# 16V Low Cost, High Performance **CMOS Rail-to-Rail Operational Amplifiers**

### **Preliminary Technical Data**

## AD8661/AD8662/AD8664

#### **FEATURES**

Low Offset Voltage: 75 µV max **Low Input Bias Currents 1pA Max** Single-Supply Operation: 5 to 16 Volts Dual-Supply Operation: +/- 2.5 to +/-8 Volts

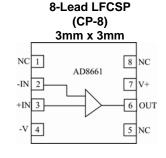
Low Noise: 10 nV/√Hz Wide Bandwidth: 4 MHz **Unity Gain Stable** 

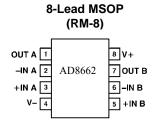
**APPLICATIONS Multi-pole Filters Sensors Medical Equipment Consumer Audio** Photodiode amplification **ADC** driver

#### **GENERAL DESCRIPTION**

The AD8661, AD8662 and AD8664 are single, dual and quad rail-to-rail output single supply amplifiers that use Analog Devices' patented DigiTrim® trimming technique to achieve low offset voltage. The AD8661 family features an extended operating range with supply voltages up to 16 V. They also feature low input bias currents, wide signal bandwidth, and low input voltage and current noise.

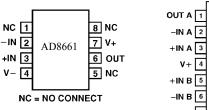
The combination of low offsets, very low input bias currents, and wide supply range make these amplifiers useful in a wide variety of applications normally associated with much higher priced JFET amplifiers. Systems utilizing high impedance sensors, such as photo-diodes benefit from the combination of low input bias current, low noise, low offset and bandwidth. The wide operating voltage range matches today's high performance ADCs and DACs. Audio applications and medical monitoring equipment can take advantage of the high input impedance, low voltage and current noise, wide bandwidth and the lack of "popcorn" noise (found in many other low input bias current amplifiers).

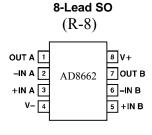

The AD8661, AD8662 and AD8664 are specified over the extended industrial (-40° to +125°C) temperature range. The AD8661, single, is available in the tiny 8-lead LFCSP (MO-220) 3mm x 3mm and 8-lead SOIC package. The AD8662, dual, is available in the 8-lead micro-SOIC and narrow SOIC surface mount packages. The AD8664, quad, is available in 14-lead TSSOP and narrow 14-pin SOIC packages.

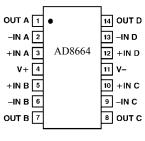

LFCSP, MSOP and TSSOP versions are available in tape and reel only.

#### REV. PrA 10/5/2004

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.


#### **PIN CONFIGURATIONS**






8-Lead SO







14-Lead SO

14-Lead TSSOP

(RU-14)



# Preliminary Technical Data AD8661/AD8662/AD8664

# **ELECTRICAL CHARACTERISTICS** $(V_S = +5.0V, V_{CM} = V_S/2, T_A = +25^{\circ}C$ unless otherwise

| noted)                       |                      |                                                                        |      |      |     |        |
|------------------------------|----------------------|------------------------------------------------------------------------|------|------|-----|--------|
| Parameter                    | Symbol               | Conditions                                                             | Min  | Тур  | Max | Units  |
| INPUT CHARACTERISTICS        |                      |                                                                        |      |      |     |        |
| Offset Voltage               | $V_{OS}$             | $V_{SY} = 8V, V_{CM} = 3V$                                             |      |      | 75  | μV     |
| ·                            |                      | $V_{CM} = 0.1V \text{ to } 3.0V$                                       |      | 30   | 300 | μV     |
|                              |                      | -40°< T <sub>A</sub> < +85°C                                           |      |      | 650 | μV     |
|                              |                      | -40°< T <sub>A</sub> < +125°C                                          |      |      | 750 | μV     |
| Input Bias Current           | I <sub>B</sub>       |                                                                        |      | 0.3  | 1   | pA     |
|                              | _                    | -40°< T <sub>A</sub> < +85°C                                           |      |      | 50  | pA     |
|                              |                      | -40°< T <sub>A</sub> < +125°C                                          |      |      | 300 | pA     |
| Input Offset Current         | I <sub>OS</sub>      |                                                                        |      | 0.2  | TBD | pA     |
|                              |                      | -40°< T <sub>A</sub> < +85°C                                           |      |      | 20  | pA     |
|                              |                      | -40°< T <sub>A</sub> < +125°C                                          |      |      | 75  | pA     |
| Input Voltage Range          |                      |                                                                        | tbd  |      | 3.0 | V      |
| Common-Mode Rejection Ratio  | CMRR                 | $V_{CM} = 0.1V \text{ to } 3.0V$                                       | 80   | 95   |     | dB     |
| Large Signal Voltage Gain    | $A_{VO}$             | $R_L = 10 \text{ k}\Omega \text{ V}_O = 0.5 \text{V to } 4.5 \text{V}$ | 70   | 100  |     | V/mV   |
| Offset Voltage Drift         | ΔV <sub>OS</sub> /ΔT |                                                                        |      | 3    | 10  | μV/°C  |
| OUTPUT CHARACTERISTICS       |                      |                                                                        |      |      |     |        |
| Output Voltage High          | V <sub>OH</sub>      | I <sub>L</sub> = 1mA                                                   | 4.80 | 4.85 |     | V      |
|                              |                      | $I_L = 10mA$                                                           | 4.80 | 4.85 |     | V      |
|                              |                      | -40°C < T <sub>A</sub> < +125°C                                        | 4.75 |      |     | V      |
| Output Voltage Low           | $V_{OL}$             | I <sub>L</sub> = 1mA                                                   |      | 60   | 120 | mV     |
|                              | $V_{OL}$             | I <sub>L</sub> = 1mA                                                   |      | 60   | 120 | mV     |
|                              |                      | -40°C < T <sub>A</sub> < +125°C                                        |      |      | 150 | mV     |
| Output Current               | I <sub>OUT</sub>     |                                                                        |      | ±19  |     | mA     |
| Closed Loop Output Impedance | Z <sub>OUT</sub>     | f=1 MHz, A <sub>V</sub> = 1                                            |      | 65   |     | Ω      |
| POWER SUPPLY                 |                      |                                                                        |      |      |     |        |
| Power Supply Rejection Ratio | PSRR                 | V <sub>S</sub> = 5 V to 16 V                                           | 80   | 95   |     | dB     |
| Supply Current/Amplifier     | $I_{SY}$             | $V_O = 0V$                                                             |      | 1.2  | 1.8 | mA     |
|                              |                      | -40°< T <sub>A</sub> < +125°C                                          |      |      | 2.0 | mA     |
| DYNAMIC PERFORMANCE          |                      |                                                                        |      |      |     |        |
| Slew Rate                    | SR                   | $R_L = 10 \text{ k}\Omega$                                             |      | 3    |     | V/μs   |
| Settling Time                | t <sub>s</sub>       | To 0.1%, 0 V to 1V step                                                |      | <1   |     | μS     |
| Gain Bandwidth Product       | GBP                  |                                                                        |      | 4    |     | MHz    |
| Phase Margin                 | Øo<br>degrees        | C <sub>L</sub> = 15 pF                                                 |      |      | 60  |        |
| NOISE PERFORMANCE            |                      |                                                                        |      |      |     |        |
| Peak-to-Peak Noise           | e <sub>n</sub> p-p   | f=0.1Hz to 10 Hz                                                       |      | 2.5  |     | μV p-p |
| Voltage Noise Density        | e <sub>n</sub>       | f=1kHz                                                                 |      | 12   |     | nV/√Hz |
| Voltage Noise Density        | e <sub>n</sub>       | f=10kHz                                                                |      | 10   |     | nV/√Hz |
| Current Noise Density        | i <sub>n</sub>       | f=1kHz                                                                 |      | 0.1  |     | pA/√Hz |

# Preliminary Technical Data AD8661/AD8662/AD8664

ELECTRICAL CHARACTERISTICS

| Parameter                    | Symbol                   | Conditions                                                         | Min  | Тур   | Max   | Units        |
|------------------------------|--------------------------|--------------------------------------------------------------------|------|-------|-------|--------------|
| INPUT CHARACTERISTICS        |                          |                                                                    |      |       |       |              |
| Offset Voltage               | Vos                      | $V_{SY} = 8V, V_{CM} = 3V$                                         |      |       | 75    | μV           |
|                              |                          | $V_{CM} = -8.1V \text{ to } +6.0V$                                 |      | 30    | 300   | μV           |
|                              |                          | -40°< T <sub>A</sub> < +85°C                                       |      |       | 650   | μV           |
|                              |                          | -40°< T <sub>A</sub> < +125°C                                      |      |       | 750   | μV           |
| Input Pigs Current           | L                        |                                                                    |      | 0.3   | 1     | pA           |
| Input Bias Current           | I <sub>B</sub>           | 40° - T - 185°C                                                    |      | 0.3   | 50    |              |
|                              |                          | -40°< T <sub>A</sub> < +85°C                                       |      |       |       | pA           |
|                              |                          | -40°< T <sub>A</sub> < +125°C                                      |      |       | 300   | pA           |
| Input Offset Current         | Ios                      |                                                                    |      | 0.2   | TBD   | pА           |
|                              |                          | -40°< T <sub>A</sub> < +85°C                                       |      |       | 20    | pA           |
|                              |                          | -40°< T <sub>A</sub> < +125°C                                      |      |       | 75    | pА           |
| Input Voltage Range          |                          |                                                                    | tbd  |       | 6     | V            |
| Common-Mode Rejection Ratio  | CMRR                     | $V_{CM} = -8.1V \text{ to } +6.0V$                                 | 80   | 95    |       | dB           |
| Large Signal Voltage Gain    | $A_{VO}$                 | $R_L=10 \text{ k}\Omega \text{ V}_O=-7.5 \text{V to}+7.5 \text{V}$ | 70   | 85    |       | V/mV         |
| Offset Voltage Drift         | $\Delta V_{OS}/\Delta T$ |                                                                    |      | 3     | 10    | μV/°C        |
| OUTPUT CHARACTERISTICS       |                          |                                                                    |      |       |       |              |
| Output Voltage High          | $V_{OH}$                 | I <sub>L</sub> = 1mA                                               | 7.90 | 7.95  |       | V            |
|                              |                          | I <sub>L</sub> = 10mA                                              | 7.6  | 7.7   |       | V            |
|                              |                          | -40°C < T <sub>A</sub> < +125°C                                    | 7.4  |       |       | V            |
| Output Voltage Low           | V <sub>OL</sub>          | I <sub>L</sub> = 1mA                                               |      | -7.97 | -7.93 | mV           |
| to appear to the get and     | - OL                     | I <sub>L</sub> = 10mA                                              |      | -7.8  | -7.7  | mV           |
|                              |                          | -40°C < T <sub>A</sub> < +125°C                                    |      |       | -7.5  | mV           |
| Output Current               | I <sub>OUT</sub>         | 10 0 1 74 1 120 0                                                  |      | ±140  | 7.0   | mA           |
| Closed Loop Output Impedance | Z <sub>OUT</sub>         | f=1 MHz, A <sub>V</sub> = 1                                        |      | 45    |       | Ω            |
| POWER SUPPLY                 | -001                     | =, , , , ,                                                         |      |       |       | <del> </del> |
| Power Supply Rejection Ratio | PSRR                     | V <sub>S</sub> = 5V to 16V                                         | 80   | 95    |       | dB           |
| Supply Current/Amplifier     | I <sub>SY</sub>          | $V_O = 0V$                                                         |      | 1.5   | 1.8   | mA           |
| ,                            | 01                       | -40°< T <sub>A</sub> < +125°C                                      |      |       | 2.0   | mA           |
| DYNAMIC PERFORMANCE          |                          |                                                                    |      |       |       |              |
| Slew Rate                    | SR                       | $R_L = 10 \text{ k}\Omega$                                         |      | 3     |       | V/μs         |
| Settling Time                | t <sub>s</sub>           | To 0.1%, 0 V to 1V step                                            |      | <1    |       | μS           |
| Gain Bandwidth Product       | GBP                      |                                                                    |      | 4     |       | MHz          |
| Phase Margin                 | Øo                       | C <sub>L</sub> = 15 pF                                             |      | 60    |       | degree       |
| NOISE PERFORMANCE            |                          |                                                                    |      |       |       |              |
| Peak-to-Peak Noise           | e <sub>n</sub> p-p       | f=0.1Hz to 10 Hz                                                   |      | 2.5   |       | μV p-p       |
| Voltage Noise Density        | e <sub>n</sub>           | f=1kHz                                                             |      | 12    |       | nV/√Hz       |
| Voltage Noise Density        | e <sub>n</sub>           | f=10kHz                                                            |      | 10    |       | nV/√Hz       |
| Current Noise Density        | i <sub>n</sub>           | f=1kHz                                                             |      | 0.1   |       | pA/√Hz       |

# **Preliminary Technical Data**

# AD8661/AD8662/AD8664

### ABSOLUTE MAXIMUM RATINGS<sup>1</sup>

| Package Type         | $\theta_{ m JA}$ | θЈС | Units |  |
|----------------------|------------------|-----|-------|--|
| 8-Pin LFCSP (CP)     |                  |     | °C/W  |  |
| 8-Pin microSOIC (RM) | 210              | 45  | °C/W  |  |
| 8-Pin SOIC (R)       | 158              | 43  | °C/W  |  |
| 14-Pin SOIC (R)      | 120              | 36  | °C/W  |  |
| 14-Pin TSSOP (RU)    | 180              | 35  | °C/W  |  |

#### NOTES

### **ORDERING GUIDE**

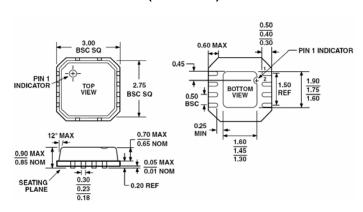
|            | Temperature     | Package          | Package | Branding    |
|------------|-----------------|------------------|---------|-------------|
| Model      | Range           | Description      | Option  | Information |
| AD8661ACP  | -40°C to +125°C | 8-Pin LFCSP      | CP-8    |             |
| AD8661ARZ  | -40°C to +125°C | 8-Pin SOIC       | R-8     |             |
| AD8662ARMZ | -40°C to +125°C | 8-Pin micro-SOIC | RM-8    |             |
| AD8662ARZ  | -40°C to +125°C | 8-Pin SOIC       | R-8     |             |
| AD8664ARZ  | -40°C to +125°C | 14-Pin SOIC      | R-14    |             |
| AD8664ARUZ | -40°C to +125°C | 14-Pin TSSOP     | RU-14   |             |

### **CAUTION**

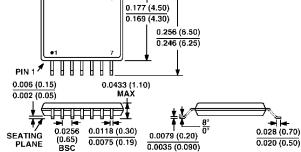
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 1500 V readily accumulate on the human body and test equipment and can discharge without detection. Although this device features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.



-4- Rev PrA 10/5/04


<sup>&</sup>lt;sup>1</sup> Absolute maximum ratings apply at 25°C, unless otherwise noted.

 $<sup>^2</sup>$   $\theta_{JA}$  is specified for the worst-case conditions, i.e.,  $\theta_{JA}$  is specified for device soldered in circuit board for surface mount packages.


# Preliminary Technical Data AD8661/AD8662/AD8664

### **OUTLINE DIMENSIONS**

### 8-Lead LFCSP (CP-8 Suffix)



## 14-Lead TSSOP (RU-14) A A A A A 0.177 (4.50)



0.0035 (0.090)

0.201 (5.10)

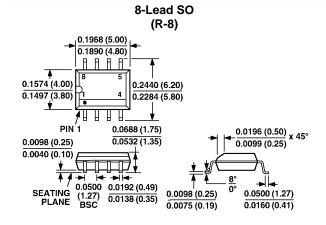
0.193 (4.90)

#### 8-Lead SOIC (RM-8) 0.1968 (5.00) 0.1890 (4.80) A A A A 0.1574 (4.00) 0.2440 (6.20) 0.1497 (3.80) 0.2284 (5.80) 0.0688 (1.75) 0.0<u>196 (0.50)</u> x 45° PIN 1 0.0532 (1.35) 0.0098 (0.25) 0.0099 (0.25) 0.0040 (0.10)

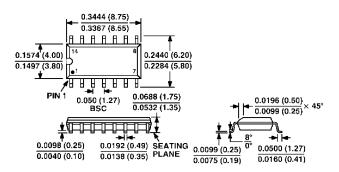
<u>o</u>°

0.0500 (1.27)

0.0160 (0.41)


0.0098 (0.25)

0.0075 (0.19)


0.0500 0.0192 (0.49)

0.0138 (0.35)

SEATING PLANE BSC



### 14-Lead SO (R-14)

