

LabVIEW

LabVIEW

Developer(s) National Instruments

Initial release 1986; 33 years ago

Stable release LabVIEW NXG 2.1

LabVIEW 2018

/ May 2018; 10 months ago

Preview release NXG 3.0 Beta1

Written in C, C++, .NET

Operating system Cross-platform: Windows, macOS, Linux

Type Data acquisition, instrument control, test automation, analysis and signal processing, industrial

control, embedded system design

License Proprietary

Website www.ni.com/labview

Laboratory Virtual Instrument Engineering Workbench (LabVIEW)[1]:3 is a system-design platform
and development environment for a visual programming language from National Instruments.

The graphical language is named "G"; not to be confused with G-code. Originally released for the
Apple Macintosh in 1986, LabVIEW is commonly used for data acquisition, instrument control, and
industrial automationon a variety of operating systems (OSs), including Microsoft Windows, various
versions of Unix, Linux, and macOS.

The latest versions of LabVIEW are LabVIEW 2018 and LabVIEW NXG 3.0, released in November
2018.[2]

Dataflow programming

The programming paradigm used in LabVIEW, sometimes called G, is based on data availability. If
there is enough data available to a subVI or function, that subVI or function will execute. Execution
flow is determined by the structure of a graphical block diagram (the LabVIEW-source code) on
which the programmer connects different function-nodes by drawing wires. These wires propagate
variables and any node can execute as soon as all its input data become available. Since this might

be the case for multiple nodes simultaneously, LabVIEW can execute inherently in parallel.[3]:1–2 Multi-
processing and multi-threading hardware is exploited automatically by the built-in scheduler,
which multiplexes multiple OS threads over the nodes ready for execution.

Graphical programming

LabVIEW integrates the creation of user interfaces (termed front panels) into the development cycle.
LabVIEW programs-subroutines are termed virtual instruments (VIs). Each VI has three
components: a block diagram, a front panel, and a connector pane. The last is used to represent the
VI in the block diagrams of other, calling VIs. The front panel is built using controls and indicators.
Controls are inputs: they allow a user to supply information to the VI. Indicators are outputs: they
indicate, or display, the results based on the inputs given to the VI. The back panel, which is a block
diagram, contains the graphical source code. All of the objects placed on the front panel will appear
on the back panel as terminals. The back panel also contains structures and functions which perform
operations on controls and supply data to indicators. The structures and functions are found on the
Functions palette and can be placed on the back panel. Collectively controls, indicators, structures,
and functions are referred to as nodes. Nodes are connected to one another using wires, e.g., two
controls and an indicator can be wired to the addition function so that the indicator displays the sum
of the two controls. Thus a virtual instrument can be run as either a program, with the front panel
serving as a user interface, or, when dropped as a node onto the block diagram, the front panel
defines the inputs and outputs for the node through the connector pane. This implies each VI can be
easily tested before being embedded as a subroutine into a larger program.

The graphical approach also allows nonprogrammers to build programs by dragging and dropping
virtual representations of lab equipment with which they are already familiar. The LabVIEW
programming environment, with the included examples and documentation, makes it simple to
create small applications. This is a benefit on one side, but there is also a certain danger of
underestimating the expertise needed for high-quality G programming. For complex algorithms or
large-scale code, it is important that a programmer possess an extensive knowledge of the special
LabVIEW syntax and the topology of its memory management. The most advanced LabVIEW
development systems offer the ability to build stand-alone applications. Furthermore, it is possible to
create distributed applications, which communicate by a client–server model, and are thus easier to
implement due to the inherently parallel nature of G.

Widely-accepted design patterns

Applications in LabVIEW are usually designed using well-known architectures, known as design
patterns. The most common design patterns for graphical LabVIEW applications are listed in the
table below.

Common design patterns for LabVIEW applications

Design pattern Purpose Implementation details Use cases Limitations

Functional Global
Variable

Exchange
information
without using
global variables

A shift register of a while loop is
used to store the data and the
while loop runs only one
iteration in a "non-reentrant" VI

 Exchange
information with
less wiring

 All owning VIs are
kept in memory

State machine[4]

Controlled
execution that
depends on past
events

Case structure inside a while
loop pass an enumerated
variable to a shift register,
representing the next state;
complex state machines can be
designed using the Statechart
module

 User interfaces

 Complex logic

 Communication
protocols

 All possible states
must be known in
advance

Event-driven user
interface

Lossless
processing of user
actions

GUI events are captured by an
event structure queue, inside a
while loop; the while loop is
suspended by the event structure

 Graphical user
interface

 Only one event
structure in a loop

and resumes only when the
desired events are captured

Master-slave[5]
Run independent
processes
simultaneously

Several parallel while loops, out
of which one functions as the
"master", controlling the "slave"
loops

 Simple GUI for
data acquisition
and visualization

 Attention to and
prevention of race
conditions is required

Producer-
consumer[6]

Asynchronous of
multithreaded
execution of loops

A master loop controls the
execution of two slave loops, that
communicate using notifiers,
queues and semaphores; data-
independent loops are
automatically executed in
separate threads

 Data sampling and
visualization

 Order of execution is
not obvious to control

Queued state
machine with
event-driven
producer-
consumer

Highly responsive
user-interface for
multithreaded
applications

An event-driven user interface is
placed inside the producer loop
and a state machine is placed
inside the consumer loop,
communicating using queues
between themselves and other
parallel VIs

 Complex
applications

Benefits
Interfacing to devices

LabVIEW includes extensive support for interfacing to devices, instruments, camera, and other
devices. Users interface to hardware by either writing direct bus commands (USB, GPIB, Serial) or
using high-level, device-specific, drivers that provide native LabVIEW function nodes for controlling
the device.

LabVIEW includes built-in support for NI hardware platforms such
as CompactDAQ and CompactRIO, with a large number of device-specific blocks for such hardware,
the Measurement and Automation eXplorer (MAX) and Virtual Instrument Software
Architecture (VISA) toolsets.

National Instruments makes thousands of device drivers available for download on the NI Instrument
Driver Network (IDNet).[7]

Code compiling

LabVIEW includes a compiler that produces native code for the CPU platform. This aids
performance. The graphical code is translated into executable machine code by a compiler. The
LabVIEW syntax is strictly enforced during the editing process and compiled into the executable
machine code when requested to run or upon saving. In the latter case, the executable and the
source code are merged into a single file. The executable runs with the help of the LabVIEW run-
time engine, which contains some pre-compiled code to perform common tasks that are defined by
the G language. The run-time engine reduces compiling time and provides a consistent interface to
various operating systems, graphic systems, hardware components, etc. The run-time environment
makes the code portable across platforms. Generally, LabVIEW code can be slower than equivalent
compiled C code, although the differences often lie more with program optimization than inherent
execution speed.[citation needed]

Large libraries

Many libraries with a large number of functions for data acquisition, signal generation, mathematics,
statistics, signal conditioning, analysis, etc., along with numerous for functions such as integration,
filters, and other specialized abilities usually associated with data capture from hardware sensors is
enormous. In addition, LabVIEW includes a text-based programming component named MathScript
with added functions for signal processing, analysis, and mathematics. MathScript can be integrated
with graphical programming using script nodes and uses a syntax that is compatible generally
with MATLAB.[8]

Parallel programming

LabVIEW is an inherently concurrent language, so it is very easy to program multiple tasks that are
performed in parallel via multithreading. For example, this is done easily by drawing two or more
parallel while loops and connecting them to two separate nodes. This is a great benefit for test
system automation, where it is common practice to run processes like test sequencing, data
recording, and hardware interfacing in parallel.

Ecosystem

Due to the longevity and popularity of the LabVIEW language, and the ability for users to extend its
functions, a large ecosystem of third party add-ons has developed via contributions from the
community. This ecosystem is available on the LabVIEW Tools Network, which is a marketplace for
both free and paid LabVIEW add-ons.

User community

There is a low-cost LabVIEW Student Edition aimed at educational institutions for learning purposes.
There is also an active community of LabVIEW users who communicate through several electronic
mailing lists (email groups) and Internet forums.

Home Bundle Edition

National Instruments provides a low cost LabVIEW Home Bundle Edition.[9]

Criticism

LabVIEW is a proprietary product of National Instruments. Unlike common programming languages
such as C or Fortran, LabVIEW is not managed or specified by a third party standards committee
such as American National Standards Institute (ANSI), Institute of Electrical and Electronics
Engineers (IEEE), International Organization for Standardization (ISO), etc. Many users have
criticised it for its tendency to freeze or crash during simple tasks, often requiring the software to be
shut down and restarted.

Slow

Very small applications still have to start the runtime environment which is a large and slow task.
This tends to restrict LabVIEW to monolithic applications. Examples of this might be tiny programs to
grab a single value from some hardware that can be used in a scripting language - the overheads of
the runtime environment render this approach impractical with LabVIEW.[citation needed]

Non-textual

G language being non-textual, software tools such as versioning, side-by-side (or diff) comparison,
and version code change tracking cannot be applied in the same manner as for textual programming
languages. There are some additional tools to make comparison and merging of code with source
code control (versioning) tools such as subversion, CVS and Perforce. [10][11][12]

No zoom function

There was no ability to zoom in to (or enlarge) a VI which will be hard to see on a large, high-
resolution monitor, although this feature was released as of 2017.[13][14]

Release history

In 2005, starting with LabVIEW 8.0, major versions are released around the first week of August, to
coincide with the annual National Instruments conference NI Week, and followed by a bug-fix
release the following February.

In 2009, National Instruments began naming releases after the year in which they are released. A
bug-fix is termed a Service Pack, for example, the 2009 service pack 1 was released in February
2010.

In 2017, National Instruments moved the annual conference to May and released LabVIEW 2017
along side a completely redesigned LabVIEW NXG 1.0 built on Windows Presentation Foundation
(WPF).

Name-version
Build

number
Date

LabVIEW project begins

April 1983

LabVIEW 1.0 (for Macintosh) ?? October 1986

LabVIEW 2.0 ?? January 1990

LabVIEW 2.5 (first release for Sun & Windows) ?? August 1992

LabVIEW 3.0 (Multiplatform) ?? July 1993

LabVIEW 3.0.1 (first release for Windows NT) ?? 1994

LabVIEW 3.1 ?? 1994

LabVIEW 3.1.1 (first release with "application builder" ability) ?? 1995

LabVIEW 4.0 ?? April 1996

LabVIEW 4.1 ?? 1997

LabVIEW 5.0 ?? February 1998

LabVIEW RT (Real Time) ?? May 1999

LabVIEW 6.0 (6i) 6.0.0.4005 26 July 2000

LabVIEW 6.1 6.1.0.4004 12 April 2001

LabVIEW 7.0 (Express) 7.0.0.4000 April 2003

LabVIEW PDA module first released ?? May 2003

LabVIEW FPGA module first released ?? June 2003

LabVIEW 7.1 7.1.0.4000 2004

LabVIEW Embedded module first released ?? May 2005

LabVIEW 8.0 8.0.0.4005 September 2005

LabVIEW 8.20 (native Object Oriented Programming) ?? August 2006

LabVIEW 8.2.1 8.2.1.4002 21 February 2007

LabVIEW 8.5 8.5.0.4002 2007

LabVIEW 8.6 8.6.0.4001 24 July 2008

LabVIEW 8.6.1 8.6.0.4001 10 December 2008

LabVIEW 2009 (32 and 64-bit) 9.0.0.4022 4 August 2009

LabVIEW 2009 SP1 9.0.1.4011 8 January 2010

LabVIEW 2010 10.0.0.4032 4 August 2010

LabVIEW 2010 f2 10.0.0.4033 16 September 2010

LabVIEW 2010 SP1 10.0.1.4004 17 May 2011

LabVIEW for LEGO MINDSTORMS (2010 SP1 with some modules)

August 2011

LabVIEW 2011 11.0.0.4029 22 June 2011

LabVIEW 2011 SP1 11.0.1.4015 1 March 2012

LabVIEW 2012 12.0.0.4029 August 2012

LabVIEW 2012 SP1 12.0.1.4013 December 2012

LabVIEW 2013 13.0.0.4047 August 2013

LabVIEW 2013 SP1 13.0.1.4017 March 2014[15]

LabVIEW 2014

August 2014

LabVIEW 2014 SP1 14.0.1.4008 March 2015

LabVIEW 2015 15.0f2 August 2015

LabVIEW 2015 SP1 15.0.1f1 March 2016

LabVIEW 2016 16.0.0 August 2016

LabVIEW 2017 17.0f1 May 2017

LabVIEW 2017 SP1 17.0.1f1 Jan 2018 [16]

LabVIEW 2018 18.0 May 2018

Repositories and libraries
OpenG, as well as LAVA Code Repository (LAVAcr), serve as repositories for a wide range of Open
Source LabVIEW applications and libraries. SourceForge has LabVIEW listed as one of the possible
languages in which code can be written.

VI Package Manager has become the standard package manager for LabVIEW libraries. It is very
similar in purpose to Ruby's RubyGems and Perl's CPAN, although it provides a graphical user
interface similar to the Synaptic Package Manager. VI Package Manager provides access to a
repository of the OpenG (and other) libraries for LabVIEW.

Tools exist to convert MathML into G code.[17]

Related software[edit]

National Instruments also offers a product named Measurement Studio, which offers many of the
test, measurement, and control abilities of LabVIEW, as a set of classes for use with Microsoft Visual
Studio. This allows developers to harness some of LabVIEW's strengths within the text-based .NET
Framework. National Instruments also offers LabWindows/CVI as an alternative for ANSI C
programmers.

When applications need sequencing, users often use LabVIEW with TestStand test management
software, also from National Instruments.

The Ch interpreter is a C/C++ interpreter that can be embedded in LabVIEW for scripting.[18]

The TRIL Centre Ireland BioMobius platform and DSP Robotics' FlowStone DSP also use a form of
graphical programming similar to LabVIEW, but are limited to the biomedical and robotics industries
respectively.

LabVIEW has a direct node with modeFRONTIER, a multidisciplinary and multi-objective
optimization and design environment, written to allow coupling to almost any computer-aided
engineering tool. Both can be part of the same process workflow description and can be virtually
driven by the optimization technologies available in modeFRONTIER.

See also

 20-sim

 Comparison of numerical analysis software

 Dataflow programming

 DRAKON

 Fourth-generation programming language

 Graphical programming

 Graphical system design

 LabWindows/CVI

 Lego Mindstorms NXT, whose programming environment, NXT-G is based on LabVIEW, and
can be programmed within LabVIEW.

 MATLAB/Simulink

 Virtual instrumentation

 CompactDAQ

 CompactRIO

References

1. ^ Jeffrey., Travis, (2006). LabVIEW for everyone : graphical programming made easy and fun. Kring, Jim. (3rd
ed.). Upper Saddle River, NJ: Prentice Hall. ISBN 0131856723. OCLC 67361308.

2. ^ "LabVIEW NXG: Version 3.0 Readme". Manuals. National Instruments.

3. ^ Bress, Thomas J. (2013). Effective LabVIEW Programming. [S.l.]: NTS Press. ISBN 1-934891-08-8.

4. ^ "Application Design Patterns: State Machines". National Instruments whitepapers. 8 September
2011. Archived from the original on 22 September 2017. Retrieved 21 September 2017.

5. ^ "Application Design Patterns: Master/Slave". National Instruments whitepapers. 7 October 2015. Archived from
the original on 22 September 2017. Retrieved 21 September 2017.

6. ^ "Application Design Patterns: Producer/Consumer". National Instruments whitepapers. 24 August
2016. Archived from the original on 22 September 2017. Retrieved 21 September 2017.

7. ^ "3rd Party Instrument Drivers - National Instruments". www.ni.com. Archivedfrom the original on 2014-11-28.

8. ^ "LabVIEW MathScript RT Module". www.ni.com. Archived from the original on 2016-08-05.

9. ^ "LabVIEW Home Bundle for Windows - National Instruments". sine.ni.com. Archived from the original on 2016-
07-04.

10. ^ "Archived copy". Archived from the original on 2016-10-28. Retrieved 2016-10-28.

11. ^ "Software Configuration Management and LabVIEW - National Instruments". www.ni.com. Archived from the
original on 2016-10-29.

12. ^ "Configuring LabVIEW Source Code Control (SCC) for use with Team Foundation Server (TFS) - National
Instruments". www.ni.com. Archived from the original on 2016-10-28.

13. ^ "Can I Zoom In or Out on a LabVIEW Diagram (for Wiring or Viewing Purposes)?". Archived from the original on
March 5, 2016. Retrieved February 1, 2016.

14. ^ "Add a zoom function (yes, I said zoom. So sue me)". forums.ni.com. Archivedfrom the original on 2016-04-11.
Retrieved 2016-03-31.

15. ^ "What's New in NI Developer Suite - National Instruments". www.ni.com. Archived from the original on 2014-03-
31.

16. ^ "LabVIEW 2017 SP1 Patch Details - National Instruments". www.ni.com. Retrieved 2018-05-28.

17. ^ "Math Node - A new way to do math in LabVIEW". ni.com. 25 October 2010. Archived from the original on 25
February 2011.

18. ^ "Embedding a C/C++ Interpreter Ch into LabVIEW for Scripting". iel.ucdavis.edu. Archived from the original on
2011-05-15.

