

HDL Turbo Writer

User’s Guide

Version 6.6a
October 2001

ii

Copyright 1993,1994,1995,1996,1997,1998,1999,2000 Saros Technology Ltd. All rights reserved.

Publication History
November 1993 First Published.
March 1994 Version 1.4 Revision.
October 1994 Version 2.0a Complete revision.
November 1994 Version 2.0e Production and Installation enhancements.
February 1995 Version 2.0h Numerous features added.
March 1995 Version 3.1. Upgraded in line with Codewright 3.1
April 1995 Version 3.1a Extra templates added in line with Codewright 3.1a
November 1995 Version 3.1a Troubleshooting the MTI V-System integration section added.
April 1996 Version 4.0a Windows NT and Windows 95 version completed.
June 1996 Version 4.0c various Windows 95 specific problems fixed. Version 3.1a of Turbo

Writer added to the distribution CD’s to support Windows 3.1 users.
December 1996 Version 4.0e various minor bugs fixed. 93 templates added.
June 1997 Version 5.0b added outlining and version 5.0b features
October 1997 Version 5.0c fixed various testbench generation bugs.
April 1998 Version 5.0d build 100, added Renoir integration, fixed a problem with the Verilog

testbench generator.
April 1999 Version 5.1c build 2. Added menu picks for component creation and instantiation, and

fixed bug concerning colour coding of single line verilog comments. Incorporated
CodeWright 5.1c.

January 2000 Version 6.0b. Incorporated CodeWright 6.0b. Copy protection changed from
proprietary dongles to FlexLM.

October 2000 Version 6.0e. Bug fixes to the Verilog testbench generator, the VHDL error parser, and
incorporate the latest CodeWright patches.

October 2001 Version 6.6a. Bug fix to Verilog testbench generator. Incorporated the latest
Codewright.

iii

Trademarks
Codewright is a registered trademark of Premia Corporation.
Windows , Windows 95TM and Windows NTTM are registered trademarks of Microsoft Corporation.
ModelSim is a registered trademark of Model Technology Corporation.
Renoir is a registered trademark of Mentor Graphics Corporation.

Saros Technology Ltd.
The Spirella Building,
Bridge Road,
Letchworth,
Herts.
SG6 4ET
England

Telephone number ++44 (0)1462 476111
Fax number ++44 (0)1462 476112
Support email address support@saros.co.uk
Sales enquiries email address sales@saros.co.uk

Table of Contents

v

1. INTRODUCTION 1

ABOUT THIS MANUAL 1
ASSUMPTIONS 1
CONVENTIONS 1
SYSTEM REQUIREMENTS 3
INSTALLING TURBO WRITER 3
EVALUATION PERIOD 4
ADDITIONAL NOTES FOR INSTALLATION ON WINDOWS NT 4
IDENTIFYING YOUR COMPUTER FOR LICENSING 5
LICENSE INSTALLATION 6
LICENSING OVERVIEW 6
NODE LOCKED LICENSES 6
ENVIRONMENT VARIABLES 7
FLOATING LICENSES 7
SERVER CONFIGURATION 8
CLIENT CONFIGURATION 9

3. USING TURBO WRITER 11

4. COLOUR CODING 13

ENABLING COLOUR-CODING 13
USING CHANGE BARS 15
SYSTEM FLAGS 16
CHANGING COLOURS 17

vi

5. TEMPLATES 19

INTRODUCTION 19
WHAT IS A TEMPLATE ? 19
CHANGING THE TEMPLATE EXPANSION KEY 20
VHDL TEMPLATE STYLES 20
USING TEMPLATE HISTORY 22
USING SPECIAL VHDL TEMPLATES 23

6. FOLDING 25

INTRODUCTION 25
EXAMPLE 25

7. CODE OUTLINING 27

INTRODUCTION 27
EXAMPLE 27

8. COMMENT HEADERS 31

INTRODUCTION 31
INSERTING A FILE COMMENT HEADER 31

9. AUTOMATIC TESTBENCH GENERATION 35

INTRODUCTION 35
WHAT IS A TESTBENCH ? 35
RUNNING TESTBENCH GENERATION 35
VHDL EXAMPLE 36
VERILOG EXAMPLE 38

10. AUTOMATIC COMPONENT INSTANTIATION 39

vii

INTRODUCTION 39
MAKING THE COMPONENT 39
RE-ASSIGNING THE KEYS 40

11. ADDING HDL FILE TYPES 41

INTRODUCTION 41
ADDING HDL FILE TYPES 41
ADDING VERILOG FILE TYPES 42

12. ADDING COMPILER INTERFACES 43

INTRODUCTION 43
CONFIGURING TURBO WRITER TO USE TWO COMPILERS 43

13. MODELSIM INTERFACE 46

INTRODUCTION 46
MODELSIM INSTALLATION 46
COMPILING VHDL 46

14. RENOIR INTERFACE 49

INTRODUCTION 49
CONFIGURING RENOIR TO CALL TURBO WRITER 49
CONFIGURING TURBO WRITER TO CALL RENOIR 49

15. TROUBLESHOOTING 51

APPENDIX A : VHDL KEYWORDS AND TEMPLATES 59

BASIC VERILOG KEYWORDS 59

viii

VERILOG SYSTEM TASK AND SYSTEM FUNCTION KEYWORDS 59
FUNCTION KEYWORDS 59
VERILOG COMPILER DIRECTIVE KEYWORDS 59
VERILOG TEMPLATE DEFINITIONS 60
VERILOG COMPILER DIRECTIVE TEMPLATE DEFINITIONS 61

APPENDIX B : VHDL KEYWORDS AND TEMPLATES 63

BASIC VHDL-93 KEYWORDS 63
STD 1164 KEYWORDS 63
VITAL 2.2B KEYWORD 64
VHDL TEMPLATE DEFINITIONS 65

1. Introduction

1

 Welcome to Turbo Writer for Windows. Turbo Writer is a tool designed to dramatically
improve productivity in the generation of Hardware Description Language (HDL) files.
It supports the two most commonly used HDLs, VHDL and Verilog. Turbo Writer
provides many facilities including keyword colour coding, rapid code generation
through the use of templates, folding features, test-bench generation, Compiler
interfaces and many other features.

 Turbo Writer is built upon CodeWright, the popular editor for Windows developed by

the Premia Corporation. CodeWright is a fully featured editor providing unlimited code
size as well as being the fastest Windows-based editor currently available.

ABOUT This Manual covers the HDL extensions to CodeWright provided by
THIS MANUAL Turbo Writer and does not describe the use of CodeWright itself. The user should

firstly become familiar with CodeWright by reading the CodeWright user’s manual
supplied with this product.

 Turbo Writer is a comprehensive set of extensions to the CodeWright editor from

Premia. Turbo Writer incorporates a fully featured version of Codewright as part of the
installation.

Assumptions This manual assumes that you are familiar with Windows and Windows type

applications. It also makes some limited assumptions about your knowledge of
CodeWright. This software is supplied with the CodeWright Users Manual from
Premia. It is a good idea to make yourself familiar with some of the terms and concepts
introduced in this manual.

Conventions To make information easier to find, this manual adheres to a number of style
conventions. They are as follows :-

 Courier This style is used to indicate text in a file or a file name.

Introduction

2

 Italic This style is used for emphasis.

 <space> This style is used to indicate a keyboard character.

2. Installation

3

Introduction The installation of Turbo Writer incorporates a full installation of Codewright

automatically. The user need not be concerned with the separate installation of
Codewright.

System Requirements The following is a minimum system on which Turbo Writer can be installed.

System A 486 machine or better with at least 16MB of RAM is a minimum.
Performance will also vary based on the video adapter, driver and video
mode (resolution and number of colours) you have selected.

Memory Turbo Writer requires 7MB to operate.

Windows Microsoft Windows 95 or Windows NT 4 or greater is required. 16 bit
versions of Windows are no longer supported.

Storage A CD rom drive and a hard drive are required. Turbo Writer will store
temporary files on the hard drive. For a full installation 30MB of free
space is required.

Installing Turbo Writer The procedure for installing Turbo Writer should be familiar to anyone who has
 installed any Windows software. Firstly insert the CD into your disk drive, locate
 and run the install.exe program. The Turbo Writer installation software will prompt

for a target directory; this is where the Codewright and Turbo Writer software will be
installed. If the directory you specify does not exist then it will be automatically
created.

 The installation software will prompt for a Company name. This is for automatic

insertion into the example file comment header and is set to default to Saros
Technology Ltd. This is merely to give the user an example of how comment templates
can be configured. See section 7 for more detail on comment headers.

 The installation software will also prompt for a directory in which the Model

Technology ModelSim software is installed. If you do not have ModelSim then leave

 Installation

4

the directory as the default. The installation simply adds this directory to your
cwright.ini file in a set-up command as follows :-

 [vhdl]

 VsystemSetup=c:\ModelSim\win32pe

 If you have the ModelSim software then make sure the directory entered is the correct

one. You are looking for the directory containing vsim.exe, normally named win32 or
win32pe. If after installation you realise that this directory is incorrect then simply edit
the cwright.ini file and restart Turbo Writer.

 After the ModelSim directory has been specified, the installation software copies a

number of files from the CD ROM into the target directory.

 Finally the user is asked whether Turbo Writer should modify the user’s autoexec.bat

file with an addition to the path. The install directory is added to the path. If the
modifications are required then click yes. The Turbo Writer installation software makes
a backup of the existing autoexec.bat in autoexec.bak if it is modified. The
modifications are necessary for running the ModelSim interface and you should reboot
your machine for these changes to take effect.

 In addition to modifying the autoexec.bat, the windows win.ini file is modified to add

file associations for *.vhd, *.v, *.vlg, *.vsh, *.vsd, *.tb and *.tf files. The installation
software then adds a program group and icon for Turbo Writer.

 Once the installation is complete, Turbo Writer is ready to be used, ensure that the

dongle - if appropriate - is connected to the parallel port and double click on the Turbo
Writer icon.

Evaluation Period Turbo Writer will run for a free trial period of 30 days following the time of

installation. After this time the product will cease to run and a license must be
purchased.

 Installation

5

Additional notes To use a dongle on Windows NT you need to load a dongle driver.
for installation on The installation program must be run by the administrator or a user with
Windows NT administrator privileges. Without this the registry cannot be updated and the dongle

driver will not work.

 To load the dongle driver run the setupx86.exe program in the \Rainbow\win_nt

directory on the CD ROM. From the Function Menu pick install, click OK, and reboot
when the installation has completed.

Identifying your For Saros to be able to generate a license you must supply us some information
Computer for about how you want it to work. If you buy the Media pack from us we can use the
Licensing FlexID dongle in that and you do not need to supply us any additional information.
 If you are not buying a Media Pack or want us to use a disk id, network card address or

a FlexID you already own to generate your license, we need you to provide us with a
number.

 After installing Turbo Writer go to the Start menu, then program files, then HDL Turbo
Writer and choose the FLEXlm Utilities menu. From the dialog pick the System
Settings tab. You should see a dialog box that looks like this:

 Installation

6

 Here the number of interest is the Disk Volume Serial number if you want a disk based
license, or the Ethernet Address for a network card based license, or either of the
FLEXID7 or FLEXID8 boxes for dongle based license.

Licensing Installation Turbo writer is protected from illegal copying by the industry standard FlexLM
 licensing software. For information on installing FlexLM licences see the two sections

below called “Node locked licenses” and “Floating licences”

Licensing Overview There are two types of license available, termed floating and node locked. A node

locked license is tied to a piece of hardware. This can be a hard disk, a network card or
a FlexID dongle. The software will only run on a computer to which the licensed
hardware directly connected. Of these methods the dongle is the most flexible because
it is easy to move from one machine to another, for example if you want to upgrade the
computer or work from home. You may already have a suitable FlexID from another
product you would like to use for Turbo Writer also, or you can buy another one from
us in the Turbo Writer media pack.

 Floating licences are more flexible still. If you put a floating license on a network and
you can run Turbo Writer from any other machine on the network. The number of
concurrent invocations of Turbo Writer is limited to the number of floating licenses you
buy. This concurrent invocation count is maintained by a machine called the license
server. You can identify the license server to us by its boot disk volume serial number,
its Ethernet card addresses or by the number of a FlexID dongle connected to it.

Node locked licenses Node locked licenses look like this:

 FEATURE Twriter SAROS 6.000 permanent uncounted 7DC9092EA016 \

 HOSTID=FLEXID=7-b2859bd4

 Turbo Writer can run so long as it can find the license file, the HOSTID matches the

computer, and 4th field is at least as high as the version number of the product.
 Turbo Writer finds its license file using an environment variable called

LM_LICENSE_FILE which needs to hold the full path to the license file.

 Installation

7

Environment variables If you are on Windows 95 or 98 set this in your autoexec.bat by adding a line like the
one below and reboot.

 set LM_LICENSE_FILE=d:\tools\flexlm\license.dat

 On Windows NT 4 you would add these variables to your environment by running the

System icon in the Control Panel, selecting the Environment tab and selecting any one
of the user environment variables. Now put LM_LICENSE_FILE in as the Variable
box and the full path and file name of your license file in the Value box, overwriting
the existing contents of these boxes. Now click Set, and the new environment variable
should appear in the list. Finally click apply and you are ready to run. A reboot is not
necessary on NT.

 Windows NT 2000 subtly different from NT 4. From the system icon in the control

panel, select the advanced tab. Then click the Environment variables, and click the
New button under the user section and fill in the dialog box.

 Turbo Writer should now run up. If you get a licensing error message, read the trouble

shooting section near the end of this manual. There is a procedure there for debugging
node locked and floating licenses.

Floating Licenses Turbo Writer will run on any computer with a network connection to the licensed
machine called the license server. The license server can be specified by its disk id,
network card address or the number of a FlexID attached to its parallel port. The dongle
is the most flexible because it allows the license server to be changed by moving the
dongle to another machine. Floating licenses look like this:

 SERVER jasmine FLEXID=7-b2859bd4 1967

 DAEMON SAROS c:\twriter\saros.exe

 FEATURE Twriter SAROS 6.000 permanent 2 3A1A9D8056F5 ck=34

 Installation

8

 The first line specifies the network name of the license server, jasmine in this case. You
will need to edit this field to match the machine you are using as a license server. Then
follows the method used to verify the validity of the server, a FlexID dongle number 7-
b2859bd4 in this case. It could equally be a disk id or a network card address. Check
this matches the license server. The final entry on the sever line is the TCP/IP port used
by Turbo Writer to connect to the license server. This needs to be a port that is not used
by anything else on the machine. Normally numbers above 1000 and below 30000 are
safest.

 The second line locates the saros.exe file, which is part of the licensing system. This

can be found in the Turbo Writer installation directory. You will probably need to edit
this path to reflect the place you installed Turbo Writer.

 The third line is the feature line which you shouldn’t need to edit unless it got wrapped

by the email. Its forth field (6.000 in this case) is the latest licensed version number of
the product. Its fifth field (2 in this case) is the maximum number of concurrent
invocations of Turbo Writer that are licensed on your network.

 There are two halves to configuring a floating license. There is the server and there are

the clients.

Server Configuration The license server is configured using the lmtools icon in the HDL Turbo Writer start
menu. Start this program and from the opening screen next to the planet graphic, select
the Configuration Using services button. Now select the Configure Services tab and fill
in the 3 paths using the browse buttons. You can find the lmgrd.exe in the Turbo Writer
directory, the license file is where ever you saved it, and the debug log can go where
ever you want. If the boxes are already filled in for another product, change the Service
Name in the top box by typing over it with a name of your choosing. For example
“Turbo Writer License Manager” should be fine. The other boxes on this dialog should
then go blank as you move into them, and you can configure the new license server
independently from the existing one. If you want the server to start automatically when
the machine is rebooted, Click the “Use NT services”, and the Start Server at power
up” buttons.

 Installation

9

 Once you are happy with the Configure Services screen you can go to the

Start/Stop/Reread Control tab and push the Start Server button. The server is now
configured and running.

Client Configuration Client configuration is simple. All the client needs is its LM_LICENSE_FILE
environment variable set correctly. This can be done in two ways. Either set the
variable to point to the license file from where it can read the server line and find out
the machine and port name, or set the variable to point directly to the port on the
license server. Saros recommends the latter option because it means you don’t need to
copy the license or share the disk containing it. Examples of each of the two options are
shown below. For details on how to set environment variables, see the end of the
previous section on node locked licenses.

 Environment variable setting for going via a license file
 LM_LICENSE_FILE=\\jasmine\d\tools\flexlm\license.dat
 Environment variable setting for going direct to the port on the license server
 LM_LICENSE_FILE=1967@jasmine

 The actual values will depend on your system.

 If you have multiple license servers or multiple license files, you can separate them

with semicolons. For example:
 LM_LICENSE_FILE=1967@jasmine;1760@holly;1720@mainserver

 Turbo Writer should now be ready to run. If you get a licensing error message, read the

trouble shooting section at the end of this manual, starting on page 51. There is a
procedure there for debugging node locked and floating licenses.

3. Using Turbo Writer

11

 Once Turbo Writer has been installed you are ready to start using it. Double click on

the Turbo Writer icon and Turbo Writer should start and look something like Figure 1.

Figure 1. Turbo Writer for Windows

 Turbo Writer provides four key command areas :-
 - The Menu bar provides a classic Windows menu interface.
 - The Ribbon Buttons are a strip of custom buttons underneath the Menu.

- The Side Bar provides additional quick access functions.
- The Project window provides comprehensive file and project functions.

 Using Turbo Writer

12

 The additional functions provided by Turbo Writer are mainly concentrated in an HDL
menu on the main menu bar. As can be seen from Figure 2, there are a number of HDL
related features which are discussed in the following sections.

Figure 2. HDL Menu

 You may find when you select the HDL menu that all the items of the menu are

disabled. This is because the HDL features are only available for file extensions which
Turbo Writer "knows" as HDLs. For instance a ".vhd" file is a VHDL file and ".v" file
is a Verilog file. To enable the functions in the HDL menu, start editing a file with one
of these extensions.

 If you have other extensions which you wish to use for HDLs to get all the Turbo

Writer facilities then a new file extension needs to be added. This is very simple to do
and is fully described in Section 11 : Adding HDL File Types.

4. Colour-coding

13

Introduction Turbo Writer provides the facilities for colour-coding languages with a number of

predefined colour types. Turbo Writer provides the keyword definitions for VHDL and
Verilog as well as further colour definitions for language extensions and compiler
directives. A full definition of the VHDL and Verilog keywords for colour-coding are
given in Appendix A and Appendix B.

Enabling Turbo Writer normally enables colour-coding during installation but here is a short
Colour-coding description of how to enable colour-coding. Colour-coding is enabled in the Tools..

Customize..Language dialogue on a language by language basis. Turbo Writer provides
facilities which can be enabled globally for all files or for individual files.

 Figure 3. Enabling Colour Coding

 Colour-coding

14

 As can be seen from Figure 3, the Tools..Customize..Language dialogue is where

colour-coding is enabled and disabled. After selecting the menu, the dialogue shown in
Figure 4 should appear.

 The user must select the particular extension which requires changing from the list on

the left. The user can create new extensions based on existing ones if required by
mapping from one extension to another.

Figure 4. Extension specific dialogue

 Colour-coding

15

 The important settings for colour-coding are to the left of the dialogue. The Enhanced
Editing options section allows the user to choose Template expansion (this is the
normal default installation), Smart Indenting (this provides indenting based on certain
keywords defined in the language extensions), Paste Indenting (provides intelligent
indenting when indenting), and Brace Expansion.

Using Change Turbo Writer has the ability to display change bars alongside your code. Within
Bars the ChromaCoding section of the dialogue illustrated in Figure 4 are two switches for

enabling change bars for changed lines and the reset on write switch.

 Change bars are displayed as either blue or red bars alongside the text within the Turbo

Writer window. Blue bars are displayed when existing lines are edited. Red bars
indicate that lines have been added. As a default Turbo Writer is configured to display
change bars until a file is written. The reset-on-write switch can be turned off for
situations where the user may want the change bars to persist after a write. However
change bars only persist during the current editing session.

 Change bars can be turned off by simply deselecting it as an option on the dialogue.

 Colour-coding

16

System Flags For completeness it is useful at this point to discuss the System Flags section of the Extension-

specific Setup. As a reminder the flags are shown in Figure 5.

Figure 5. System Flags

 Many of the flags are self-evident but some need additional explanation. The Unix EOL

option allows Turbo Writer to correctly read/write Unix text files. This feature is
invaluable when using Turbo Writer on a mixed network of PCs and Unix machines.
Note however that this setting only has an effect on lines added to a file by Turbo
Writer.

 Colour-coding

17

Changing The colours for the different types of colour-coding are configured in the
Colours Tools..Customize..View Setups dialogue, on the Colors tab. The dialogue shown in

Figure 6 should appear.

 By scrolling the colour list up and down the user can find the particular colour-coding

feature which needs changing. As can be seen from Figure 6 a number of HDL specific
colours are configured by Turbo Writer.

 To change a colour for a particular text type, click on it, then select the foreground and

background colours from the colour palette. At this point the Test button can be pressed
in order to see the effects of the change on your current file. Once the change is
completed click Apply, or OK buttons.

 For VHDL, the Std_1164 library keywords and Vital library keywords can be picked

out in different colours.

 For Verilog, the OVI standard Compiler Directives and System Task and System

Function keywords can be picked out in different colours.

 Colour-coding

18

Figure 6. Configuring Colours for language dependent colour-coding.

5. Templates

19

Introduction Language-dependent templates allow the user to rapidly generate repetitive HDL code

sequences which are syntactically correct. The templates supplied with Turbo Writer
can be added to as well as modified by the user. A predefined keypress provides
template expansion but the choice of key can also be quickly and easily modified by
the user.

 Template expansion is enabled in the Language dependent Setup dialogue described in

Section 4. If you have problems with template expansion try checking the Enhanced
Editing options section of that dialogue .

What is a A template comprises a template name which is usually a minimal
Template ? number of characters and a template definition into which the template name will be

converted. For example, a common Verilog language construction is :-

 always @(sensitivity_list)

 begin

 additional_code

 end

 A template al exists to insert such a language construction. By typing al<tab> the

user is prompted for the sensitivity list. After entering the list the full construction is
inserted into your file with the cursor positioned to enter the additional code in the
above example.

 Templates may contain a number of built-in macro functions which can enhance the

flexibility and sophistication of the templates. The macros are preceded by a %
character and perform a variety of functions such as cursor movement, popup user
prompts, insertion of environment variables, insertion of the current date and time and
many more functions. A full listing of all macro functions can be found in the Template
Macros section of the CodeWright Users Manual.

 Templates

20

 A full definition of the VHDL and Verilog templates is given in Appendix A and
Appendix B respectively. However if you are unsure which templates are available or
what they do, a quick way of seeing the available templates is to select the Templates
tab button on the Tools..Customize..Language dialogue .

Changing the The <tab> key is the default template expansion key for Turbo Writer, this
Template perhaps provides the quickest template insertion scheme but it does sometimes
Expansion Key interfere with other code being entered; eg. when a variable called al is required. To

change the key assigned to template expansion requires a change to the CodeWright
initialisation file cwright.ini.

 NOTE : Some early versions of Turbo Writer are delivered with the template
expansion key configured to be the <space> key. Simply check your cwright.ini
to confirm which system you are running. The cwright.ini file can be found in the
CodeWright installation directory.

 By default Codewright uses the <space> key to expand templates. The Turbo Writer

installation overrides this with the <tab> key. The following code is inserted in the
cwright.ini file and can be modified by the user to re-assign template expansion to
a different key.

 [editor]

 ExtKmapAssign='<Space>' 'Space'

 ExtKmapAssign='<Tab>' '__ext_expand 1'

 The first statement re-assigns the <space> key to simply entering a space. The second
statement re-assigns the template expansion function to the <tab> key. The user can
simply substitute another key name to assign the template expansion to a different key.

VHDL Unlike Verilog, VHDL is a case-insensitive language. This means that

 Templates

21

Template templates could be written in a variety of styles. Turbo Writer provides
Styles three of the most common styles for VHDL templates. These are selected via the

HDL..Options dialogue . This is illustrated in Figure 7.

Figure 7. VHDL Template Styles

 The three styles supported cover the most common keyword styles used in VHDL.

They are all capital letters, first letter capitalised and all lower case. Click on the style
required.

 When the OK button is pressed the selected style is written into the [vhdl] section of

the cwright.ini file. This ensures that this style is the default each time Turbo
Writer is loaded. The additions to cwright.ini are as follows:-.

 [vhdl]

 VHDLTemplateStyle=1

 Templates

22

 The number following the VHDLTemplateStyle command determines which of the

three styles is to be used.
 0 = All capitals
 1 = Mixed upper and lower case
 2 = All lower case.
 If no style is specified in the cwright.ini file, the system defaults to number 0.

Using Template In several of the VHDL templates, the user is prompted for information
History in a pop-up dialogue box. Alongside the text entry box is a down arrow button. See

Figure 8.

Figure 8. Template history mechanism

 This allows the user to browse back through the history of values entered in templates.

The down arrow cursor key can be used in addition to clicking the arrow button with
the mouse. The feature is especially useful when a value from a previous template
needs to be entered again, e.g. enter an entity template followed by an architecture
template. The entity name is needed in the architecture statement. Simply press the
cursor key twice to pop up the entity name.

 Templates

23

Using Special In several of the VHDL templates, there are special features designed to provide
VHDL Templates flexibility and productivity to VHDL code generation. For example a number of VHDL

statements can be preceded by a label. The process statement is one of them. The ps
template provides a number of options making it productive yet extremely flexible.

 After pressing ps<tab> the user is prompted for a label; if one is required type it in, if

not press <esc> or click the cancel button. Next, the user is prompted for a sensitivity
list. Type in a comma-separated list and the template will insert it surrounded
automatically by parentheses. Press <esc> and the list is omitted. With these options
the following styles of process can be generated from one template as well as other
combinations.

 ExampleLabel : PROCESS (X,Y,RESET)

 BEGIN

 END PROCESS ExampleLabel;

 Process

 Begin

 End Process;

 Signal,Variable and Constant templates have default types which can be configured by

the user. These are simply configured in the cwright.ini file with statements as
follows :-

 [vhdl]

 VHDLSignalType="Std_logic"

 VHDLVariableType="Bit"

 VHDLConstantType="integer range 0 to 1023"

 Another VHDL specific feature of Turbo Writer is included in the architecture

template. If an entity template is used before an architecture template, Turbo Writer
automatically includes the entity name as the default entity for the architecture
template.

 Templates

24

6. Folding

25

Introduction Folding is a method of compacting large HDL files into key sections which can be
folded and unfolded. For large HDL files the benefit of folding is immense. It allows
complex detail to be hidden until it is required to be modified, the user simply unfolds
the section being worked on. Once it is complete it can be folded up and another
section unfolded.

 For each HDL there are certain constructs which are configured to trigger folding. By

pressing the Fold button on the Ribbon bar the user can toggle between the folded and
unfolded modes. The Fold button is shown below:-

Example To illustrate the benefit of the folding feature the following are examples of how a file

can be folded and then a selected area unfolded for editing or viewing.

 After loading an example VHDL file and pressing the Fold button, Turbo Writer

displays the file as shown in Figure 9.

Figure 9. Folding a VHDL File.

 Folding

26

 As can be seen, each of the processes in the file is compressed to a title and a + button.
The + indicates that the section can be expanded. Note that the line numbers are
correctly shown in the left column. By double clicking on the +, a section can be
unfolded. Figure 10 illustrates the result.

 Figure 10. Unfolding a section

 Although the file is displayed in what CodeWright calls compacted mode, the text can

still be edited, copied and deleted just as normal text. In fact any edit operation that can
be performed on a file can be performed in Folded mode. Note also when a section is
unfolded the + button for that section changes to a -. Clicking the “-” button folds that
section back up.

 By clicking the Fold button again the whole file shall be displayed in unfolded mode.

Alternatively pressing the <ESC> key also exits the Folded mode.

7. Code Outlining

27

Introduction Code outlining is a more sophisticated method of viewing key elements of your code
than folding. It takes the essence of folding and provides a new outline window
containing icons to represent key elements of your HDL code. The outline view is one
of the tabs of the Project Window.

Example To illustrate the benefit of the outlining feature the following are examples of how a

VHDL file or a Verilog file would look alongside the outliner.

 Figure 11. VHDL Code Outlining

 As can be seen from the VHDL example, there are a variety of icons to represent

elements of the VHDL language. By simply double-clicking the appropriate icon in the
outline window, the cursor is placed at that point in the source file. The outline window
is dynamically updated every few seconds so that icons appear as you enter code.

 Code Outlining

28

 One of the attractions of the outlining system is that the user can choose which of the

key elements should appear in the outline window. The outline symbols to be
displayed are set in the Tools..Customize..Language dialogue. From the CodeSense tab
select the Symbol Patterns button (Figure 12). By default all outline symbols are
enabled, but by deselecting various symbols the user can customise the system to
present their chosen outline view.

 Figure 12: Selecting the Symbol Patterns button

 Code Outlining

29

 As can be seen, both VHDL and Verilog outline displays can be individually tailored to
the users needs from this dialogue. However the Symbol Patterns dialogue us language
dependant, so you must select the correct File type prior to selecting the Symbol
Patterns button.

 Here is the Symbol Patterns dialogue :-

 Figure 13 : Symbol Patterns Dialogue for VHDL Files

 Deselection of the tick box next to a VHDL construct in the list in this dialogue will
remove that construct from the outline view. For example, you may want to exclude
signals and variables from your outline as there may be large numbers of these in a
typical file.

 Code Outlining

30

 For completeness, here is a small Verilog example :-

Figure 14 : Verilog Code Outlining

8. Comment Headers

31

Introduction Comment headers are blocks of program comments which are designed to give source

code a consistent look and structure. They provide invaluable information for tracking
source code history and bug fixes. Turbo Writer provides a feature for inserting
standard comment blocks for file headers and for functions.

 Since each user may have different ideas and styles for implementing these headers,

Turbo Writer loads these comment headers from predefined external files. These
external files are simple text files which are readily edited by the user. Sample files are
supplied with Turbo Writer which illustrate the powerful macro features which can be
incorporated into the standard files.

Inserting a Comment headers are inserted via two means. From the HDL menu
File Comment select the File Comment Header menu item. Dependent on the
Header language currently being edited, a suitable comment header will be inserted at the top

of the file regardless of where the cursor is currently positioned. Here is an example of
the Verilog File Comment Header.

/***

 **

 ** DEMONSTRATION FILE HEADER

 ** Copyright (c) SAROS Technology Ltd 1994

 **

 **

 ** Project Name : DEMO

 **

 ** Author : Nick Heaton

 ** Creation Date : 10/22/94 15:10:10

 ** Version Number : 3.0

 **

 ** Revision History :

 **

 ** Date Initials Modification

 Comment Headers

32

 **

 **

 ** Description :

 **

 **

 **

 **

 ***/

 In addition to being able to insert comment headers from the HDL menu, two buttons
on the sidebar are specifically provided for the same job. The two buttons are :-

 The File Header button

 The Function Header button

 Simply pressing these buttons has the same effect as using the menu options.

 The VHDL file comment header has a number of features which may be useful to

users.
-- ---

-- File name : d:\projects\lmt\vhdl\fiforam

-- Title : Demo

-- Library : WORK

-- :

-- Purpose :

-- :

-- Created On : 02/11/95 12:10:56

-- :

-- Comments :

-- :

-- Assumptions : none

-- Limitations : none

-- Known Errors : none

 Comment Headers

33

-- Developers : <DevelopmentOrganizationOrPerson>

-- :

-- Notes :

-- --

-- >>>>>>>>>>>>>>>>>>>>>>>>> COPYRIGHT NOTICE <<<<<<<<<<<<<<<<<<<<<<<<<<<

-- --

-- Copyright 1995 (c) Excel Consultants Ltd

--

-- Excel Consultants Ltd owns the sole copyright to this software. Under

-- international copyright laws you (1) may not make a copy of this software

-- except for the purposes of maintaining a single archive copy, (2) may not

-- derive works herefrom, (3) may not distribute this work to others. These

-- rights are provided for information clarification, other restrictions of

-- rights may apply as well.

--

-- This is an unpublished work.

-- --

-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>> Warrantee <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

-- --

-- Excel Consultants Ltd MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THE USE OF

-- THIS SOFTWARE, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

-- THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

-- PURPOSE.

-- --

-- Revision History :

-- --

-- Version No:| Author :| Mod. Date :| Changes Made:

-- v1.0 | Nick Heaton | 02/11/95 | Automatically Generated

-- --

Library IEEE;

Use IEEE.STD_Logic_1164.all; -- Reference the Std_logic_1164 system

 A number of the pieces of information are automatically inserted into the header by the

system. For example the date and the company name are inserted by the template.
When Turbo Writer is installed the user is prompted for Company name. This is stored

 Comment Headers

34

in macro %10 in the cwright.ini file and used in the file header. The header is stored
in file.vhd and can be loaded and edited just like any other text file.

 A function header is very similar to a file header except that it is usually used to

comment each function or process. The header is inserted at the start of the line on
which the cursor is currently positioned. The demo VHDL function comment header
prompts the user for a function name and then inserts the following into your file:-

--

-- DEMONSTRATION FUNCTION HEADER

-- Copyright (c) SAROS Technology Ltd 1994

--

-- Function name : demo

-- Creation Date : 10/23/94 09:07:09

--

 The demo function header shows how the date and time can be automatically inserted

giving your code an accurate stamp of when the function was generated.

9. Automatic Testbench Generation

35

Introduction Testbenches are an important part of HDL development and use. They are a repetitive

task to write since much of the code is almost repeated but with subtle differences.
Turbo Writer aims to remove some of the tedium from testbench generation by
automatically generating a skeleton testbench.

What is a A testbench is a harness around an HDL module specifically designed
Testbench ? for testing. A testbench usually instantiates a test module alongside the module under

test (MUT). A number of signals are declared which fully connect the test module to
the MUT. All inputs to the MUT are connected to outputs from the test module and all
outputs from the MUT are connected to inputs on the test module.

Running To generate a testbench or test fixture (Verilog nomenclature) file
Testbench simply open the source HDL file and select the following menu item.
Generation The Testbench generation software looks at the current file in order to find the first

Entity (VHDL) or module (Verilog). A testbench based on the first declaration is
created in a new file with a name based on the original file name.

Figure 15. Generating Test Bench HDL.

 Automatic Testbench Generation

36

VHDL Example The following is an example of Testbench generation in VHDL.The first file listing is
the source. The second is the Testbench automatically generated from it.

 ENTITY FifoRam IS

 GENERIC (

 size : integer := 8

);

 PORT (

 DataIn : IN Std_logic_vector(size-1 DOWNTO 0);

 WE : IN Std_logic;

 WAddr : IN Std_logic_vector(1 DOWNTO 0);

 RAddr : IN Std_logic_vector(1 DOWNTO 0);

 DataOut : OUT Std_logic_vector(size-1 DOWNTO 0)

);

 END FifoRam;

 The resulting testbench looks like this :-

LIBRARY IEEE;

USE IEEE.STD_Logic_1164.ALL;

 ENTITY FifoRam_tb IS

 END FifoRam_tb;

 ARCHITECTURE HTWTestBench OF FifoRam_tb IS

 COMPONENT FifoRam

 GENERIC (

 size : integer := 8

);

 PORT (

 DataIn : IN Std_logic_vector(size-1 DOWNTO 0);

 WE : IN Std_logic;

 WAddr : IN Std_logic_vector(1 DOWNTO 0);

 Automatic Testbench Generation

37

 RAddr : IN Std_logic_vector(1 DOWNTO 0);

 DataOut : OUT Std_logic_vector(size-1 DOWNTO 0)

);

 END COMPONENT;

 SIGNAL DataIn_Signal : Std_logic_vector(size-1 DOWNTO 0);

 SIGNAL WE_Signal : Std_logic;

 SIGNAL WAddr_Signal : Std_logic_vector(1 DOWNTO 0);

 SIGNAL RAddr_Signal : Std_logic_vector(1 DOWNTO 0);

 SIGNAL DataOut_Signal : Std_logic_vector(size-1 DOWNTO 0);

 BEGIN

 U1 : FifoRam

 GENERIC MAP (size => 8)

 PORT MAP (

 DataIn => DataIn_Signal,

 WE => WE_Signal,

 WAddr => WAddr_Signal,

 RAddr => RAddr_Signal,

 DataOut => DataOut_Signal);

 END HTWTestBench;

 As can be seen, the generator takes the entity declaration and constructs a complete

testbench around it. All relevant signals are declared and named appropriately.

 In the case where generics are declared but have no default value, the testbench

generator will insert a default value of ## MISSING GENERIC ##. This is illegal
VHDL and will be caught by the VHDL compiler. The user must specify a generic
value.

 Automatic Testbench Generation

38

 Another potential trap that the test bench generator can be caught out by is
unconstrained arrays as ports on the entity. e.g. fred : in std_logic_vector;

 The testbench generator will create a signal with the same declaration which is illegal

VHDL. A range must be added to the matching signal declaration for each of this type
of port.

Verilog Example The following is an example of test fixture generation in Verilog. The first file listing is

the source. The second is the fixture file automatically generated from it.

 module demotest (x,y,z);

 input x,y;

 output z;

 endmodule;

 The test fixture file generated looks like this :-

 module TestFixture;

 reg x_Signal,y_Signal;

 wire z_Signal;

 demotest U1 (.x(x_Signal),.y(y_Signal),.z(z_Signal));

 // Enter fixture code here

 endmodule // TestFixture

10. Automatic Component Instantiation

39

Introduction Turbo Writer provides another productivity tool for VHDL, namely automatic

component instantiation. When creating structural levels in VHDL, the user is
frequently faced with instantiating an existing entity via a component statement. This
feature relieves the tedium of this repetitive process.

Making the The first step in this simple process is to "make" the component. This is
Component done by placing the cursor on the line where the entity declaration is made. Positional

accuracy isn't required as the function "looks" at the beginning of the line on which the
cursor is placed and steps forward through the file until the first entity is found. Simply
press Alt-M to "make" the component. This captures the component definition in the
scrap buffer. Now all the user must do is place the cursor where the component is
required, this could be in the same file or in another file. Once the cursor is placed
simply click Alt-I to insert the component. This process can be repeated as many
times as are necessary. See below for an example of capturing an entity and inserting a
component in another file :-

 Figure 16. Example of automatic component instantiation.

 Automatic Component Instantiation

40

Re-Assigning the The "make" and "instantiate" keys Alt-M and Alt-I are assigned in
the Keys the cwright.ini file with the commands :-

 [KmapAssign]

 KmapAssign='<Alt-I>' '_vhd_insertcomponent'

 KmapAssign='<Alt-M>' '_vhd_makecomponent'

 If the user wishes to re-assign the functions it is a simple matter of editing the

cwright.ini to map the functions to different key combinations.

11. Adding HDL File Types

41

Introduction Turbo Writer is delivered with the ".vhd", ".v" and ".vlg" file types configured as the

only HDL file extensions. It is quite likely that the user has other file types containing
VHDL or Verilog code. This section describes the steps needed to enable the HDL
functions and colour-coding facilities for a new extension.

Adding VHDL To add a VHDL file type to the list of Turbo Writer "known" file types, some
File Types modifications to the cwright.ini file are required. The cwright.ini file is

separated into different sections denoted by square parenthesis. In addition to the lines
already within the following sections, some new lines must be created, and some
existing lines need to be appended (note that text added to existing lines is
underlined for highlighting puproses only). The following will add a new VHDL file
type of “.vhdl”.

 Close Turbo Writer before editing cwright.ini and do not use Turbo Writer as the editor

for this file!

 In the [vhdl] section add this line:
 AddVhdlType=".vhdl"

 In the [Complier] section add these lines:
 CompilerAssign="Vsystem",'.vhdl'

 CompilerNewExt=.vhdl

 In the [Extension] section add this line
 ExtAlias=.vhdl,.vhd

 Append these lines:

 In the [Editor] section append to these lines
 FilterAdd='HDL (*.vhd, *.v, *.vhdl)','*.vhd;*.v;*.vhdl',-1

 FilterAdd='VHDL Files (*.vhd, *.vhdl)','*.vhd;*.vhdl',-1

 Adding HDL File Types

42

Adding Verilog To add a Verilog file type to the list of Turbo Writer "known" file types, some
File Types modifications to the cwright.ini file are required. The cwright.ini file is

separated into different sections denoted by square parenthesis. In addition to the lines
already within the following sections, some new lines must be created, and some
existing lines need to be appended (note that text added to existing lines is
underlined for highlighting purposes only). The following will add a new Verilog
file type of “.vlog”.

 Close Turbo Writer before editing cwright.ini and do not use Turbo Writer as the editor

for this file!

 In the [verilog] section add this line:
 AddVerilogType=”.vlog”

 In the [Complier] section add these lines:
 CompilerAssign="VsystemVlog",'.vlog'

 CompilerNewExt=.vlog

 In the [Extension] section add this line
 ExtAlias=.vlog,.v

 Append these lines:

 In the [Editor] section append to these lines
 FilterAdd='HDL (*.vhd, *.v, *.vlog)','*.vhd;*.v;*.vlog',-1

 FilterAdd='Verilog Files (*.v,*.vlg,*.vlog)','*.v;*.vlg;*.vlog',-1

 After making these modifications to cwright.ini Turbo Writer will use the new

types next time it starts.

12. Adding Compiler Interfaces

43

Introduction Turbo Writer is designed to operate with a variety of language tools and, with a little

configuration from the user, any of the user’s tools. Since most HDLs are simulatable it
is anticipated that most users will have some kind of simulator. In addition users may
have a Synthesiser or other compiler. Turbo Writer is designed to cater for situations
where the user would like to do syntax checking on source code with two different
tools.

Configuring The installation of Turbo Writer hides the Model Technology compiler
Turbo interface from the user. However if you look at the Project..Project Properties
Writer to use dialogue, select the Tools tab, select the Compile Category and select the relevant
two Compilers File Type, the commands used to interface to Model Technology can be seen and

modified (Figure 17). A Compiler is given a name, in the case of Model Technology it
is called ModelSim. The user can add new compiler interfaces through this dialogue, by
clicking the New button to the right of the Compiler Name selector. For example an
alternative Model Technology compiler set up could be defined, called Vsystem. The
configuration is then saved in the cwright.ini file and can be modified by editing
that file.

 Once the new compiler interface has been created it is necessary to configure Turbo

Writer to enable it to switch compilers. This again is done through the cwright.ini file.
Within the relevant HDL section ie. [vhdl] or [Verilog] the user can place a
statement such as

 [vhdl]

 VHDLSimulatorSetup="Vsystem"

 VHDLSynthesiserSetup="Exemplar"

 Adding Compiler Interfaces

44

Figure 17. Setting the compiler options.

 When the HDL Simulator Compile command is selected, Turbo Writer installs the

correct Compiler interface and then calls it. Similarly when the Synthesiser Compile

command is selected, the Synthesiser Compiler interface is installed and called up.
Obviously the nomenclature of Simulator and Synthesiser are purely arbitrary and the
user can assign them at will.

 Adding Compiler Interfaces

45

 For Verilog the commands are as follows :-

 [verilog]

 VerilogSimulatorSetup="Vsystem"

 VerilogSynthesiserSetup="Exemplar"

 The spelling of Synthesiser is somewhat dependent on which side of the Atlantic you

reside. To cater for both flavours Turbo Writer accepts
VerilogSynthesizerSetup and VHDLSynthesizerSetup as well as the
English spellings.

 For a more detailed discussion of implementing compiler interfaces see the Compiler

Setup section of the Extension-Specific Features chapter in the Codewright User’s
Manual.

13. ModelSim Interface

46

Introduction The Model Technology ModelSim software is a fully-featured VHDL simulator which

is directly supported by the Turbo Writer system. When Turbo Writer is installed, the
program prompts the user for a Model Technology installation directory. This is
required because Turbo Writer directly invokes a program supplied with the ModelSim
software.

ModelSim The ModelSim installed directory is configured in the cwright.ini file in
Installation the following way :-

 [vhdl]

 VsystemSetup = c:\vhdl

 VsystemVcomOptions = ‘-work mylib’

 If the installation directory was entered incorrectly, or if the ModelSim software has
been installed after Turbo Writer, then edit the cwright.ini file with the correct
directory. Turbo Writer must be reloaded after editing this file for the change to take
effect.

Compiling VHDL Once configured correctly, the ModelSim button on the button bar allows direct

interfacing to the Model Technology software. The button is illustrated below :-

 Clicking on this button performs a sequence of tasks.
 - It executes a compile by directly running vcom.exe.
 - It captures the output from the compile and checks for errors.
 - Any errors are flagged and can be stepped through using the ERR button on the

toolbar, or by double clicking the error in the error list, or by using the Find Next Error
menu pick.

 Model Technology Interface

47

Figure 18. Stepping through errors in the ModelSim Output.

 The output from the Model Technology compiler is shown in the tabbed output window

in the same way as output from File Grep and File Find. The Tabbed Window can be
detached from the bottom of the Turbo Writer main window, or minimised (Auto
Hide). For more information on the tabbed output feature please read the Codewright
User’s manual.

 Tabbed output from ModelSim is illustrated as follows :-

 Model Technology Interface

48

Figure 19. Tabbed Output from ModelSim

Options to the compiler can be issued through the HDL/Options menu pick and typing
in the “Model Technology vcom options” dialog box.

 For example, the option -work myproject would cause the compilation to go into
the library myproject rather than the default library work.

14. Renoir Interface

49

Introduction Renoir is a Graphical HDL capture environment that allows VHDL and Verilog designs
to be entered via a number of methods more intelligible to humans than pages of HDL
code. Renoir allows the user to work with block diagrams, state machines, flow charts
and truth tables, as well as HDL files where appropriate. However because the end
product from the process is still the HDL code, and it is the HDL code that must be
debugged, there needs to be a way of tracking a problem in the code back to the source
from which it was generated. HDL Turbo Writer and Renoir work together to make this
possible.

 Once configured, opening a VHDL file in Renoir will call Turbo Writer to display the

file. Conversely placing the Turbo Writer cursor on any line of code generated by
Renoir and clicking the “HDL/Locate Renoir Source” menu, will cause Renoir to
display the source for the selected line of code.

Configuring Renoir HDL Turbo Writer can be configured as the default editor within Renoir as
to call Turbo Writer follows:
 In the Renoir Options menu pick General Preferences.
 In the External Editor box enter
 twriter "%p" -G"%l"

 assuming Turbo Writer is in your path. If not replace twriter with a full path to the
twriter.exe file.

Configuring Turbo The link back from Turbo Writer to Renoir relies on interprocess communication
Writer to call Renoir using TCP/IP ports. For this to work you need to have the TCP/IP network protocol

installed. Consult your systems administrator for details on this if you are unsure.
 You also need two environment variables to be set correctly. These variables are set

automatically if you invoke Turbo Writer from within Renoir, but we recommend you
configure them manually so the products can be invoked in either order.

 Set the environment variable RENOIR_PORT to the name of the machine running
Renoir, followed by a colon and a valid and unused TCP/IP port number. Also set the
RENOIRHOME variable to the Renoir installation directory.

 Renoir Interface

50

 For example on Windows 95 you could add the following to your autoexec.bat file

 set RENOIR_PORT=localhost:1782

 set RENOIRHOME=c:\renoir98\

 And reboot your computer.

 On Windows NT you would add these variables to your environment by running the

System icon in the Control Panel, selecting the Environment tab and selecting any one
of the user environment variables. Now put RENOIR_PORT in as the Variable box
and localhost:1782 in the Value box, overwriting the existing contents of these boxes.
Now click Set, and the new environment variable should appear in the list. Repeat the
procedure for the RENOIRHOME variable. Finally click apply and you are ready to
run Renoir. If Renoir was already running when you made the changes above, you will
need to close it and open it again.

 Renoir must be open for Turbo Writer to be able to communicate with it.

 Now for a test. Open a Renoir generated HDL file, put the text cursor on a line of

interest and click the HDL menu and pick Locate Renoir Source. Renoir should display
the appropriate source document with the focus set to the specific source item of
interest.

15. Troubleshooting

51

Here are a collection of the most common questions asked with suggested answers.

When I start Turbo Writer I get a license error saying checkout failed. I have a node locked license.
 Node Locked licenses are where the license file does not contain SERVER or DAEMON lines. If your

license is of this type, this is the section for you. If not read the corresponding section on floating licenses
starting on page 53 instead.

 Node Locked license debug procedure:

1. Checking your license file for email corruption. Open the license in notepad (not word or wordpad) and
look at the FEATURE line. It will start with the word FEATURE and end with a \ which is a
continuation character. Any line breaks prior to this \ should be deleted. The line after the \ contains the
rest of the information and completes the Turbo Writer section of the license file. For example, this is a
correct license:

FEATURE Twriter SAROS 6.000 permanent uncounted 7DC9092EA016 \
HOSTID=FLEXID=7-b2859bd4 ck=34

But this one has been broken by the email after the uncounted word:
FEATURE Twriter SAROS 6.000 permanent uncounted
7DC9092EA016 \
HOSTID=FLEXID=7-b2859bd4 ck=34

2. Checking the license is right for your machine. Invoke the lmtools program using the menu
Start/Programs/HDL Turbo Writer/lmtools. Select the System Settings tab. Now open your license file
and find the line that starts FEATURE Twriter. A at the end of this line, or on the next if the line ends in
a \ will be a string of letters starting HOSTID= . You need to check the data following this against one
of the boxes in this dialog. The box to look at depends on the type of HOSTID in your license file. If
you have:

HOSTID=DISK_SERIAL_NUM=number. This is a license locked to your hard disk. Check the number
against the Disk Volume Serial Number box.

 Troubleshooting

52

HOSTID=number. This is a license locked to your network card. Check the number against the Ethernet
address box.

HOSTID=FLEXID=number. This is a license locked to a parallel port dongle. Check number against
the FLEXID7 and FLEXID8 boxes.

If there is a match, continue to step 3.

A mismatch and you have one of the first two license types above means you have the license for a
different computer. You need to find the correct license for your machine.
If you have the HOSTID=FLEXID type, but no match in the FLEXID boxes, this indicates a problem
with the dongle or its driver. Licenses of this type needs a dongle attached to the parallel port, and on
Windows NT a driver loaded. An empty FLEXID7 box in the dialog indicates that the computer has not
detected any 7- series dongles of the type we supply with Turbo Writer in the media pack. They are
made by Rainbow and are a blue/green colour with flat sides. If the FLEXID7 box is empty and you
have such a dongle connected it suggests you have Windows NT and have not loaded the NT dongle
driver. See the Windows NT notes on page 5 to correct this.

Turbo Writer also supports (but we do not supply) 8 series Dallas dongles which are either black or light
blue, and have a whole in the middle for a button cell. These dongles get their number reported in the
FLEXID8 box and the number must match the license file. If you have one of these dongles connected
but the FLEXID8 box is empty, consult the documentation supplied to you by whoever provided this
dongle.

3. Check Turbo Writer knows where the license file is. The best way to do this is to enter this command

into a dos box:
notepad %LM_LICENSE_FILE%
And the license file should appear in a notepad window. If it does not, then you do not have the
LM_LICENSE_FILE environment variable set up correctly. Check your autoexec.bat if you are on
Windows 95, or your environment settings on NT. The procedure is explained in the section called
Setting Environment Variables on page 7. You have now finished debugging your node locked license.

 Troubleshooting

53

When I start Turbo Writer I get a license error saying checkout failed. I have a floating license.

 Floating Licences are where the license file contains SERVER and DAEMON lines. If your license is of this

type, this is the section for you. If not read the previous section on page 51 instead.

 It is assumed in this section that you have installed and started the floating license server as described on

page 7.

 For a floating license to work three things must be in place. The license server must be up and running, the

network connection between the client and the server must be operational and the client must know where to
look for the server. The following procedure should deal with all three classes of problem.

 Lets start with the license server

Server diagnostics.

1. Checking the license server. On the server computer call up a command prompt window and cd to the
Turbo Writer installation directory. From there enter this command:
 lmutil lmstat –a –c “path_to_license_file”
If this reports that there are Turbo Writer licenses available and there are no errors (such as unsupported
by license server) then the license server is ok and so proceed to the Client Diagnostics section on page
56.

2. Verifying the path to your license file. The license server is configured using the lmtools icon in the
HDL Turbo Writer start menu. Start this program, and from the opening screen next to the planet
graphic, select the Configuration Using services button. Now select the Configure Services tab and
select in the Service Name list the one you expect to be running the Turbo Writer license server. Verify
that the paths to the license file, lmgrd.exe and debug log all point to the correct files.

3. Verify the server name and TCP/IP name resolution. The first line of the license file should be the word
SERVER followed by the name of the computer running the server. Make a note of this computer name
and add it to the end of a ping command. For example my license file starts
SERVER jasmine FLEXID=7-b2859bd4 1650

 Troubleshooting

54

So I would type
ping jasmine
The correct response to a ping command is a set of reply lines like this:
Reply from 10.24.0.3: bytes=32 time=10ms TTL=128
If you get unknown host or any timeout messages, then either the name you are using for your computer
is incorrect, or there is a problem with the installation of your TCP/IP networking. You can check the
computer name as follows:
Windows 2000
Right click on the my computer icon on the desktop and select properties. Select the network
identification tab, and push the properties button. The computer name is displayed as the top field in the
dialog box.
Windows NT 4
Right click on the Network Neighbourhood icon on the desktop and select properties. Select the
identification tab, and look in the Computer Name box.
If the computer name looks correct, but the ping doesn’t work, talk to your network administrator. If the
computer name differs from the second word of the SERVER line in the license file, correct the license
file.

4. Verifying the host id of the license server. The third word of the license file’s SERVER line is used to
confirm the identity of the license server. Locate this section of the license file and verify the part after
HOSTID= against the information displayed in the System Settings tab in lmtools. The box you need to
check against in lmtools depends on the type of your HOSTID. Here are the possibilities.

HOSTID=DISK_SERIAL_NUM=number. This validates the server computer by the volume serial
number of your hard disk. Check the number against the Disk Volume Serial Number box.

HOSTID=number. This validates the server computer by the address of your network card. Check the
number against the Ethernet address.

HOSTID=FLEXID=number. This validates the server computer by the dongle attached to its parallel
port. Check number against the FLEXID7 and FLEXID8 boxes.

If there is a match, continue to step 5.

 Troubleshooting

55

A mismatch and your having one of the first two license types above means you have the license for a
different computer. You need to find the correct license for your server machine.
If you have the HOSTID=FLEXID type, but no match in the FLEXID boxes, this indicates a problem
with the dongle or its driver. Licenses of this type need a dongle attached to the parallel port, and on
Windows NT a driver loaded. An empty FLEXID7 box indicates that the computer has not detected any
7- series dongles of the type we supply with Turbo Writer in the media pack, which are made by
Rainbow and are a blue/green colour. If you have such a dongle connected it suggests you have
Windows NT and have not loaded the NT dongle driver. See the Windows NT notes on page 5 to
correct this.

Turbo Writer also supports (but we do not supply) 8 series Dallas dongles which are either black or light
blue, and have a whole in the middle for a button cell. These dongles get their number reported in the
FLEXID8 box and the number must match the license file. If you have one of these dongles connected
but the FLEXID8 box is empty, consult the documentation supplied to you by whoever provided this
dongle.

5. Verify that there is a valid port number on the end of the server line. Your server line will look
something like this:
SERVER jasmine FLEXID=7-b2859bd4 1967
The port number in this case is the 1967. Check your license file has one. It also needs to be a number
unique to Turbo Writer, and less than about 30000. Generally numbers below 1000 are best avoided
because many of them are used by the system. If it exists and is within this range, leave it alone for now.

6. Verifying the path to the vendor daemon. Locate the line in your license file starting “DAEMON
SAROS”. This needs to be followed by the full path to a file called saros.exe which can be found in the
Turbo Writer installation area. A quick way to check the path is free of typos is to copy it, run up
wordpad, select the file open menu, and paste the path back in. If wordpad can open the file, the path
must be correct. If wordpad claims the file doesn’t exist, correct the path on the DAEMON line and try
again. Once wordpad can open the file, quit and continue to the next step.

7. Verifying the feature line. The end of the feature line contains a checksum which can be used to verify
the line against typing errors or corruption from the email system. To verify the line using the checksum
run up the lmtools program, and select the Utilities tab. Push the Perform Check Sum button. The
window shows the results of check summing each feature line. Check there is an OK at the start of the

 Troubleshooting

56

Twriter feature line. If instead of OK you get BAD, get the license sent again from Saros Technology
Limited.

8. By now the license should be correct, and in the correct place. Its time to restart the license server. From
lmtools application, select the Service/License File tab and select the Configuration Using Services
button. Then select the Start/Stop/Reread tab. Click the Stop Server button repeatedly until the status
line at the bottom of the screen displays “Unable to Stop Server”. Then click the Start Server button.

9. Rerun the test in step 1 of this section. The command should return stating that there are Turbo Writer
licenses available. If you still get an error call Saros Technology using the contact details near the start
of this manual, and ask for Technical support. We will find out what is wrong with the license and
update this procedure.
If the command succeeds try invoking Turbo Writer again on the client machine. If the program fails to
start, proceed through the client debug section that follows.

Client Diagnostics

 This section is useful if the license server appears to be working, but you still cannot get a license at the
client machines. It is assumed that the test in step 1 in the section above has been tried and indicated that
licenses are available. With a floating license configuration, there is very little that needs to be set at the
client computers. Only two things can go wrong, either the client doesn’t know how to access the license
server, or network link from the client to the server is not configured correctly.

1. Verify the client knows how to access the server. Inspect the license file on the server and find the

SERVER line. It will look something like this:

SERVER jasmine FLEXID=7-b2859bd4 1650

The second word is the name of the license server, and the number at the end of the line is the port
number. Start a command prompt window and run this command in it:
echo %LM_LICENSE_FILE%
This will return the value of the LM_LICENSE_FILE environment variable, and is the only reliable
way to do it, particularly on Windows NT. It should contain either a path to the license file, or a string

 Troubleshooting

57

of the form port_number@server_name. In the latter case, the server line shown above would translate
to a LM_LICENSE_FILE of 1650@jasmine. If a path is used, verify the path by opening it with
notepad. In the case of the port_number@server, check the details against the SERVER line in the
license file. If you find any errors, change the setting of the environment variable, as described in the
“Setting environment variables” on page 7

2. Verify the network is configured correctly. Run up a command prompt and type
ping name_of_your_license_server
So in the case of the SERVER line above, the command would be “ping jasmine”
This should return a list of reply times, like this

Reply from 10.24.0.3: bytes=32 time<10ms TTL=128

Anything else means your TCP/IP networking is not correctly configured. Contact your network
administrator to get this fixed.

Once you can ping the license server, and the LM_LICENSE_FILE is set correctly, you should be able
to run Turbo Writer. If you are still experiencing problems, please contact Saros Technology Limited
using the contact details near the start of this manual.

Folding provides inconsistent results and sometimes seems to hang the machine.

 Check the type of files you are editing. If they are Unix files the folding software can exhibit this
 problem. Select the Document/Manager menu, click the EOL/EOF tab and check if the Unix EOL option is
selected. If it is, then change the dialogue and reload the file. The fold function should now work correctly.

The Editor seems to slow down when I'm editing large files. Can anything be done to speed this up?

 Troubleshooting

58

 Codewright allocates a fixed amount of RAM when it initialises. When using large files, memory is swapped
to the disk. If you have a sizeable amount of RAM then the default allocation can be increased which can
considerably speed up large file handling. The following can be added to your cwright.ini file.

 [editor]

 SysSwapBlocks=100

 The SysSwapBlocks command allocates a number of 8k blocks of memory. The default is 20.

The Model Technology Interface does not seem to work.

 Clicking the Rhino button on the toolbar should compile the current VHDL file. If this does not happen

check each of the following points.

• The Turbo Writer and ModelSim directories must both be in your path.

• The VsystemSetup line in the [vhdl] section of the cwright.ini file must contain the path of the directory

containing Model Technologies ModelSim, i.e. the directory holding vsystem.exe.

• The executable vcom.exe must be present in the ModelSim directory. If ModelSim was installed under

3.11 this file will not be present, and ModelSim must be reinstalled under Windows 95 or NT.

I don’t have any horizontal scroll bars. How do I enable them?

 From the Tools menu choose Customize/View Setup. Enable the Horizontal scrollbar checkbox.

Appendix A : Verilog Keywords and Templates

59

The following are tables of the Verilog Keywords used for Colour Coding.

Table 1. Basic Verilog Keywords
always And assign begin buf bufif0
bufif1 Case casex casez cmos deassign
default Defparam disable edge else end
endcase Endfunction endmodule endprimitive endspecify endtable
endtask Event for force forever fork
function Highz0 highz1 if initial inout
input Integer join large macromodule medium
module Nand negedge nmos nor not
notif0 Notif1 or output pmos posedge
primitive Pull0 pull1 pulldown pullup rcmos
reg Release repeat rnmos rpmos rtran
rtranif0 Rtranif1 scalered small specify specparam
strong0 Strong1 supply0 supply1 table task
time Tran tranif0 tranif1 tri tri0
tri1 Triand trior vectored wait wand
weak0 Weak1 while wire wor xnor
xor

Table 2. Verilog System Task and System
$bitstoreal $countdrivers $display $fclose $fdisplay
$fclose $fdisplay $fmonitor $fopen $fstrobe
$fwrite $finish $getpattern $history $incsave
$input $itor $key $list $log
$monitor $monitoroff $monitoron $nokey $nolog
$printtimescale $readmemb $readmemh $realtime $realtobits
$reset $reset_count $reset_value $restart $rtoi
$save $scale $scope $showscopes $showvariables
$showvars $sreadmemb $sreadmemh $stime $stop
$strobe $time $timeformat $write

Table 3. Verilog Compiler Directive Keywords
'accelerate 'autoexpand_vectornets 'celldefine
'default_nettype 'define 'else
'endcelldefine 'endif 'endprotect
'endprotected 'expand_vectornets 'noremove_gatenames
'noremove_netnames 'nounconnected_drive 'protect
'protected 'remove_gatenames 'remove_netnames
'resetall 'timescale 'unconnected_drive

 Verilog Keywords and Templates

60

Table 4. Verilog Template Definitions
Template Name Expanded Template Template Name Expanded Template
Al always @() em endmodule //
Alb always @()

 begin
 end //always

fe forever ()

An always @(negedge) feb forever ()
begin
end //forever

Anb always @(negedge)
 begin
 end //always

Ap always @(posedge) Fk fork
join

Apb always @(posedge)
 begin
 end //always

Fo for (;;)
begin
end //for

As assign Fu function ;
endfunction //

Asb assign
 begin
 end //assign

If if ()

Ca case ()
endcase //case

ifb if ()
begin
end

Cx casex ()
endcase //casex

in input

Cz casez()
endcase //casex

ini initial

De deassign inib initial
begin
end

Eb else
begin
end

io inout

Ec endcase mo module ();
endmodule //

Ei else if () ou output
Eib else if ()

begin
end

re reg

 Verilog Keywords and Templates

61

Template Name Expanded Template Template Name Expanded Template
Rep repeat () wh while ()
Repb repeat ()

begin
end //repeat

whb while ()
begin
end //while

Ta task ;
begin
end
endtask

wi wire

Table 5. Verilog Compiler Directive Template Definitions
Template Name Expanded Template
`ac `accelerate
`au `autoexpand_vectornets
`ce `celldefine
`de `define
`defa `default_nettype
`endc `endcelldefine
`ex `expand_vectornets
`if `ifdef

`else
`endif

`in `include
`noac `noaccelerate
`noun `nounconnected_drive
`res `resetall
`ti `timescale /
`un `unconnected_drive

Appendix B : VHDL Keywords and Templates

63

The following are tables of the VHDL Keywords used for Colour Coding.

Table 1.
abs Access after alias all and
architecture Array assert attribute begin block
body Buffer bus case component configuration
constant Disconnect downto else elsif end
entity Exit file for function generate
generic Group guarded if impure in
inertial Inout is label library linkage
literal Loop map mod nand new
next Nor not null of on
open Or others out package port
postponed Procedure process pure range record
register Reject rem report return rol
ror Select severity signal shared sla
sll Sra srl subtype then to
transport Type unaffected units until use
variable Wait when while with xnor
xor

Table 2. Std 1164 Keywords
is_x resolved rising_edge to_bit
to_bitvector to_stdulogic to_stdulogicvector to_stdlogicvector
to_x01 to_x01z to_ux01z std_ulogic
std_ulogic_vector std_logic std_logic_vector x01
x01z ux01 ux01z

 VHDL Keywords and Templates

64

Table 3. VITAL 2.2b Keyword
Delaytypexx delaytype01 delaytype01z
Glitchkind pathtype patharraytype
Transitiontype transitionarraytype timearray
Timinginfotype vitalpropagatewiredelay vitaltimingcheck
Vitalsetupholdcheck vitalreportsetupholdviolation vitalreportrlsermvlviolation
Vitalperiodcheck vitalextendtofilldelay vitalcalcdelay
Vitalglitchonevent vitalglitchondetect vitalpropagatepathdelay
Vitaland vitaland2..4 vitalnand
vitalnand2..4 vitalor vitalor2..4
Vitalnor vitalnor2..4 vitalxor
vitalxor2..4 vitalxnor vitalxnor2..4
Vitalbuf vitalbufif0 vitalbufif2
Vitalinv vitalinvif0 vitalinvif2
Vitalmux vitalmux2..4 vitaldecoder
vitaldecoder2 vitaldecoder4 vitaldecoder8
Vitalident vitaltruthtable vitalstatetable
Violationtype

 VHDL Keywords and Templates

65

Table 4. VHDL Template Definitions
Template Name Expanded Template
ab Abs
ac access
af After
ai alias
al all;
an and
ar architecture <arc_name> of <ent_name> is

begin
end <arc_name>;

as assert <condition>
[severity <severity_type>]
[report <report_type>]

at attribute
be begin

end
bl <block_name> : block

end block <block_name>;
bo body
bs bus
bu buffer
ca case () is

 when =>
 when others =>
end case;

cf configuration
cn constant : ;
co component <comp_name>

 port (
);
end component;

di disconnect
do downto
el elsif () then
en entity <ent_name> is

end <ent_name>;
ex exit
fd function <fun_name> () return <ret_type>;
fg <label> : for <var> in <range> generate

end generate;
fi File

 VHDL Keywords and Templates

66

Table 4. VHDL Template Definitions cont.
Template Name Expanded Template
Fu function <fun_name> () return <ret_type> is

begin
end <fun_name>;

Ge generic (
);

Gn generate
Gr group
Gu guarded
If if () then

end if;
Ig <label> : if <condition> generate

end generate;
Im impure
In integer
Io inout
Ir inertial
La label
Li library ;
Lk linkage
Lo loop
Lt literal
Lw <label> : while <condition> loop

end loop <label>;
Ma map
Mo mod
Ne new
Nu null
Nx next
Op open
Ot others
Pa package <name> is

end <name>;
Pb package body <name> is

end <name>;
Pd procedure <name> () is

begin
end <name>;

Pdd procedure <name> ();
Po port (

);
Pp postponed
Pr procedure

 VHDL Keywords and Templates

67

Table 4. VHDL Template Definitions cont.
Template Name Expanded Template
Ps <name> : process ()

begin
end process <name>;

Pu pure
Ra range
Rc record
Re register
Rj reject
Rm rem
Rp report
Rt return
Se severity
Sh shared
Si signal : ;
Sl select
St std_logic
Su subtype
Sv std_logic_vector
Th then
Tr transport
Ty type
Ua unaffected
Un units
Us use ;
Ut until
Va variable : ;
Wa wait until (<clock>'event and <clock>='1');
Wh when =>
Wi with
Wl while

