

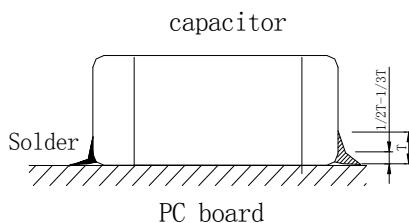
- ① Excessive impact load should not be imposed on the capacitors when mounting the PC boards.
- ② The maintenance and inspection of the mounters should be conducted periodically.

	Not recommended	Recommended
Single-sided mounting		
Double-sided mounting		

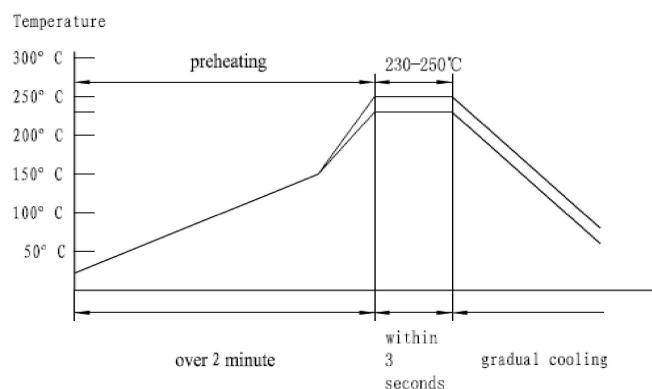

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

8.3 Recommended soldering profile

8.3.1 Instructions: ① flow Soldering is recommended; ② flow soldering is suitable for bigger size mlccs


8.3.2 Recommended Sn&Pb soldering profile

Reflow soldering


Caution

① The ideal condition is to have solder mass (fillet) controlled to 1/2 to 1/3 of the thickness of the capacitor, as shown below:

② Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible.

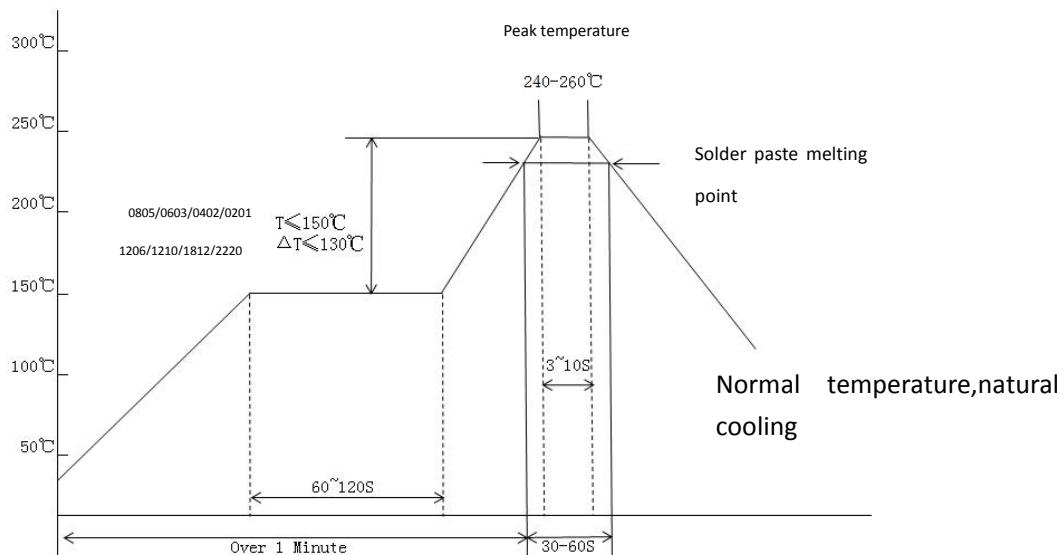
Wave solder profile

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Caution

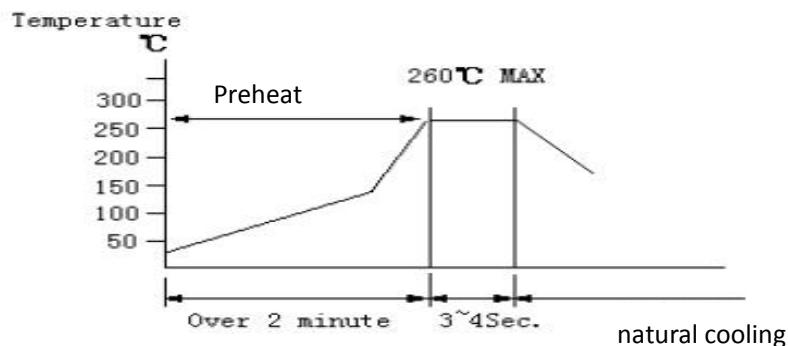
- ① Make sure the capacitors are preheated sufficiently.
- ② The temperature difference between the capacitor and melted solder should not be greater than 100 to 130°C.
- ③ Cooling after soldering should be gradual as possible.

Hand soldering


Preheat	Soldering tip temperature	Soldering power	Diameter of soldering iron head	Welding time	Solder paste content	Restriction condition
△ \leq 130°C	Up to 350°C	Max. 20W	Recommended 1mm	Up to 5s	$\leq 1/2$ chip thickness	Do not use the soldering tip to touch the ceramic element directly

Caution

- ① Use a 20w soldering iron with a maximum tip diameter of 1.0mm.
- ② The soldering iron should not directly touch the capacitor.


8.3.3 Recommended Pb-Free soldering profile

Reflow solder

SPECIFICATION FOR APPROVAL	Document No.
	DRAAW108M/2

Wave solder profile

Capacitance range of Wave solder profile and Reflow solder:

Welding mode	0402	0603	0805	1206	1210
Wave solder profile	/	Capacitance of 105 and below	Capacitance of 225 and below	Capacitance of 475 and below	/
Reflow solder	All Specifications	All Specifications	All Specifications	All Specifications	All Specifications

8.4 Handling

Breakaway PC boards (splitting along perforations)

- (1) When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of deflection or twisting to the board.
- (2) Board separation should not be done manually, but by using the appropriate devices.

8.5 Storage

- (1) Keep the storage environment conditions as following: Temperature: 5~40°C; Humidity: ≤70% RH
- (2) Don't open the tape until the parts are to be used, and store them within one year since the date printed on the reel.
- (3) Use the chips within 3 months after the tape is opened.
- (4) The capacitance value of high dielectric constant capacitors (X7R/X7S/X7T/X5R/X6R/X6S/X6T) will gradually decrease with the passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1 hour will return the capacitance to its initial level.

8.6 Environmental Declaration

- (1) All MLCC products of our comply with RoHS 2.0;
- (2) All MLCC products of our comply with the latest REACH regulations;
- (3) All MLCC products of our comply meet HF requirements.