
 Programmers and Debuggers

 AVR ONE!

 USER GUIDE

The Atmel AVR ONE! Debugger

The Atmel® AVR ONE! is a powerful development tool for on-chip debugging
and programming of all Atmel AVR® 8- and 32-bit MCU devices. It supports:

Atmel-32222A-AVR-ONE!_User Guide-06/2016

• Programming and on-chip debugging of all AVR UC3 microcontrollers and processors on both
JTAG and aWire interfaces

• On-chip debugging with Nexus AUX trace of all AVR UC3 microcontrollers and processors with
AUX port

• Programming and on-chip debugging of all AVR XMEGA® family devices on both JTAG and PDI 2-
wire interfaces

• Programming (JTAG and SPI) and debugging of all Atmel megaAVR® and Atmel tinyAVR®

microcontrollers with OCD support on both JTAG or debugWIRE interfaces

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

2

Table of Contents

The Atmel AVR ONE! Debugger... 1

1. Introduction..5
1.1. Introduction to the Atmel AVR ONE!...5
1.2. Atmel AVR ONE! Features... 6
1.3. System Requirements.. 7

2. Release History, New Features... 8
2.1. What's New.. 8
2.2. Firmware Release History.. 8

3. Known Issues.. 14
3.1. General...14
3.2. Atmel AVR XMEGA OCD Specific Issues.. 14
3.3. Atmel megaAVR OCD and Atmel tinyAVR OCD Specific Issues... 14
3.4. Atmel AVR 32-bit Microcontroller Specific Issues...14

4. Getting Started...15
4.1. Kit Contents..15
4.2. Powering the Atmel AVR ONE!.. 16
4.3. Connecting to the Host Computer.. 16
4.4. USB Driver Installation... 16

4.4.1. Windows.. 16
4.5. Programming and Debugging.. 18

5. Connecting the Atmel AVR ONE!.. 19
5.1. Connecting to a JTAG Target... 19

5.1.1. Using the JTAG Mictor Connector... 19
5.1.2. Using the JTAG 10-pin Connector... 19

5.2. Connecting to an aWire Target...20
5.3. Connecting to a PDI Target.. 22
5.4. Connecting to a debugWIRE Target...23
5.5. Connecting to an SPI Target.. 24
5.6. Using the Atmel AVR ONE! with Atmel STK500...25
5.7. Using the Atmel AVR ONE! with Atmel STK600...28

6. On-chip Debugging..31
6.1. Introduction to On-chip Debugging (OCD) .. 31
6.2. Physical Interfaces... 31

6.2.1. JTAG..32
6.2.2. Auxiliary (AUX) Physical (including JTAG)...33
6.2.3. aWire... 35
6.2.4. PDI Physical.. 35
6.2.5. debugWIRE... 36
6.2.6. SPI... 36

6.3. Atmel AVR OCD Implementations..36
6.3.1. Atmel AVR UC3 OCD (JTAG and aWire Physical).. 36
6.3.2. Atmel AVR XMEGA OCD (JTAG and PDI Physical)..37
6.3.3. Atmel megaAVR OCD (JTAG)... 37
6.3.4. Atmel megaAVR / tinyAVR OCD (debugWIRE)... 37

7. Atmel AVR ONE! Hardware Description.. 38
7.1. LEDs...38
7.2. Rear Panel..39
7.3. Probe..39
7.4. Architecture Description... 40

7.4.1. Atmel AVR ONE! Main-board...40
7.4.2. Atmel AVR ONE! Probe... 40

8. Software Integration...42
8.1. Atmel Studio... 42

9. Command Line Utility...43

10. Advanced Debugging Techniques... 44
10.1. Atmel AVR 32-bit Microcontrollers..44

10.1.1. EVTI/EVTO Usage...44
10.2. Atmel megaAVR Targets.. 44

10.2.1. I/O Debug Register (IDR).. 44
10.3. debugWIRE Targets... 45

10.3.1. Software Breakpoints...45

11. Special Considerations..46
11.1. Atmel AVR XMEGA OCD... 46
11.2. Atmel megaAVR OCD and debugWIRE OCD..47
11.3. Atmel megaAVR OCD (JTAG)..48
11.4. debugWIRE OCD... 49
11.5. Atmel AVR UC3 OCD...50
11.6. Atmel AVR UC3 Shutdown Mode...50

12. Troubleshooting... 51
12.1. Self-test.. 51

12.1.1. Connecting...51
12.1.2. Launching.. 52
12.1.3. How to use the Results for Diagnosis..52

12.2. Troubleshooting Guide... 52

13. Product Compliance.. 55
13.1. RoHS and WEEE... 55
13.2. CE and FCC... 55

14. Revision History...56

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

4

1. Introduction

1.1. Introduction to the Atmel AVR ONE!
The Atmel AVR ONE! is a powerful development tool for on-chip debugging and programming of all Atmel
AVR 8- and 32-bit microcontrollers. It supports:

• Programming and on-chip debugging of all AVR UC3 microcontrollers and processors on both
JTAG and aWire interfaces

• On-chip debugging with Nexus AUX trace of all UC3 microcontrollers and processors with AUX port
• Programming and on-chip debugging of all AVR XMEGA family devices on both JTAG and PDI 2-

wire interfaces
• Programming (JTAG and SPI) and debugging of all AVR 8-bit microcontrollers with OCD support on

both JTAG or debugWIRE interfaces

To see which devices are currently supported read the Atmel Studio release notes/readme.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

5

1.2. Atmel AVR ONE! Features
• Fully compatible with Atmel Studio, AVR32 Studio, AVR Studio® 4, and AVR Studio 5
• Supports programming and debugging of all Atmel AVR UC3 and AVR XMEGA devices, and all

Atmel megaAVR and Atmel tinyAVR devices with OCD
• Supports AUX trace on all UC3 devices with AUX port
• On-board 128MB DDR-SDRAM for use as circular, linear, or elasticity trace buffer
• Target operating voltage range of 1.65V to 5.5V
• Draws less than 1mA from target VTref during operation
• Supports communications clock frequency from 32kHz to 33MHz
• USB 2.0 high-speed host interface
• Supports both MICTOR-38 connector and 10-pin JTAG connectors, as well as aWire, PDI, SPI, and

debugWIRE interfaces using an adapter

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

6

1.3. System Requirements
The Atmel AVR ONE! unit requires that a front-end debugging environment (AVR32 Studio or AVR Studio
4.15 or later, or Atmel Studio) and associated utilities are installed on your computer. For system
requirements of these packages, consult www.atmel.com.

The AVR ONE! unit must be connected to the host computer using the USB cable provided. To achieve
streaming trace readout from the AVR ONE!, the USB port on the computer must be USB 2.0 high-speed
compliant. If the computer only supports USB 1.1 (or "full-speed" USB), the AVR ONE! can still be used
for debugging (Note: restrictions apply, see Known issues), but trace will be limited to operating in buffer
mode.

The AVR ONE! unit must be connected to a 12V external power source, which is included with the kit.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

7

http://www.atmel.com/dyn/products/tools.asp?family_id=607

2. Release History, New Features

2.1. What's New
New in this release

Release platform Atmel Studio 6.0

Firmware versions MCU: 5.21 (0x0515)

AVR32 image: 4.1 (0x0401)

XMEGA image: 3.2 (0x0302)

TMEGA image: 2.1 (0x0201)

New features None

Fixes Minor internal bug fixes

2.2. Firmware Release History
Table 2-1. Previous Releases

Release platform AVR Studio 5.1

Firmware versions MCU: 5.20 (0x0514)

AVR32 image: 4.1 (0x0401)

XMEGA image: 3.2 (0x0302)

TMEGA image: 2.1 (0x0201)

New features • Support for high SUT values on Atmel AVR XMEGA devices

Fixes • aWire auto-baud calculation improvements
• Fixed Atmel AVR XMEGA flash page programming error (seen

at low voltages)
• Improved debugWIRE single-stepping performance

Release platform AVR Studio 5.0

Firmware versions MCU: 5.13 (0x050D)

AVR32 image: 4.0 (0x0400)

XMEGA image: 3.0 (0x0300)

TMEGA image: 2.0 (0x0200)

New features None

Fixes Fixed Atmel AVR XMEGA software reset handling

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

8

Release platform AVR Studio 5.0 beta

Firmware versions MCU: 5.11 (0x050B)

AVR32 image: 4.0 (0x0400)

XMEGA image: 3.0 (0x0300)

TMEGA image: 2.0 (0x0200)

New features None

Fixes Improved aWire speed

Release platform AVR Studio 5 beta

Firmware versions MCU: 0x0506

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

New features None

Fixes Added support for AVR Studio 5 frontend

Release platform AVR Studio 4.18 SP3 AVR32 Studio 2.6.0

Firmware versions MCU: 0x040F

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

Firmware versions MCU: 0x0410

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

New features None None

Fixes Added support for special HVE MUL
instructions

• Added support for shutdown
mode (Atmel AVR UC3 L)

• Fixed device disconnecting
when no FPGA image is loaded
(on certain Linux® versions)

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

9

Release platform AVR Studio 4.18 SP2 AVR32 Studio 2.5.0

Firmware versions MCU: 0x040C

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

Firmware versions MCU: 0x040C

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

New features None None

Fixes Fixed run from software breakpoint at
double word instruction.

None

Release platform AVR Studio 4.18 SP1 PP1 AVR32 Studio 2.4.0

Firmware versions MCU: 0x040B

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

Firmware versions MCU: 0x040B

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

New features None None

Fixes None Fixed EVTO sensing on 10-pin JTAG
connector.

Release platform AVR Studio 4.18 SP1 AVR32 Studio 2.4.0

Firmware versions MCU: 0x040B

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

10

Firmware versions MCU: 0x040B

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

New features None None

Fixes Fixed Atmel AVR XMEGA EEPROM
read/write when EEPROM is memory
mapped.

Fixed EVTO sensing on 10-pin JTAG
connector.

Release platform AVR32 Studio 2.3.1

Firmware versions MCU: 0x0409

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

Firmware versions MCU: 0x0409

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

New features

Fixes Fixed issues regarding connection to
targets running at voltages above
3.3V.

Fixed issues regarding connection to
targets running at voltages above
3.3V.

Release platform AVR Studio 4.18 AVR32 Studio 2.3

Firmware versions MCU: 0x0408

AVR32 image: 0x0301

XMEGA image: 0x0201

TMEGA image: 0x0107

Firmware versions MCU: 0x0408

AVR32 image: 0x0400

XMEGA image: 0x0300

TMEGA image: 0x0200

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

11

New features Support for longer JTAG daisy chains.
Max. daisy chain is now 240
instruction register bits.

• Support for longer JTAG daisy
chains. Max. daisy chain is now
240 instruction register bits.

• Support for oscillator calibration
for XMEGA

Fixes • Improved support for debugging
targets running at low clock
frequencies

• Fixed bug resulting in lost
hardware breakpoint when a
software breakpoint is removed

• Fixed software breakpoint
masking when reading flash in
debug mode for Atmel
megaAVR JTAG

Improved aWire baud rate setting.

Release platform AVR Studio 4.17

Firmware versions MCU: 0x0310

AVR32 image: 0x0301

XMEGA image: 0x0201

TMEGA image: 0x0107

New features Support for Atmel tinyAVR and Atmel megaAVR devices

Fixes Fixed reset line loading problem. Atmel AVR ONE! will not load the
target reset line anymore as long as its power is switched on.

Release platform AVR32 Studio 2.2

Firmware versions MCU: 0x0306

AVR32 image: 0x0300

XMEGA image: 0x0200

TMEGA image: 0x0103

New features Support for aWire interface

Fixes Fixed reset line loading problem. Atmel AVR ONE! will not load the
target reset line anymore as long as its power is switched on.

Release platform AVR Studio 4.16

Firmware versions MCU: 2.0B

AVR32 image: 1.09

XMEGA image: 1.04

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

12

New features None

Fixes • Fixed JTAG programming problem with JTAG clock set to
8MHz

• Fixed software breakpoint bug resulting in ghost breakpoints
• Fixed single stepping bug for Atmel AVR XMEGA (step out)

Release platform AVR Studio 4.15 AVR32 Studio 2.1.0

Firmware versions MCU: 2.07

MCU: 2.06

AVR32 image: 1.09

XMEGA image: 1.03

New features Atmel AVR XMEGA Family support

Fixes None, this is a new release Minor bug fixes

Release platform AVR32 Studio 2.0

Firmware versions MCU: 1.01

AVR32 image: 1.01

New features Atmel AVR 32-bit microcontrollers support

Fixes None

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

13

3. Known Issues

3.1. General
• Firmware upgrade will not work when using USB 1.1 or USB 2.0 Full Speed. Until a fix is published

in a future GNU Toolchain AVR Studio 4 release, the workaround is to use a USB 2.0 host to
perform the upgrade.

• When the Atmel AVR ONE! is connected to the target, but is not powered, it will passively load the
RESET line. This may cause the target device to be held in reset unintentionally. Always power up
the emulator when it is connected to a target device. The RESET will also be loaded slightly when
performing a firmware upgrade, and when reconfiguring the FPGA when changing target family
types. In some circumstances this may cause the target device to be reset.

• Daisy chain auto detection won't work when an ATmega128 is a part of the daisy chain except if the
ATmega128 is the first device in the chain. This is due to the JTAG instruction IDCODE not working
correctly in this device. For more information, see the Errata section in the ATmega128 data sheet.

• The AVR ONE! firmware released by AVR Studio 4.15 and later only works with AVR32 Studio
version 2.1 and later. If you have upgraded your AVR ONE! from AVR Studio 4.15 and need to work
with AVR32 Studio version 2.0, the firmware can be downgraded by manually initializing an
upgrade in AVR32 Studio. When you want to work with AVR Studio 4 again, a firmware upgrade is
automatically initiated.

3.2. Atmel AVR XMEGA OCD Specific Issues
• For the ATxmegaA1 family, only revision G or later is supported
• For the Atmel AVR XMEGA family the LiveDebug support on JTAG sometimes fails (target is being

reset). PDI is the preferred interface for LiveDebug. When detaching, the target may be left in
stopped mode, requiring an external reset.

3.3. Atmel megaAVR OCD and Atmel tinyAVR OCD Specific Issues
• Cycling power on ATmega32U6 during a debug session may cause a loss of sync with the device
• Single stepping GCC-generated code in source-level may not always be possible. Set optimization

level to lowest for best results, and use the dis-assembly view when necessary.
• Setting the target clocks (debugging and programming clocks for JTAG) too low, typically below

100kHz or running a debugWIRE target at slow frequencies might result in errors in Atmel Studio
due to timeouts being to short to handle the time it takes to complete some commands in the Atmel
AVR ONE! emulator when using these low frequencies. This problem increases as the target device
memories increase in size and as the number of active software breakpoints increases.

3.4. Atmel AVR 32-bit Microcontroller Specific Issues
• NONE

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

14

4. Getting Started

4.1. Kit Contents
The Atmel AVR ONE! kit contains these items:

• AVR ONE! unit with probe
• USB cable (1.8m, high-speed)
• EU and US mains power cables
• Power supply
• AVR ONE! test adapter with 10-pin cable attached
• Stand-off adapters (10-pin 100-mil, 6-pin 100-mil, 10-pin 50-mil, 6-pin 50-mil)
• 38-pin MICTOR connector samples
• 10-pin squid cable
• Atmel AVR Technical Library DVD
• Getting Started Guide

Figure 4-1. Atmel AVR ONE! Kit Contents

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

15

4.2. Powering the Atmel AVR ONE!
The Atmel AVR ONE! must be powered by an external power supply (provided) which is capable of
supplying 15W at 12V DC. The polarity of the DC jack is positive-centre. When powering up the AVR
ONE!, the power LED should illuminate immediately. If the LED does not light up, check that the correct
power supply is being used, or check that the polarity is positive-centre if a different power supply is being
used.

4.3. Connecting to the Host Computer
Before connecting up the Atmel AVR ONE! for the first time, be sure to install the USB driver on the host
computer. This is done automatically when installing the front-end software provided free by Atmel. See
www.atmel.com for further information or to download the latest front-end software.

The AVR ONE! must be connected to an available USB port on the host computer using the USB cable
provided. The AVR ONE! contains a USB 2.0 compliant controller, and can operate in both full-speed
(Note: restrictions apply, see Known issues) and high-speed modes, although the streaming trace feature
is not available when operating at only full-speed. For best results, connect the AVR ONE! directly to the
host computer (not via external hubs) and use a USB 2.0 high-speed certified cable (provided).

4.4. USB Driver Installation

4.4.1. Windows
When installing the Atmel AVR ONE! on a computer running Microsoft® Windows®, the USB driver is
loaded when the AVR ONE! is first powered up.

Note:  Be sure to install the front-end software packages before powering up for the first time!

Proceed with the default ("recommended") options through the New Hardware Wizard.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

16

http://www.atmel.com/dyn/products/tools.asp?family_id=607

Figure 4-2. Installing the AVR ONE! USB Driver

Figure 4-3. Installing the AVR ONE! USB Driver

If not automatically detected, point the wizard to the device driver (provided by Jungo) called avrone.inf,
which is stored in the <windows_root>\inf folder.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

17

Once successfully installed, the AVR ONE! will appear in the device manager as a "Jungo" device.

Your AVR ONE! is now ready to use.

4.5. Programming and Debugging
The simplest way to get started with your Atmel AVR ONE! using Atmel Studio is to build one of the many
example projects included with Atmel Studio.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

18

5. Connecting the Atmel AVR ONE!

5.1. Connecting to a JTAG Target
The Atmel AVR ONE! probe has two target connectors that support JTAG debugging and programming.
When debugging a target device with AUX trace, the 38-pin Nexus (Mictor) connector should be used.
For JTAG debugging without AUX trace, or programming, either the Mictor or the 10-pin connector can be
used.

5.1.1. Using the JTAG Mictor Connector
The pinout for the Mictor 38-pin connector is shown in Figure 6-4 Mictor Connector Pinout.

Simply insert the Atmel AVR ONE! probe connector into the target application's Mictor connector and
apply pressure until a connection is secured. The socket is polarized to prevent incorrect mating
orientation.

5.1.2. Using the JTAG 10-pin Connector
The pinout for the 10-pin JTAG connector is shown in Figure 6-2 JTAG Header Pinout.

Be sure to use the correct orientation of the 10-pin header when connecting the Atmel AVR ONE! to the
target application PCB. The stand-off adapters (provided) can be used to connect the AVR ONE! probe to
both 100-mil and 50-mil target application connectors.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

19

5.2. Connecting to an aWire Target
The Atmel AVR ONE! can interface with the Atmel AVR UC3 L family of devices using the single-wire
'aWire' interface. The recommended pinout for the aWire interface is shown in Figure 6-5 aWire Header
Pinout.

Be sure to use the correct orientation of the 6-pin header when connecting the AVR ONE! to the target
application PCB. The stand-off adapters (provided) can be used to connect the AVR ONE! probe to both
100-mil and 50-mil target application connectors.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

20

The aWire interface only requires one data line in addition to VCC and GND. The recommended 6-pin
pinout is based on existing AVR interfaces, as well as the resources on the AVR ONE! debugger itself.
When connecting to a target that does not have the standard 6-pin header, you can use the squid cable
between the AVR ONE! 10-pin JTAG connector on the probe and the target board. Three connections are
required, as described in the table below.

Table 5-1. Connecting to aWire using the Squid Cable

AVR ONE! JTAG probe Target pins Squid cable colors aWire pinout

Pin 1 (TCK) Black

Pin 2 (GND) GND White 6

Pin 3 (TDO) DATA Grey 1

Pin 4 (VTref) VTref Purple 2

Pin 5 (TMS) Blue

Pin 6 (nSRST) Green

Pin 7 (Not connected) Yellow

Pin 8 (nTRST) Orange

Pin 9 (TDI) Red

Pin 10 (GND) Brown

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

21

5.3. Connecting to a PDI Target
The pinout for the 6-pin PDI connector is shown in Figure 6-6 PDI Header Pinout.

Be sure to use the correct orientation of the 6-pin header when connecting the Atmel AVR ONE! to the
target application PCB. The stand-off adapters (provided) can be used to connect the AVR ONE! probe to
both 100-mil and 50-mil target application connectors.

When connecting to a target that does not have the standard 6-pin header, you can use the squid cable
between the AVR ONE! 10-pin JTAG connector on the probe and the target board.4 connections are
required, and the table below describes where to connect them.

Note:  There is a difference from the JTAGICE mkII JTAG probe, where PDI_DATA is connected to pin 9.

Table 5-2. Connecting to PDI using the Squid Cable

AVR ONE! JTAG probe Target pins Squid cable colors Atmel STK600 PDI pinout

Pin 1 (TCK) Black

Pin 2 (GND) GND White 6

Pin 3 (TDO) PDI_DATA Grey 1

Pin 4 (VTref) VTref Purple 2

Pin 5 (TMS) Blue

Pin 6 (nSRST) PDI_CLK Green 5

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

22

AVR ONE! JTAG probe Target pins Squid cable colors Atmel STK600 PDI pinout

Pin 7 (Not connected) Yellow

Pin 8 (nTRST) Orange

Pin 9 (TDI) Red

Pin 10 (GND) Brown

5.4. Connecting to a debugWIRE Target
The pinout for the 6-pin debugWIRE (SPI) connector is shown in Figure 6-7 debugWIRE (SPI) Header
Pinout.

Be sure to use the correct orientation of the 6-pin header when connecting the Atmel AVR ONE! to the
target application PCB. The stand-off adapters (provided) can be used to connect the AVR ONE! probe to
both 100-mil and 50-mil target application connectors.

Although the debugWIRE interface requires only one signal line (RESET), VCC and GND to operate
correctly, it is advised to have access to the full SPI connector so that the debugWIRE interface can be
enabled and disabled using SPI programming.

When the DWEN fuse is enabled the SPI interface is overridden internally in order for the OCD module to
have control over the RESET pin. The debugWIRE OCD is capable of disabling itself temporarily (using
the button on the debugging tab in the properties dialog in Atmel Studio), thus releasing control of the
RESET line. The SPI interface is then available again (only if the SPIEN fuse is programmed), allowing

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

23

the DWEN fuse to be un-programmed using the SPI interface. If power is toggled before the DWEN fuse
is un-programmed, the debugWIRE module will again take control of the RESET pin. It is HIGHLY
ADVISED to simply let Atmel Studio handle setting and clearing of the DWEN fuse!

It is not possible to use the debugWIRE Interface if the lockbits on the target AVR are programmed.
Always be sure that the lockbits are cleared before programming the DWEN fuse and never set the
lockbits while the DWEN fuse is programmed. If both the debugWIRE enable fuse (DWEN) and lockbits
are set, one can use High Voltage Programming to do a chip erase, and thus clear the lockbits. When the
lockbits are cleared the debugWIRE Interface will be re-enabled. The SPI Interface is only capable of
reading fuses, reading signature, and performing a chip erase when the DWEN fuse is un-programmed.

Table 5-3. Connecting to debugWIRE using the Squid Cable

AVR ONE! JTAG probe Target pins Squid cable colors

Pin 1 (TCK) Black

Pin 2 (GND) GND White

Pin 3 (TDO) Grey

Pin 4 (VTref) VTref Purple

Pin 5 (TMS) Blue

Pin 6 (nSRST) RESET Green

Pin 7 (Not connected) Yellow

Pin 8 (nTRST) Orange

Pin 9 (TDI) Red

Pin 10 (GND) Brown

5.5. Connecting to an SPI Target
The pinout for the 6-pin SPI connector is shown in Figure 6-8 SPI Header Pinout.

Be sure to use the correct orientation of the 6-pin header when connecting the Atmel AVR ONE! to the
target application PCB. The stand-off adapters (provided) can be used to connect the AVR ONE! probe to
both 100-mil and 50-mil target application connectors.

Note:  The SPI interface is effectively disabled when the debugWIRE enable fuse (DWEN) is
programmed, even if the SPIEN fuse is also programmed. To re-enable the SPI interface, the 'disable
debugWIRE' command must be issued while in a debugWIRE debugging session. Disabling debugWIRE
in this manner requires that the SPIEN fuse is already programmed. If Atmel Studio fails to disable
debugWIRE, it is probably that the SPIEN fuse is NOT programmed. If this is the case, it is necessary to
use a high-voltage programming interface to program the SPIEN fuse. It is HIGHLY ADVISED to simply
let Atmel Studio handle setting and clearing of the DWEN fuse!

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

24

5.6. Using the Atmel AVR ONE! with Atmel STK500
The Atmel STK®500 starter kit can be used to house Atmel AVR devices to which the AVR ONE! can
connect through JTAG, debugWIRE, and SPI interfaces.

When connecting to a JTAG target, simply use the ATSTK500_JTAG_ADAPTER. If you do not have an
STK500 JTAG adapter available, the 10-pin multicolored "squid" cable can also be used to connect
directly to the device's JTAG port on PORTC[5::2] of the STK500.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

25

Connecting to debugWIRE and SPI targets is done using the same stand-off adapter. When using the
debugWIRE interface, be sure to remove the STK500's RESET jumper to allow the reset line to be driven
as required.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

26

Alternatively, the AVR ONE! can be connected to any target interface using the 10-pin "squid" cable
(provided).

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

27

5.7. Using the Atmel AVR ONE! with Atmel STK600
The Atmel STK600 starter kit can be used to house Atmel AVR devices to which the AVR ONE! can
connect through the JTAG interface.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

28

When connecting to a JTAG target, simply use the 10-pin 100mil stand-off adapter (provided) to connect
to the JTAG connector on the STK600.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

29

When connecting to a PDI, debugWIRE, or SPI target, simply use the 6-pin 100mil stand-off adapter
(provided) to connect to the SPI/PDI connector.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

30

6. On-chip Debugging

6.1. Introduction to On-chip Debugging (OCD)
A traditional Emulator is a tool which tries to imitate the exact behavior of a target device. The closer this
behavior is to the actual device’s behavior, the better the emulation will be.

The Atmel AVR ONE! is not a traditional Emulator. Instead, the AVR ONE! interfaces with the internal On-
chip Debug system inside the target Atmel AVR device, providing a mechanism for monitoring and
controlling its execution. In this way the application being debugged is not emulated, but actually
executed on the real AVR target device.

With an OCD system, the application can be executed whilst maintaining exact electrical and timing
characteristics in the target system – something not technically realizable with a traditional emulator.

Run Mode

When in Run mode, the execution of code is completely independent of the AVR ONE!. The AVR ONE!
will continuously monitor the target AVR to see if a break condition has occurred. When this happens the
OCD system will interrogate the device through its debug interface, allowing the user to view the internal
state of the device.

Stopped Mode

When a breakpoint is reached, program execution is halted, but all I/O will continue to run as if no
breakpoint had occurred. For example, assume that a USART transmit has just been initiated when a
breakpoint is reached. In this case the USART continues to run at full speed completing the transmission,
even though the core is in stopped mode.

Hardware Breakpoints

The AVR OCD module contains a number of program counter comparators implemented in hardware.
When the program counter matches the value stored in one of the comparator registers, the OCD enters
stopped mode. Since hardware breakpoints require dedicated hardware on the OCD module, the number
of breakpoints available depends upon the size of the OCD module implemented on the AVR target.
Usually one such hardware comparator is ‘reserved’ by the debugger for internal use. For more
information on the hardware breakpoints available in the various OCD modules, see the OCD
implementations section.

Software Breakpoints

A software breakpoint is a BREAK instruction placed in program memory on the target device. When this
instruction is loaded, program execution will break and the OCD enters stopped mode. To continue
execution a "start" command has to be given from the OCD. Not all AVR devices have OCD modules
supporting the BREAK instruction. For more information on the software breakpoints available in the
various OCD modules, see the OCD implementations section.

For further information on the considerations and restrictions when using an OCD system, see the
Special Considerations section.

6.2. Physical Interfaces
The Atmel AVR ONE! supports several hardware interfaces as described in the sections that follow.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

31

6.2.1. JTAG
The JTAG interface consists of a 4-wire Test Access Port (TAP) controller that is compliant with the IEEE®

1149.1 standard. The IEEE standard was developed to provide an industry-standard way to efficiently test
circuit board connectivity (Boundary Scan). Atmel AVR devices have extended this functionality to include
full Programming and On-Chip Debugging support.

Figure 6-1. JTAG Interface Basics

When designing an application PCB which includes an AVR with the JTAG interface, it is recommended
to use the pinout as shown in Figure 6-2 JTAG Header Pinout. The Atmel AVR ONE! ships with both 100-
mil and 50-mil adapters supporting this pinout.

Figure 6-2. JTAG Header Pinout

Table 6-1. JTAG Pin Description

Name Pin Description

TCK 1 Test Clock (clock signal from the AVR ONE! into the target device)

TMS 5 Test Mode Select (control signal from the AVR ONE! into the target device)

TDI 9 Test Data In (data transmitted from the AVR ONE into the target device)

TDO 3 Test Data Out (data transmitted from the target device into the AVR ONE!)

nTRST 8 Test Reset (optional, only on some AVR devices). Used to reset the JTAG TAP controller.

nSRST 6 Source Reset (optional) Used to reset the target device. Connecting this pin is
recommended since it allows the AVR ONE! to hold the target device in a reset state,
which can be essential to debugging in certain scenarios.

VTref 4 Target voltage reference. The AVR ONE! samples the target voltage on this pin in order
to power the level converters correctly. The AVR ONE! draws less than 1mA from this
pin.

GND 2, 10 Ground. Both must be connected to ensure that the AVR ONE! and the target device
share the same ground reference.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

32

Tip: remember to include a decoupling capacitor between pin 4 and GND.

The JTAG interface allows for several devices to be connected to a single interface in a daisy-chain
configuration. The target devices must all be powered by the same supply voltage, share a common
ground node, and must be connected as shown in Figure 6-3 JTAG Daisy-chain.

Figure 6-3. JTAG Daisy-chain

When connecting devices in a daisy-chain, the following points must be considered:

• All devices must share a common ground, connected to GND on the AVR ONE! probe
• All devices must be operating on the same target voltage. VTref on the AVR ONE! probe must be

connected to this voltage.
• TMS and TCK are connected in parallel; TDI and TDO are connected in a serial chain
• NSRST on the AVR ONE! probe must be connected to RESET on the devices if any one of the

devices in the chain disables its JTAG port
• "Devices before" refers to the number of JTAG devices that the TDI signal has to pass through in

the daisy chain before reaching the target device. Similarly "devices after" is the number of devices
that the signal has to pass through after the target device before reaching the AVR ONE! TDO pin.

• "Instruction bits before" and "after" refers to the total sum of all JTAG devices' instruction register
lengths which are connected before and after the target device in the daisy chain

• The total IR length (instruction bits before + Atmel AVR IR length + instruction bits after) is limited to
a maximum of 240 bits

Daisy chaining example: TDI -> ATmega1280 -> ATxmega128A1 -> ATUC3A0512 -> TDO.

In order to connect to the Atmel AVR XMEGA device, the daisy chain settings are:

Devices before: 1

Devices after: 1

Instruction bits before: 4 (AVR devices have 4 IR bits)

Instruction bits before: 5 (AVR UC3 devices have 5 IR bits)

6.2.2. Auxiliary (AUX) Physical (including JTAG)
When debugging Atmel AVR target devices that feature an auxiliary port, it is recommended to use the
38-pin connector, which provides access to both JTAG and AUX ports. The AUX port facilitates advanced
debugging features such as program trace.

The pinout of the 38-pin connector is shown in Figure 6-4 Mictor Connector Pinout and listed in Table
6-2 Mictor Connector Pinout.

The Mictor Connector is available from Tyco Electronics (part number 2-5767004-2).

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

33

Figure 6-4. Mictor Connector Pinout

Table 6-2. Mictor Connector Pinout

Name Pin Description

TCK 15 Test Clock

TMS 17 Test Mode Select

TDI 19 Test Data In

TDO 11 Test Data Out

nTRST 21 Test Reset

nRESET 9 Source Reset

EVTI 10 Event In

EVTO 32 Event Out

MCKO 34 Message Clock Out

MSEO0 38 Message Start/End Out [0]

MSEO1 36 Message Start/End Out [1]

MDO0 30 Message Data Out [0]

MDO1 28 Message Data Out [1]

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

34

Name Pin Description

MDO2 26 Message Data Out [2]

MDO3 24 Message Data Out [3]

MDO4 22 Message Data Out [4]

MDO5 20 Message Data Out [5]

VREF 12 Target Voltage Reference

GND 39-43 Ground

6.2.3. aWire
The aWire interface makes use the /RESET wire of the Atmel AVR device to allow programming and
debugging functions. A special enable sequence is transmitted by the Atmel AVR ONE!, which disables
the default /RESET functionality of the pin.

When designing an application PCB, which includes an AVR with the aWire interface, it is recommended
to use the pinout as shown in Figure 6-5 aWire Header Pinout. The AVR ONE! ships with both 100-mil
and 50-mil adapters supporting this pinout.

Figure 6-5. aWire Header Pinout

Tip: Since aWire is a half-duplex interface, a pull-up resistor on the /RESET line in the order of 47k is
recommended to avoid false start-bit detection when changing direction.

The aWire interface can be used as both a programming and debugging interface, all features of the OCD
system available through the 10-pin JTAG interface can also be accessed using aWire.

6.2.4. PDI Physical
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and
on-chip debugging of a device. PDI Physical is a 2-pin interface providing a bi-directional half-duplex
synchronous communication with the target device.

When designing an application PCB, which includes an Atmel AVR with the PDI interface, the pinout
shown in Figure 6-6 PDI Header Pinout should be used. The 6-pin standoff adapter provided with the
AVR ONE! kit can then be used to connect the AVR ONE! probe to the application PCB.

Figure 6-6. PDI Header Pinout

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

35

6.2.5. debugWIRE
The debugWIRE interface was developed by Atmel for use on low pin-count devices. Unlike the JTAG
interface which uses four pins, debugWIRE makes use of just a single pin (RESET) for bi-directional half-
duplex asynchronous communication with the debugger tool.

When designing an application PCB, which includes an Atmel AVR with the debugWIRE interface, the
pinout shown in Figure 6-7 debugWIRE (SPI) Header Pinout should be used.

Figure 6-7. debugWIRE (SPI) Header Pinout

Note:  The debugWIRE interface can not be used as a programming interface. This means that the SPI
interface must also be available (as shown in Figure 6-8 SPI Header Pinout) in order to program the
target.

When the debugWIRE enable (DWEN) fuse is programmed and lock-bits are un-programmed, the
debugWIRE system within the target device is activated. The RESET pin is configured as a wire-AND
(open-drain) bi-directional I/O pin with pull-up enabled and becomes the communication gateway
between target and debugger.

6.2.6. SPI
In-System Programming uses the target Atmel AVR’s internal SPI (Serial Peripheral Interface) to
download code into the flash and EEPROM memories. It is not a debugging interface. When designing an
application PCB, which includes an AVR with the SPI interface, the pinout shown in Figure 6-8 SPI
Header Pinout should be used.

Figure 6-8. SPI Header Pinout

6.3. Atmel AVR OCD Implementations

6.3.1. Atmel AVR UC3 OCD (JTAG and aWire Physical)
The Atmel AVR UC3 OCD system is designed in accordance with the Nexus 2.0 standard (IEEE-ISTO
5001™-2003), which is a highly flexible and powerful open on-chip debug standard for 32-bit
microcontrollers. It supports the following features:

• Nexus compliant debug solution
• OCD supports any CPU speed
• Six program counter hardware breakpoints
• Two data breakpoints
• Breakpoints can be configured as watchpoints
• Hardware breakpoints can be combined to give break on ranges

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

36

• Real-time program counter branch tracing, data trace, process trace

For special considerations regarding this debug interface, see Special Considerations.

For more information regarding the UC3 OCD system, consult the AVR32UC Technical Reference
Manual, located on www.atmel.com/uc3.

6.3.2. Atmel AVR XMEGA OCD (JTAG and PDI Physical)
The Atmel AVR XMEGA OCD is otherwise known as PDI (Program and Debug Interface). Two physical
interfaces (JTAG and PDI Physical) provide access to the same OCD implementation within the device. It
supports the following features:

• Complete program flow control
• One dedicated program address comparator or symbolic breakpoint (reserved)
• Four hardware comparators
• Unlimited number of user program breakpoints (using BREAK)
• No limitation on system clock frequency

For special considerations regarding this debug interface, see Special Considerations.

6.3.3. Atmel megaAVR OCD (JTAG)
The Atmel megaAVR OCD is based on the JTAG physical interface. It supports the following features:

• Complete program flow control
• Four program memory (hardware) breakpoints (one is reserved)
• Hardware breakpoints can be combined to form data breakpoints
• Unlimited number of program breakpoints (using BREAK) (except ATmega128[A])

For special considerations regarding this debug interface, see Special Considerations.

6.3.4. Atmel megaAVR / tinyAVR OCD (debugWIRE)
The debugWIRE OCD is a specialized OCD module with a limited feature set specially designed for
Atmel AVR devices with low pin-count. It supports the following features:

• Complete program flow control
• Unlimited number of User Program Breakpoints (using BREAK)
• Automatic baud configuration based on target clock

For special considerations regarding this debug interface, see Special Considerations.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

37

http://www.atmel.com/Images/doc32002.pdf
http://www.atmel.com/Images/doc32002.pdf
http://www.atmel.com/uc3

7. Atmel AVR ONE! Hardware Description

7.1. LEDs
The Atmel AVR ONE! front panel has four LEDs which indicate the status of current debug or
programming sessions.

Figure 7-1. AVR ONE! LED Location

Table 7-1. LEDs

LED Icon Description

Main power RED when main-board power is OK

Target power GREEN when target power is OK. Flashing indicates a target power error.
Does not light up unless a debug session connection is attempted.

Target run GREEN when the target is running. ORANGE when target is stopped.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

38

LED Icon Description

Communication GREEN when a session with the host computer is active

Blue belt The belt is lit up whenever the FPGA inside the debugger is loaded. It has no
functional significance at the moment. Note that the belt will not lit up directly
after an upgrade, since the FPGA won't be programmed until Atmel Studio
connects to it.

7.2. Rear Panel
The rear panel of the Atmel AVR ONE! houses the DC jack, power switch, and USB connector. A sticker
on the upper section shows the serial number and date of manufacture. When seeking technical support,
include these details.

Figure 7-2. AVR ONE! Rear Panel

7.3. Probe
The Atmel AVR ONE! main unit comes with a probe with the following capabilities:

• 10-pin connector: Target voltage range, 1.65 - 5.5V; Interface frequencies, 32kHz - 33MHz.
• MICTOR38 connector: Target voltage range, 1.65 - 3.6V; AUX interface frequencies, up to 200MHz.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

39

An alternative probe can be purchased separately. This probe looks the same as the original probe but
has the following capabilities:

• 10-pin connector: Target voltage range, 1.65 - 5.5V; Interface frequencies, 32kHz - 33MHz.
• MICTOR38 connector: Target voltage range, 1.65 - 5.5V; AUX interface frequencies, up to 75MHz.

The AVR ONE! firmware will automatically detect which probe is connected and refuse to connect to a
5.5V target through the MICTOR38 connector when using the original 3.3V probe. It is worth noting that
the JTAG 10-pin connector has the same capabilities on both probes. It is only the MICTOR38 connector
that differs.

7.4. Architecture Description
The Atmel AVR ONE! architecture is shown in the Figure 7-3 AVR ONE Block Diagram.

Figure 7-3. AVR ONE Block Diagram

7.4.1. Atmel AVR ONE! Main-board
Power is supplied via the 12V DC connector. The USB port is used for host communications only, and
does not draw current from the host. At the heart of the Atmel AVR ONE! main-board is the ATmega1280
AVR microcontroller, which is coupled to an FPGA for target interface signal processing. The target
interface is clocked by an external clock generator capable of providing a frequency in the range of
approximately 1kHz to 64MHz. A small external SRAM is connected to the AVR MCU, and is used to
store symbolic information during a debug session, while the larger and faster DDR-SDRAM is used by
the FPGA as a trace message buffer only.

7.4.2. Atmel AVR ONE! Probe
Communication between the Atmel AVR ONE! main-board and the probe is done by LVDS signalling over
the probe cable. The LVDS transceivers are connected to level translators that shift signals between the
target's operating voltage and the internal voltage level on the AVR ONE!. The 'external' side of the level
translators is connected physically to the target connector. The level translators are not powered directly
from VTref, but from a buffered power source, which matches the VTref voltage. The JTAG channels can be

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

40

operated in the range 1.65V to 5.5V up to 33MHz, while the AUX channels are capable of operating at up
to 200MHz at 3.6V.

For best results it is recommended to correctly terminate the high-speed AUX signals on the target
application PCB.

For further information on how to connect the probe to the target application, see section Connecting the
AVR ONE!.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

41

8. Software Integration

8.1. Atmel Studio
The Atmel AVR ONE! can be used in conjunction with Atmel Studio for programming and debugging of all
Atmel AVR 8- and 32-bit microcontrollers.

For more information, consult the Atmel Studio user guide.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

42

9. Command Line Utility
Atmel Studio comes with a command line utility called atprogram that can be used to program targets
using the AVR ONE!. During the Atmel Studio installation a shortcut called "Atmel Studio 7.0. Command
Prompt" were created in the Atmel folder on the Start menu. By double clicking this shortcut a command
prompt will be opened and programming commands can be entered. The command line utility is installed
in the Atmel Studio installation path in the folder Atmel/Atmel Studio 7.0/atbackend/.

To get more help on the command line utility type the command:
atprogram --help

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

43

10. Advanced Debugging Techniques

10.1. Atmel AVR 32-bit Microcontrollers

10.1.1. EVTI/EVTO Usage
The EVTI and EVTO pins provide features which can be used to ease debugging in certain scenarios.
EVTI is used to signal an event INTO the target device, while EVTO is an event signaled OUT FROM the
target device. The 38-pin MICTOR connector contains these two signals to allow the Atmel AVR ONE!
access to these pins on the target device. EVTO can also be connected to pin 7 on the 10-pin JTAG
connector for the AVR ONE! to be able to read it. Note that EVTO will only be available on the JTAG 10-
pin connector if the target voltage is below 3.6 volts for probe hardware revision 0. In order to use these
pins externally during debugging, it is recommended to disconnect them from the AVR ONE! MICTOR
connector on the application board.

EVTI can be used for the following purposes:

• The target can be forced to stop execution in response to an external event. If the Event In Control
(EIC) bits in the DC register are written to 0b01, high-to-low transition on the EVTI pin will generate
a breakpoint condition. EVTI must remain low for one CPU clock cycle to guarantee that a
breakpoint is triggered. The External Breakpoint bit (EXB) in DS is set when this occurs.

• Generating trace synchronization messages. This is a Nexus compliant feature which is not
required by Atmel AVR 32-bit microcontrollers. A high-to-low transition on EVTI can be configured
(using the EIC bits in DC) to generate trace synchronization messages. The AVR ONE! will ignore
these messages since they are not required for trace reconstruction.

EVTO can be used for the following purposes:

• Indicating that the CPU has entered debug mode. Setting the EOS bits in DC to 0b01 causes the
EVTO pin to be pulled low for one CPU clock cycle when the target device enters debug mode.
This signal can be used as a trigger source for an external oscilloscope.

• Indicating that the CPU has reached a breakpoint or watchpoint. By setting the EOC bit in a
corresponding Breakpoint/Watchpoint Control Register, breakpoint or watchpoint status is indicated
on the EVTO pin. The EOS bits in DC must be set to 0xb10 to enable this feature. The EVTO pin
can then be connected to an external oscilloscope in order to examine watchpoint timing.

• Generating trace timing signals. The AVR target can be configured to toggle every time a message
is added to the trace transmit queue. This can be used to acquire more accurate timing information
for trace output. This feature is currently not supported by the AVR ONE!

10.2. Atmel megaAVR Targets

10.2.1. I/O Debug Register (IDR)
The OCD debugger makes use of the memory mapped OCDR register to access the internals of the
Atmel AVR target device while it is in stopped mode. When in run mode, the application running on the
target can write a value to this register. The OCD system will then signal this to the debugger, which then
fetches the data and passes it to the GUI front-end, where it is displayed. The application can thus give
primitive debug messages to the debugger.

Note:  The IDR value is polled at a fixed interval (100ms) so writing to it at a higher frequency than this
will not yield reliable results.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

44

Note:  If the AVR target device experiences a power out condition while it is being debugged, spurious
IDR messages may result. This because the debugger continues to pull the AVR as the voltage drops
below its minimum operating voltage.

10.3. debugWIRE Targets

10.3.1. Software Breakpoints
The debugWIRE OCD is drastically scaled down when compared to the Mega (JTAG) OCD. This means
that it does not have any program counter breakpoint comparators available to the user for debugging
purposes. One such comparator does exist for purposes of Run-To-Cursor and single-step operations,
but user breakpoints are not supported in the hardware.

Instead, the debugger must make use of the Atmel AVR BREAK instruction. This instruction can be
placed in FLASH, and when it is loaded for execution it will cause the AVR CPU to enter stopped mode.
To support breakpoints during debugging, the debugger must insert a BREAK instruction into FLASH at
the point at which the users requests a breakpoint. The original instruction must be cached for later
replacement. When single stepping over a BREAK instruction, the debugger has to execute the original
cached instruction in order to preserve program behavior. In extreme cases, the BREAK has to be
removed from FLASH and replaced later. All these scenarios can cause apparent delays when single
stepping from breakpoints, which will be exacerbated when the target clock frequency is very low.

It is thus recommended to observe the following guidelines, where possible:

• Always run the target at as high a frequency as possible during debugging. The debugWIRE
physical interface is clocked from the target clock.

• Try to minimize on the number of breakpoint additions and removals, as each one require a FLASH
page to be replaced on the target

• Try to add or remove a small number of breakpoints at a time, to minimize the number of FLASH
page write operations

• If possible, avoid placing breakpoints on double-word instructions

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

45

11. Special Considerations

11.1. Atmel AVR XMEGA OCD
OCD and clocking

When the MCU enters stopped mode, the OCD clock is used as MCU clock. The OCD clock is either the
JTAG TCK if the JTAG interface is being used, or the PDI_CLK if the PDI interface is being used.

SDRAM refresh in stopped mode

When the OCD is in stopped mode, the MCU is clocked by the PDI or JTAG clock, as described in the
paragraph above. Since nothing is known of this frequency by the debugger or OCD, a low refresh period
(0x20) is automatically used. This value can't be changed by the user, and it might not fit with all
combinations of OCD clock frequency and SDRAM devices. If SDRAM problems are observed in stopped
mode, try to adjust the OCD clock frequency.

I/O modules in stopped mode

Different from earlier Atmel megaAVR devices, in XMEGA the I/O modules are stopped in stop mode.
This means that USART transmissions will be interrupted, timers (and PWM) will be stopped.

Hardware breakpoints

There are four hardware breakpoint comparators - two address comparators and two value comparators.
They have certain restrictions:

• All breakpoints must be of the same type (program or data)
• All data breakpoints must be in the same memory area (I/O, SRAM, or XRAM)
• There can only be one breakpoint if address range is used

Here are the different combinations that can be set:

• Two single data or program address breakpoints
• One data or program address range breakpoint
• Two single data address breakpoints with single value compare
• One data breakpoint with address range, value range or both

Atmel Studio will tell you if the breakpoint can't be set, and why. Data breakpoints have priority over
program breakpoints, if software breakpoints are available.

External reset and PDI physical

The PDI physical interface uses the reset line as clock. While debugging, the reset pullup should be 10k
or more or be removed. Any reset capacitors should be removed. Other external reset sources should be
disconnected.

Debugging with sleep for ATxmegaA1 rev H and earlier

There was a bug in the early versions of the ATxmegaA1 family that prevented the OCD to be enabled
while the device was in certain sleep modes. There are two methods to use to get back on the debugging:

• Enter the Atmel AVR ONE! options dialog and enable "Always activate external reset when
reprogramming device"

• Perform a chip erase

The sleep modes that trigger this bug are:

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

46

• Power-down
• Power-save
• Standby
• Extended standby

The consequence of this bug is that attaching to a target using LiveDebug will not work when the target is
in these sleep modes. The programming dialog is not affected by this bug.

11.2. Atmel megaAVR OCD and debugWIRE OCD
I/O Peripherals

Most I/O peripherals will continue to run even though the program execution is stopped by a breakpoint.
Example: If a breakpoint is reached during a UART transmission, the transmission will be completed and
corresponding bits set. The TXC (transmit complete) flag will be set and be available on the next single
step of the code even though it normally would happen later in an actual device.

All I/O modules will continue to run in stopped mode with the following two exceptions:

• Timer/Counters (configurable using the software front-end)
• Watchdog Timer (always stopped to prevent resets during debugging)

Single Stepping I/O access

Since the I/O continues to run in stopped mode, care should be taken to avoid certain timing issues. For
example, the code:

OUT PORTB, 0xAA

IN TEMP, PINB

When running this code normally, the TEMP register would not read back 0xAA because the data would
not yet have been latched physically to the pin by the time it is sampled by the IN operation. A NOP
instruction must be placed between the OUT and the IN instruction to ensure that the correct value is
present in the PIN register.

However, when single stepping this function through the OCD, this code will always give 0xAA in the PIN
register since the I/O is running at full speed even when the core is stopped during the single stepping.

Single stepping and timing

Certain registers need to be read or written within a given number of cycles after enabling a control
signal. Since the I/O clock and peripherals continue to run at full speed in stopped mode, single stepping
through such code will not meet the timing requirements. Between two single steps, the I/O clock may
have run millions of cycles. To successfully read or write registers with such timing requirements, the
whole read or write sequence should be performed as an atomic operation running the device at full
speed. This can be done by using a macro or a function call to execute the code, or use the run-to-cursor
function in the debugging environment.

Accessing 16-bit Registers

The Atmel AVR peripherals typically contain several 16-bit registers that can be accessed via the 8-bit
data bus (e.g.: TCNTn of a 16-bit timer). The 16-bit register must be byte accessed using two read or
write operations. Breaking in the middle of a 16-bit access or single stepping through this situation may
result in erroneous values.

Restricted I/O register access

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

47

Certain registers cannot be read without affecting their contents. Such register include those which
contain flags, which are cleared by reading, or buffered data registers (e.g.: UDR). The software front-end
will prevent reading these registers when in stopped mode to preserve the intended non-intrusive nature
of OCD debugging. In addition, some registers cannot safely be written without side-effects occurring -
these registers are read-only. For example:

• Flag registers, where a flag is cleared by writing '1' to any bit. These registers are read-only.
• UDR and SPDR registers cannot be read without affecting the state of the module. These registers

are not accessible.

11.3. Atmel megaAVR OCD (JTAG)
Software breakpoints

Since it contains an early OCD module, ATmega128[A] does not support the use of the BREAK
instruction for software breakpoints.

JTAG clock

The target clock frequency must be accurately specified in the software front-end before starting a debug
session. For synchronization reasons, the JTAG TCK signal must be less than one fourth of the target
clock frequency for reliable debugging. When programming via the JTAG interface, the TCK frequency is
limited by the maximum frequency rating of the target device, and not the actual clock frequency being
used.

When using the internal RC oscillator, be aware that the frequency may vary from device to device and is
affected by temperature and VCC changes. Be conservative when specifying the target clock frequency.

JTAGEN and OCDEN fuses

The JTAG interface is enabled using the JTAGEN fuse, which is programmed by default. This allows
access to the JTAG programming interface. Through this mechanism, the OCDEN fuse can be
programmed (by default OCDEN is un-programmed). This allows access to the OCD in order to facilitate
debugging the device. The software front-end will always ensure that the OCDEN fuse is left un-
programmed when terminating a session, thereby restricting unnecessary power consumption by the
OCD module. If the JTAGEN fuse is unintentionally disabled, it can only be re-enabled using SPI or PP
programming methods.

If the JTAGEN fuse is programmed, the JTAG interface can still be disabled in firmware by setting the
JTD bit. This will render code un-debuggable, and should not be done when attempting a debug session.
If such code is already executing on the Atmel AVR device when starting a debug session, the Atmel AVR
ONE! will assert the /RESET line while connecting. If this line is wired correctly, it will force the target AVR
device into reset, thereby allowing a JTAG connection.

If the JTAG interface is enabled, the JTAG pins cannot be used for alternative pin functions. They will
remain dedicated JTAG pins until either the JTAG interface is disabled by setting the JTD bit from the
program code, or by clearing the JTAGEN fuse through a programming interface.

IDR events

When the application program writes a byte of data to the OCDR register of the AVR device being
debugged, the AVR ONE! reads this value out and displays it in the message window of the software
front-end. The IDR registers is polled every 100ms, so writing to it at a higher frequency will NOT yield
reliable results. When the AVR device loses power while it is being debugged, spurious IDR events may
be reported. This happens because the AVR ONE! may still poll the device as the target voltage drops
below the AVR’s minimum operating voltage.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

48

11.4. debugWIRE OCD
The debugWIRE communication pin (dW) is physically located on the same pin as the external reset (/
RESET). An external reset source is therefore not supported when the debugWIRE interface is enabled.

The debugWIRE Enable fuse (DWEN) must be set on the target device in order for the debugWIRE
interface to function. This fuse is by default un-programmed when the Atmel AVR device is shipped from
the factory. The debugWIRE interface itself cannot be used to set this fuse. In order to set the DWEN
fuse, SPI mode must be used. The software front-end handles this automatically provided that the
necessary SPI pins are connected. It can also be set using SPI programming from the Atmel Studio
programming dialog.

• Either:

Attempt to start a debug session on the debugWIRE part. If the debugWIRE interface is not
enabled, Atmel Studio will offer to retry, or attempt to enable debugWIRE using SPI programming. If
you have the full SPI header connected, debugWIRE will be enabled, and you will be asked to
toggle power on the target - this is required for the fuse changes to be effective.

• or:

Open the programming dialog in SPI mode, and verify that the signature matches the correct
device. Check the DWEN fuse to enable debugWIRE.

Note:  It is important to leave the SPIEN fuse programmed and the RSTDISBL fuse un-
programmed! Not doing this will render the device stuck in debugWIRE mode, and high-voltage
programming will be required to revert the DWEN setting.

To disable the debugWIRE interface, use high-voltage programming to un-program the DWEN fuse.
Alternately, use the debugWIRE interface itself to temporarily disable itself, which will allow SPI
programming to take place, provided that the SPIEN fuse is set.

Note:  If the SPIEN fuse was NOT left programmed, Atmel Studio will not be able to complete this
operation, and high-voltage programming must be used.

• During a debug session, select the 'Disable debugWIRE and Close' menu option from the 'Debug'
menu. DebugWIRE will be temporarily disabled, and Atmel Studio will use SPI programming to un-
program the DWEN fuse.

Having the DWEN fuse programmed enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption of the AVR while in sleep modes. The DWEN Fuse
should therefore always be disabled when debugWIRE is not used.

When designing a target application PCB where debugWIRE will be used, the following considerations
must be made for correct operation:

• Pull-up resistors on the dW/(/RESET) line must not be smaller (stronger) than 10kΩ. The pull-up
resistor is not required for debugWIRE functionality, since the debugger tool provides this.

• Connecting the /RESET pin directly to VCC will cause the debugWIRE interface to fail
• Any stabilizing capacitor connected to the /RESET pin must be disconnected when using

debugWIRE, since they will interfere with correct operation of the interface
• All external reset sources or other active drivers on the /RESET line must be disconnected, since

they may interfere with the correct operation of the interface

Never program the lock-bits on the target device. The debugWIRE interface requires that lock-bits are
cleared in order to function correctly.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

49

11.5. Atmel AVR UC3 OCD
On some Atmel AVR UC3 devices the JTAG port is not enabled by default. When using these devices it is
essential to connect the RESET line so that the Atmel AVR ONE! can enable the JTAG interface.

Any stabilizing capacitor connected to the /RESET pin must be disconnected when using aWire since it
will interfere with correct operation of the interface. A weak external pullup on this line is recommended.

The baud rate of aWire communications depends upon the frequency of the system clock, since data
must be synchronized between these two domains. The AVR ONE! will automatically detect that the
system clock has been lowered, and re-calibrate its baud rate accordingly. The automatic calibration only
works down to a system clock frequency of 8kHz. Switching to a lower system clock during a debug
session may cause contact with the target to be lost.

If required, the aWire baud rate can be restricted by setting the aWire clock parameter in the toolchain.
Automatic detection will still work, but a ceiling value will be imposed on the results.

11.6. Atmel AVR UC3 Shutdown Mode
Some Atmel AVR UC3 devices, like UC3 L, supports a special sleep mode called Shutdown. When using
this mode the device must be powered by 3.3V on VDDIN and then an internal regulator delivers 1.8V to
the core. In addition this the 1.8V can be used to power the VDDIO. When the part goes into Shutdown
mode it turns off the internal regulator resulting in both the core and most of the I/O to be powered down.
To wake the part up again it must be reset by an external reset on the reset pin. The reset pin is powered
by VDDIN while the JTAG lines are powered by VDDIO. For more information on the Shutdown mode,
refer to the data sheet of the device being used. Some special considerations are required when
debugging targets in such a configuration.

aWire

When debugging using aWire the reset line is the only signal line used. VTref (pin 4 in the Atmel AVR
ONE! JTAG connector) must be connected to VDDIN (3.3V) for aWire to work.

JTAG

When debugging using JTAG it is important to also wire the reset line nSRST, pin 6 in the AVR ONE!
JTAG connector, so that the AVR ONE! is able to wake the target up from the Shutdown mode. VTtref, pin
4 in the AVR ONE! JTAG connector, must be connected to VDDIO (1.8V). The problem when using JTAG
is that the reset pin on the target is powered by VDDIN @ 3.3V, while on the AVR ONE! probe it is
powered by VTref @ 1.8 V. This configuration might sound dangerous to the hardware but the AVR ONE!
only drives the reset line low, never high, so there should not be any contention. However, there is a
strong pullup on the AVR ONE! probe pulling the reset line to 1.8V. This pullup is stronger than the
internal pullup in the UC3 target so the reset line will stay at about 2V. To avoid that the target reads this
as a low value on reset some action must be taken. There are two options, either add an external 3.3kΩ
pullup on the reset line or lower VDDIN on the target to 2.2V or lower.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

50

12. Troubleshooting

12.1. Self-test
The Atmel AVR ONE! is shipped with a self-test adapter with an IDC cable. If it for any reason is
suspected that the AVR ONE! cable and probe are not functioning correctly, a self-test can be run. The
self-test adapter is a loopback adapter that enables the on-board MCU to perform diagnostics on the
target communication circuitry. This includes the probe, the cable, parts of the main board, and implicitly
the test adapter itself.

12.1.1. Connecting
To run the test, the test adapter and cable must be connected to the probe as shown in Figure 12-1 
Connecting the AVR ONE! Test Adapter. The edge connector mates directly onto the Mictor38 socket on
the test adapter. Press firmly to ensure a good connection. The male part of the test adapter cable is
connected to the probe. Note that although the hole for the cable is keyed so that the connector will only
insert fully in the correct orientation, it is still possible to insert it halfway if using the incorrect orientation.
The female part of the cable mates with the pin-header on the test adapter. Make sure this is mated
correctly.

Figure 12-1. Connecting the AVR ONE! Test Adapter

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

51

12.1.2. Launching
The self-test can either be launched from the command line (not yet implemented) or from Atmel Studio.
The self-test is started from Atmel Studio by opening the Available Tools View (View > Available Atmel
AVR Tools) and then right click the Atmel AVR ONE! that needs to be tested and select Self Test on the
drop down menu.

12.1.3. How to use the Results for Diagnosis
If the self-test finds errors, it will tell you whether both the MICTOR38 connector and the 10-pin connector
or only the MICTOR38 connector contains failing signals. Double-check your connections and retry the
test if this happens. The connections may be loose, or in the case of the JTAG connector; it may be
connected incorrectly onto the pin-header. If the error message persist, it is likely that there is a hardware
problem somewhere. New probes and cables can be ordered separately from the Atmel Store
(store.atmel.com).

The most likely source of hardware errors are after connecting any of the signals in the Mictor38 or 10-pin
connector on the probe to voltages exceeding the maximum limits of the Atmel AVR ONE! probe
hardware. The maximum ratings for the probe hardware are given in Atmel AVR ONE! Features.

Note:  The self-test can only give a hint of what is wrong. It cannot tell exactly which component is failing.
The main purpose of the self-test is to clarify whether the hardware is working or not.

12.2. Troubleshooting Guide
Table 12-1. Troubleshooting Guide

Target type/
family

Problem Possible causes Solution

N/A Power LED does not light up DC supply voltage is
insufficient or of incorrect
polarity

Check that you are using
the correct power supply
provided with the kit. If you
are using another power
supply, ensure that it has a
center-positive connector.

Atmel
megaAVR
and Atmel
AVR XMEGA

JTAG debugging starts, then
suddenly fails

The JTAG Disable bit in the
MCUCSR register has been
inadvertently written by the
application

Hold reset low to regain
control and change the code
so that the JTAG Disable bit
is not written

Atmel
megaAVR
and Atmel
AVR XMEGA

After using the Atmel AVR
ONE! to download code to
the device, the emulator no
longer works

1. The JTAG ENABLE fuse
has been disabled.

2. The programming
interface is still active. It is
not possible to use both
OCD and programming at
the same time.

1. Program the JTAG
ENABLE fuse.

2. Close the Programming
interface, then enter
emulation mode.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

52

http://www.atmel.com/buy/

Target type/
family

Problem Possible causes Solution

Atmel
megaAVR,
Atmel AVR
XMEGA, and
Atmel
tinyAVR

Atmel AVR ONE! is detected
by Atmel Studio or other
software front-end, but it will
not connect to target device

JTAG: JTAG ENABLE Fuse
is not programmed

debugWIRE: DWEN Fuse is
not programmed

JTAG: Use an other
programming interface to
program the JTAG ENABLE
Fuse

debugWIRE: Use an other
programming interface to
program the DWEN Fuse

Atmel
megaAVR,
Atmel AVR
XMEGA, and
Atmel AVR
UC3

JTAG Debugging and
programming is unstable, or
does not work at all

For some target board
configurations there might
be some ringing on the
interface lines

Add series resistors on the
JTAG lines, especially TCK,
but series resistors could be
useful on TMS and TDI too.
A value of about 68Ω will in
most cases be suitable.
Note that you might have to
reduce the JTAG clock
frequency after adding the
series resistors.

N/A Atmel Studio gives a
message that no voltage is
present

1. No power on target
board.

2. Vtref not connected.

3. Target voltage too low.

1. Apply power to target
board.

2. Make sure your JTAG
connector includes the Vtref
signal.

3. Make sure the target
power supply is able to
provide enough power.

Atmel
megaAVR

OCD fuse is disabled, but
using the Atmel AVR ONE!,
OCD is still possible

The AVR ONE! will
automatically program the
OCD fuse if it is disabled

This is correct operation

Atmel
megaAVR
and Atmel
tinyAVR

Some I/O registers are not
updated correctly in Atmel
Studio I/O view

When non-intrusive read
back is not possible, the
Atmel AVR ONE! will not
update this location in the
Atmel Studio I/O view

Read this I/O location into a
temporary register, and view
it there during debugging.
See the chapter "Special
Considerations" for
information about which
registers affected by this.

Atmel
tinyAVR and
Atmel
megaAVR
with
debugWIRE
support

SPI programming after a
debugWIRE session is not
possible

When the debugWIRE
Interface is enabled the SPI
Interface is disabled

Re-enable the SPI Interface
as described in the section
"Connecting to Target
through the debugWIRE
Interface". Use command
line software to re-enable
SPI interface.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

53

Target type/
family

Problem Possible causes Solution

Atmel
tinyAVR and
Atmel
megaAVR
with
debugWIRE
support

Neither SPI nor debugWIRE
connection works

The SPI and debugWIRE
interfaces are disabled.
DebugWIRE will not work if
the lockbits are
programmed.

Connect to target with High
Voltage Programming.
Enable SPI or debugWIRE
and clear lockbits if using
debugWIRE.

Atmel
megaAVR,
Atmel
tinyAVR,
Atmel AVR
XMEGA, and
Atmel AVR
UC3

Error messages, or other
strange behavior when
using debugWIRE or JTAG

Target is running outside
Safe Operation Area.
Maximum frequency vs.
VCC.

Make sure the target is
running within the Safe
Operation Area as
described in the chapter
"Electrical Characteristics" in
the datasheet for the actual
part. Lower the frequency
and/or increase the voltage.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

54

13. Product Compliance

13.1. RoHS and WEEE
The AVR ONE! and all accessories are manufactured in accordance to both the RoHS Directive
(2002/95/EC) and the WEEE Directive (2002/96/EC).

13.2. CE and FCC
The AVR ONE! unit has been tested in accordance to the essential requirements and other relevant
provisions of Directives:

• Directive 2004/108/EC (class B)
• FCC part 15 subpart B
• 2002/95/EC (RoHS, WEEE)

The following standards are used for evaluation:

• EN 61000-6-1 (2007)
• EN 61000-6-3 (2007) + A1(2011)
• FCC CFR 47 Part 15 (2013)

The Technical Construction File is located at:
Atmel Norway
Vestre Rosten 79
7075 Tiller
Norway
Every effort has been made to minimise electromagnetic emissions from this product. However, under
certain conditions, the system (this product connected to a target application circuit) may emit individual
electromagnetic component frequencies which exceed the maximum values allowed by the
abovementioned standards. The frequency and magnitude of the emissions will be determined by several
factors, including layout and routing of the target application with which the product is used.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

55

14. Revision History
Doc Rev. Date Comments

32222A 06/2016 Initial document release.

Atmel AVR ONE! [USER GUIDE]
Atmel-32222A-AVR-ONE!_User Guide-06/2016

56

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-32222A-AVR-ONE!_User Guide-06/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, AVR Studio®, megaAVR®, STK®, tinyAVR®, XMEGA®, and others are
registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Windows® is a registered trademark of Microsoft Corporation in U.S. and or
other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	The Atmel AVR ONE! Debugger
	Table of Contents
	1. Introduction
	1.1. Introduction to the Atmel AVR ONE!
	1.2. Atmel AVR ONE! Features
	1.3. System Requirements

	2. Release History, New Features
	2.1. What's New
	2.2. Firmware Release History

	3. Known Issues
	3.1. General
	3.2. Atmel AVR XMEGA OCD Specific Issues
	3.3. Atmel megaAVR OCD and Atmel tinyAVR OCD Specific Issues
	3.4. Atmel AVR 32-bit Microcontroller Specific Issues

	4. Getting Started
	4.1. Kit Contents
	4.2. Powering the Atmel AVR ONE!
	4.3. Connecting to the Host Computer
	4.4. USB Driver Installation
	4.4.1. Windows

	4.5. Programming and Debugging

	5. Connecting the Atmel AVR ONE!
	5.1. Connecting to a JTAG Target
	5.1.1. Using the JTAG Mictor Connector
	5.1.2. Using the JTAG 10-pin Connector

	5.2. Connecting to an aWire Target
	5.3. Connecting to a PDI Target
	5.4. Connecting to a debugWIRE Target
	5.5. Connecting to an SPI Target
	5.6. Using the Atmel AVR ONE! with Atmel STK500
	5.7. Using the Atmel AVR ONE! with Atmel STK600

	6. On-chip Debugging
	6.1. Introduction to On-chip Debugging (OCD)
	6.2. Physical Interfaces
	6.2.1. JTAG
	6.2.2. Auxiliary (AUX) Physical (including JTAG)
	6.2.3. aWire
	6.2.4. PDI Physical
	6.2.5. debugWIRE
	6.2.6. SPI

	6.3. Atmel AVR OCD Implementations
	6.3.1. Atmel AVR UC3 OCD (JTAG and aWire Physical)
	6.3.2. Atmel AVR XMEGA OCD (JTAG and PDI Physical)
	6.3.3. Atmel megaAVR OCD (JTAG)
	6.3.4. Atmel megaAVR / tinyAVR OCD (debugWIRE)

	7. Atmel AVR ONE! Hardware Description
	7.1. LEDs
	7.2. Rear Panel
	7.3. Probe
	7.4. Architecture Description
	7.4.1. Atmel AVR ONE! Main-board
	7.4.2. Atmel AVR ONE! Probe

	8. Software Integration
	8.1. Atmel Studio

	9. Command Line Utility
	10. Advanced Debugging Techniques
	10.1. Atmel AVR 32-bit Microcontrollers
	10.1.1. EVTI/EVTO Usage

	10.2. Atmel megaAVR Targets
	10.2.1. I/O Debug Register (IDR)

	10.3. debugWIRE Targets
	10.3.1. Software Breakpoints

	11. Special Considerations
	11.1. Atmel AVR XMEGA OCD
	11.2. Atmel megaAVR OCD and debugWIRE OCD
	11.3. Atmel megaAVR OCD (JTAG)
	11.4. debugWIRE OCD
	11.5. Atmel AVR UC3 OCD
	11.6. Atmel AVR UC3 Shutdown Mode

	12. Troubleshooting
	12.1. Self-test
	12.1.1. Connecting
	12.1.2. Launching
	12.1.3. How to use the Results for Diagnosis

	12.2. Troubleshooting Guide

	13. Product Compliance
	13.1. RoHS and WEEE
	13.2. CE and FCC

	14. Revision History

