DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS WITH SET AND RESET

DESCRIPTION

The M74LS112AP is a semiconductor integrated circuit containing 2 J-K negative edge-triggered flip-flop circuits with discrete terminals for clock input \overline{T} , J and K inputs and direct set and reset inputs \overline{S}_D and \overline{R}_D .

FEATURES

- Negative edge-triggering
- Independent input/output terminals for each flip-flop.
- Direct set and reset inputs
- Q and Q outputs
- Wide operating temperature range ($T_a = -20 \sim +75^{\circ}C$)

APPLICATION

General purpose, for use in industrial and consumer equipment.

FUNCTIONAL DESCRIPTION

J and K signals of are read, while \overline{T} is high. When \overline{T} changes from high to low, the signals of J and K immediately before the change appear in outputs Q and \overline{Q} in accordance with the function table. By using \overline{S}_D and \overline{R}_D , this IC can be made into an direct R-S flip-flop. When both \overline{S}_D and \overline{R}_D are low, Q = \overline{Q} = high. However, when both of them changed to high at the same time, the status of Q and \overline{Q} cannot be anticipated. For use as a J-K flip-flop, keep \overline{S}_D and \overline{R}_D high. M74LS112AP is the same as M74LS76AP except for pin configuration.

FUNCTION TABLE (Note 1)

Ť	SD	RD	J	K	Q	Q	
x	L.	н	Х	X	н	L	
X	н	L	Х	х	L	Н	
X	L	L	×	Х	H*	H*	
1	н	Н	н	Н	Toggle		
1	н	н	L	Н	L	н	
`↓	н	н	н	L	н	L,	
J	Н	Н	L	L.	Q ⁰	<u>Q</u> 0	
Н	Н	н	×	×	Q ⁰	Q ⁰	

Note 1: \downarrow : transition from high to low-level

- X : irrelevant
- *: $Q = \overline{Q} = \text{high when } \overline{S_D} = \overline{R_D} = \text{low and so when both } \overline{S_D} \text{ and } \overline{R_D} \text{ are set high, the status of } Q \text{ and } \overline{Q} \text{ cannot be anticipated.}$
- \overline{Q}^0 : level of \overline{Q} before the indicated steady-state input conditions were established. \overline{Q}^0 : level of \overline{Q} before the indicated steady-state input conditions were established. Toggle: complement of previous state with \downarrow transition of outputs

DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS WITH SET AND RESET

ABSOLUTE MAXIMUM RATINGS ($T_a = -20 \sim +75^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage	1	0.5 + 7	V
Vı	Input voltage		0.5 - + 15	V
Vo	Output voltage	High-level state	-0.5 V _{CC}	V
Topr	Operating free-air ambient temperature range		20 - + 75	°C
Tstg	Storage temperature range		- 65 · 150	°C

RECOMMENDED OPERATING CONDITIONS ($T_a = -20 = +75^{\circ}C$, unless otherwise noted)

Symbol				Unit		
	Parameter			Тур	Max	i
Vcc	Supply voltage		4.75	5	5.25	V
Іон	High-level output current	V _{OH} ≥2.7V	0		- 400	μA
		V _{OL} ≤ 0.4V	0		4	mΑ
IOL	Low-level output current	$V_{OL} \ge 0.5 V$	0		8	mA

ELECTRICAL CHARACTERISTICS (Ta - 20 - 75°C, unless otherwise noted)

			T		Limits			Unit
Symbol	Paramete	er	Test conditions		Min	Тур*	Max	Unit
ViH	High-level input voltage				2			V
V _{1L}	Low-level input voltage						0.8	V
Vic	Input clamp voltage		V _{CC} 4.75V, I _{IC}	18 mA			1,5	V
Voн	High-level output voltage	igh-level output voltage $V_{CC}=4.75 \text{V}$, $V_{1}=0.8 \text{V}$ $V_{1}\approx 2 \text{V}$, $I_{OH}=400 \mu \text{A}$			2.7	3.4		V
			V _{CC} 4.75V	I _{OL} 4mA		0.25	0.4	V
VoL	Low-level output voltage	utput voltage	V _I 0.8V . V _I 2V	IOL = 8mA	1	0.35	0.5	V
	High-level input current	J,K	V _{CC} 5.25V, V ₁ 2.7V				20 '	/ıA
		SD. RD					60	
		7	7			80		
l _{ін}		J.K				0.1		
		SD. RD	V _{CC} 5.25V. V _I 10V	,		0.3	mΑ	
		Ŧ				0.4		
		J,K	!				-0.4	
I _{IL}	Low-level input current	SD. RD T	V _{CC} 5.25V V _I 0.4	1 V			8.0	mΑ
los	Short-circuit output current	(Note 3)	V _{CC} 5.25V. V ₀ 0V		20		100	mA
lcc	Supply current		V _{CC} 5.25V (Note 4)			4	6	mΑ

^{* :} All typical values are at V_{CC} = 5V, Ta = 25°C.

Note 2: Sp and Rp should not both be set to 0.4V simultaneously.

Note 3: All measurements should be done quickly, and not more than one output should be shorted at a time.

Note 4: Icc is measured with the Q and Q outputs high in turn. At the time of measurement, T input is grounded.

SWITCHING CHARACTERISTICS (VGC - 5V, Ta 25°C, unless otherwise noted)

Symbol		Test conditions	Limits			Unit
Symbol	Parameter Parameter	rest conditions	Min	Тур	Max	
fmax	Maximum clock frequency		30	45		MHz
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			6	20	ns
t pHL	time from input \overline{T} to output Q , \overline{Q}	C _L - 15pF (Note 5)		7	20	ns
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			7	20	ns
tent	time, from input $\overline{S_D}$, $\overline{R_D}$ to output Q , \overline{Q}			7	20	ns

DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS WITH SET AND RESET

Note 4: Measurement circuit

- (1) The pulse generator (PG) has the following characteristics: PRR = 1MHz, t_r = 6ns, t_f = 6ns, t_w = 500ns, V_P =3 V_P -P, Z_O = 50 Ω
- (2) C_L includes probe and jig capacitance.

TIMING REQUIREMENTS ($V_{CC} = 5V$, $T_a = 25^{\circ}C$, unless otherwise noted)

Symbol		Test conditions		Limits		
	Parameter		Min	Тур	Max	Unit
tw(₹H)	Clock input T high pulse width		20	12		ns
$t_{W(\overline{S}_{D},\overline{R}_{D})}$	Direct set and reset inputs \$\overline{S}_D\$, \$\overline{R}_D\$ pulse width		25	4		ns
tr	Clock rise time			650	100	ns
tf	Clock pulse fall time			900	100	ns
t _{SU(H)}	Setup time high J , K to T		20	12	- 1	ns
t _{SU(L)}	Setup time low J, K to T		20	12		ns
t _h (H)	Hold time high J.K to T		0	- 10		ns
t _{h(L)}	Hold time low J, K to ₹		0	- 6		ns

TIMING DIAGRAM (Reference level = 1.3V)

Note 5: The shaded areas indicate when the input is permitted to change for predictable output performance.

MITSUBISHI LSTTLs **PACKAGE OUTLINES**

MITSUBISHI {DGTL LOGIC} D7E D 6249827 0013561 3

