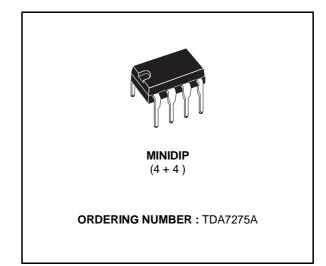
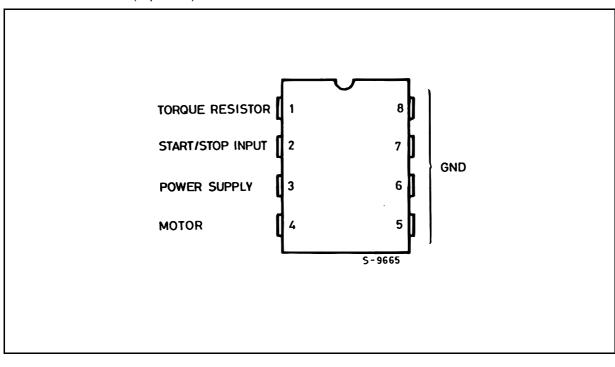


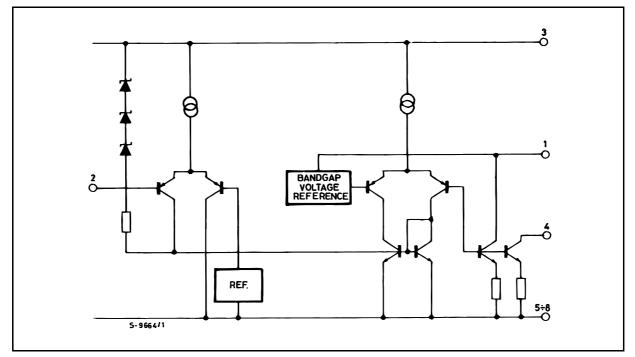
TDA7275A


MOTOR SPEED REGULATOR

- EXCELLENT VERSATILITY IN USE
- HIGH OUTPUT CURRENT (up to 1.5 A)
- LOW QUIESCENT CURRENT
- LOW REFERENCE VOLTAGE (1.32 V)
- EXCELLENT PARAMETERS STABILITY VER-SUS AMBIENT TEMPERATURE
- START/STOP FUNCTION (TTL levels)
- DUMP PROTECTION


DESCRIPTION

The TDA7275A is a linear integrated circuit in minidip plastic package. It is intended for use as speed regulator for DC motors of record players, tape and cassette recorders.


The dump protection make it particularly suitable for car radio applications.

PIN CONNECTION (top view)

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	19	V
Vs	Peak Supply Voltage (for 50ms)	45	V
I _M	Maximum Output Current	1.5	А
T _{op}	Operating Temperature Range	-30 to +85	°C
P _{tot}	Power Dissipation at $T_{amb} = 70^{\circ}C$ at $T_{pins} = 70^{\circ}C$	1 4	W W

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient	80	°C/W
R _{th} j-pins	Max.	20	°C/W
	Thermal Resistance Junction -pins Max		

ELECTRICAL CHARACTERISTICS	(Refer	to	test	circuit,	$V_{S} =$	12V,	T _{amb} =	= 25°C	unless	otherwise
specified, refer to test circuit)										

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range		8		18	V
V _{ref}	Reference Voltage	I _M = 0.1A	1.05	1.22	1.35	V
l _q + l _d	Total Quiescent Current	$I_{M} = 0.1 \text{mA}$		2		mA
l _d	Quiescent Current	$I_{M} = 0.1 \text{mA}$		1		mA
I _{ms}	Starting Motor Current	$\frac{\Delta V_{ref}}{V_{ref}} = -50\%$	1			A
V ₄	Saturation Voltage	I _M = 0.5A		1.7	2	V
$K = I_M / I_T$	Reflection coefficient	I _M = 0.1A	18	20	22	_
$\frac{\Delta K / \Delta V_{S}}{K}$		$I_M = 0.1A$ $V_S = 8$ to 16V		0.5		%/V
$\frac{\Delta K / \Delta I_M}{K}$		I _M = 25 to 200mA		-0.05		%/mA
$\frac{\Delta K / \Delta T}{K}$		$I_M = 0.1A$ $T_{op} = -30$ to +85°C		0.02		%/°C
$\frac{\Delta V_{\text{ref}}/\Delta V_{\text{S}}}{V_{\text{ref}}}$	Line Regulation	$I_M = 0.1A$ $V_S = 8$ to 16V		0.04		%/V
$\frac{\Delta V_{\text{ref}}/\Delta I_{\text{M}}}{V_{\text{ref}}}$	Load Regulation	I _M = 25 to 200mA		-0.01		%/mA
$\frac{\Delta V_{\text{ref}}/\Delta T}{V_{\text{ref}}}$	Temperature Coefficient	$I_M = 0.1A$ $T_{op} = -30 \text{ to } +85^{\circ}\text{C}$		0.02		%/°C
V ₂	Motor "Stop" (Acc. Following data or grounded)			1		V
l ₂	Motor "Stop"	V2 = 1V		-0.05		mA
V ₂	Motor "Run" (Acc. Following data or open)			1.5		V
l ₂	Motor "Run"	V2 = 1.5V		-0.1		mA

TDA7275A

Figure 1 : Test Circuit.

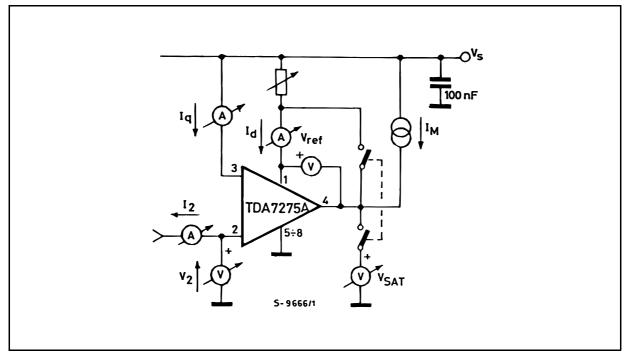
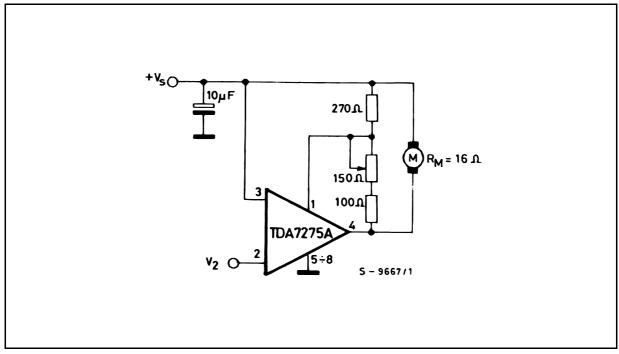



Figure 2 : Application Circuit.

- $R_{Ttyp.}$ = $K_{typ.}$ $R_{Mtyp.}$ if R_{T} > K_{min} R_{Mmin} instability may accur.

- A diode across the motor could be necessary with certain kind of motor.

Figure 3 : Quiescent Current vs. Supply voltage.

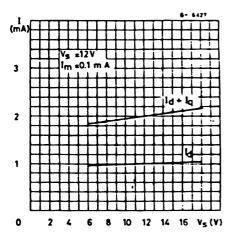
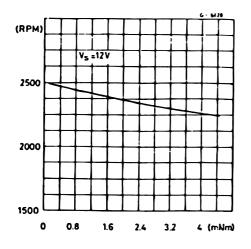
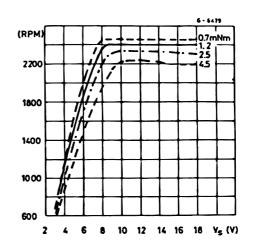
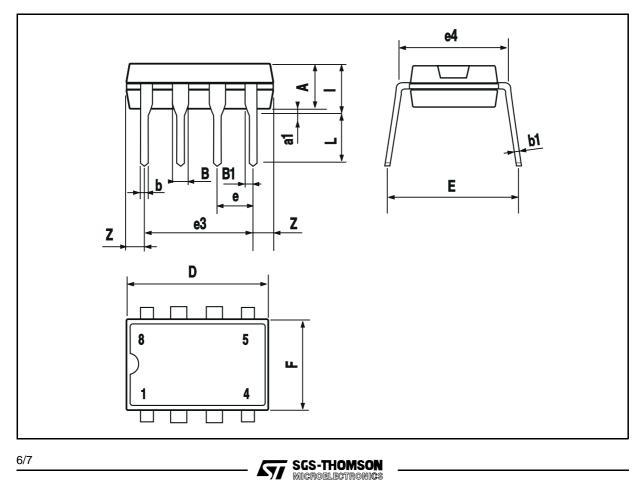


Figure 5 : Speed Variation vs. Torque ($V_S = 12 V$).


Figure 4 : Speed Variation vs. Supply Voltage.

TDA7275A

MINIDIP PACKAGE MECHANICAL DATA

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А		3.3			0.130			
a1	0.7			0.028				
В	1.39		1.65	0.055		0.065		
B1	0.91		1.04	0.036		0.041		
b		0.5			0.020			
b1	0.38		0.5	0.015		0.020		
D			9.8			0.386		
E		8.8			0.346			
е		2.54			0.100			
e3		7.62			0.300			
e4		7.62			0.300			
F			7.1			0.280		
I			4.8			0.189		
L		3.3			0.130			
Z	0.44		1.6	0.017		0.063		

6/7

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco -The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.