RICOH

R5460x2xx SERIES

LI-ION/POLYMER 2-CELL PROTECTOR

NO.EA-165-160603

OUTLINE

The R5460x2xxxx Series are high voltage CMOS-based protection ICs for over-charge/discharge of rechargeable two-cell Lithium-ion (Li+) / Lithium polymer, further include a short circuit protection circuit for preventing large external short circuit current and the protection circuits against the excess discharge-current and excess charge current.

Each of these ICs is composed of six voltage detectors, a reference unit, a delay circuit, a short circuit protector, an oscillator, a counter, and a logic circuit. When the over-charge voltage threshold or excess-charge current threshold crosses the each detector threshold from a low value to a high value, the output of Cout pin switches to "L" level after internal fixed delay time. To release over-charge detector after detecting over-charge, the detector can be reset and the output of Cout becomes "H" when a kind of load is connected to VDD after a charger is disconnected from the battery pack and the cell voltage becomes lower than over-charge detector threshold. In case that a charger is continuously connected to the battery pack, if the cell voltage becomes lower than the over-charge released voltage, over-charge state is also released.

The output of Dout pin, the output of the over-discharge detector and the excess discharge-current detector, switches to "L" level after internally fixed delay time, when discharged voltage crosses the detector threshold from a high value to a value lower than VDET2.

The conditions to release over-discharge voltage detector after detecting over-discharge voltage are as follows:

A/D versions: after connecting a charger, when the cell voltage becomes higher than over-discharge detector threshold or, without connecting charger, when the cell voltage becomes equal or higher than over-discharge released voltage.

C version: after connecting a charger, when the cell voltage becomes higher than over-discharge detector threshold voltage.

E version: whether connecting a charger, or not, when the cell voltage becomes higher than released voltage from overdischarge.

F version: after connecting a charger, when the cell voltage becomes higher than released voltage from over-discharge.

In case that connecting a charger, for A/C/D versions, there is no hysteresis for over-discharge detector. E/F versions, even if a charger is connected to the battery pack, the hysteresis of over-discharge detector exists.

To satisfy the release conditions for over-discharge voltage protector, the output voltage of Dout becomes "H".

Even if a battery is discharged to 0V, charge current is acceptable.

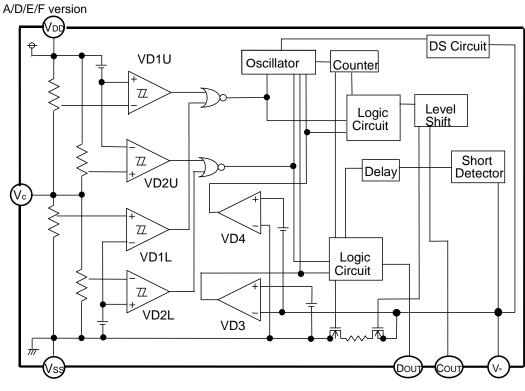
After detecting excess-discharge current or short current, when the load is disconnected, the excess discharged or short condition is released and Dout becomes "H".

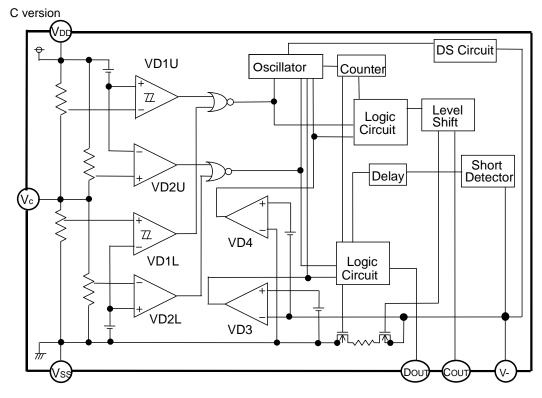
After detecting over-discharge voltage, supply current will be kept extremely low by halting internal circuits' operation.

When the output of Cout is "H", if V- pin level is set at -1.6V, the delay time of over-charge and over-discharge detector can be shortened. Especially, the delay time of the over-charge detector can be reduced into approximately 1/60 and test time for protection circuit PCB can be reduced. The output type of Cout and Dout is CMOS.

NO.EA-165-160603

FEATURES


Manufactured with High Voltage To	lerant Process	Absolute Maximum Rating			30V
Low supply current		Supply current (At normal mode)			/p. 4.0μA
		Standby current		Typ. 1.2µA (A/ D/	E version)
				Max. 0.1μA (C/ F	version)
High accuracy detector three	shold	Over-charge detector	(Ta=25°	°C)	±25mV
			(Ta=-5 1	to 55°C)	±30mV
		Over-discharge detector			±2.5%
		Excess discharge-current	detector		±15mV
		Excess charge-current de	tector		±40mV
Variety of detector threshold	I				
	Over-charge detector th	hreshold (A/C/E/F version)	4.1\	/-4.5V step of 0.005V	(Vd1u/Vd1l)
	Over-charge detector the	hreshold (D version)	3.5	/-4.0V step of 0.005V	(Vd1u/Vd1l)
	Over-discharge detecto	or threshold	2.0	/-3.0V step of 0.005V	(Vd2u/Vd2l)
	Excess discharge-current	threshold	0.05	5V-0.20V step of 0.00	5V
	3 options of Excess	charge-current threshold	(1)	-0.4V ±40mV	
			(2)	-0.2V ±30mV	
			(3)	-0.1V ±30mV	
	Over-charge release	ed voltage	0.1	V-0.4V step of 0.05	V (Vh1u/Vh1l)
	Over-discharge relea	ased voltage	0.2	V-0.7V step of 0.1V	(VH2U/VH2L)
Internal fixed Output delay ti	ime	Over-charge detector Output Delay			1.0s
		Over-discharge detector C	Dutput De	elay	128ms
		Excess discharge-current	detector	Output Delay	12ms
		Excess charge-current de	tector Ou	itput Delay	8ms
		Short Circuit detector Out	put Delay	/	300µs
Output Delay Time Shorten	ing Function	At Cout is "H", if V- level i	is set at –	1.6V, the Output De	lay time of detect
		the over-charge and over	r-dischar	ge can be reduced	(Delay Time for
		over-charge becomes abo	out 1/60 c	of normal state.)	
OV-battery charge		acceptable			
Ultra Small package		SOT-23-6, DFN(PLP)1820	D-6		


APPLICATIONS

- Li+ / Li Polymer protector of over-charge, over-discharge, excess-current for battery pack
- High precision protectors for cell-phones and any other gadgets using on board Li+ / Li Polymer battery

NO.EA-165-160603

BLOCK DIAGRAMS

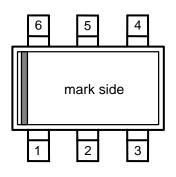
NO.EA-165-160603

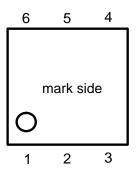
SELECTION GUIDE

In the R5460x2xxxx Series, input threshold of over-charge, over-discharge, excess discharge current, and the package and taping can be designated.

Part Number is designated as follows:

R5460x 2xx xx -xx \leftarrow Part Number


 $\uparrow \uparrow \uparrow \uparrow \overline{\uparrow} \uparrow$


abc	a e
Code	Contents
а	Package Type N: SOT-23-6 K: DFN(PLP)1820-6
b	Serial Number for the R5460 Series designating input threshold for over-charge, over-discharge, excess discharge-current detectors.
С	Designation of Output delay option of over-charge and excess discharge-current.
d	Designation of version symbols.
е	Taping Type: TR (refer to Taping Specification)

PIN CONFIGURATIONS

SOT-23-6

DFN(PLP)1820-6

NO.EA-165-160603

PIN DESCRIPTION

Pin No.			
SOT-23-6	PLP1820-6	Symbol	Description
1	3	Dout	Output pin of over-discharge detection, CMOS output
2	1	Соит	Output pin of over-charge detection, CMOS output
3	2	V-	Charger negative Input Pin
4	6	VC	Input Pin of the center voltage between two-cell
5	5	Vdd	Power supply pin, the substrate voltage level of the IC.
6	4	Vss	Vss pin. Ground pin for the IC

The backside tab of DFN(PLP)1820-6 package is connected to the substrate level. (VDD) Note that avoiding short with other level.

ABSOLUTE MAXIMUM RATINGS

		Ta=25°C, Vs	s=0V
Item	Symbol	Ratings	Unit
Supply Voltage	Vdd	-0.3 to 12	V
Input Voltage			
Middle pin Voltage between 2-cell	Vc	Vss-0.3 to V _{DD} +0.3	V
V- pin Voltage	V-	V _{DD} -30 to V _{DD} +0.3	V
Output Voltage			
Cout pin Voltage	VCOUT	VDD-30 to VDD+0.3	V
Dout pin Voltage	Vdout	Vss-0.3 to V _{DD} +0.3	V
Power Dissipation	PD	150	mW
Operating Temperature	Та	-40 to 85	°C
Storage Temperature	Tstg	-55 to 125	°C

*Note: Exposure to the condition exceeded Absolute Maximum Ratings may cause the permanent damages and affects the reliability and safety of both device and systems using the device. The functional operations cannot be guaranteed beyond specified values in the recommended conditions.

NO.EA-165-160603

ELECTRICAL CHARACTERISTICS

R5460x2xxAA/AD/AE version Unless otherwise specified, Ta=25°C

Symbol	therwise specified, Ta=25°C	Conditions	Min.	Тур.	Max.	Unit
VDD1	Operating input voltage	Voltage defined as VDD-VSS	1.5		10.0	V
Vst	Minimum operating Voltage for 0V charging	Voltage defined as VDD-V- VpD-Vss=0V			1.8	V
Vdet1u	CELL1 Over-charge threshold	Detect rising edge of supply voltage R1=330 Ω R1=330 Ω (Ta=-5 to 55°C) ^{*Note}	Vdet1u-0.025 Vdet1u-0.030	Vdet1u Vdet1u	Vdet1u+0.025 Vdet1u+0.030	V V
Vrel1u	CELL1 Over-charge released voltage	R1=330Ω	Vrel1u-0.05	VREL1U	Vrel1u+0.05	v
tVdet1	Output delay of over-charge	V _{DD} =3.2V to 4.5V, Vc-Vss=3.2V	0.7	1.0	1.3	s
tV _{REL1}	Output delay of release from over-charge	VDD=4.5V to 3.2V, Vc-Vss=3.2V	11	16	21	ms
Vdet1l	CELL2 Over-charge detector threshold	Detect rising edge of supply voltage R2=330 Ω R2=330 Ω (Ta=-5 to 55°C) ^{*Note}	Vdet1l-0.025 Vdet1l-0.030	Vdet1l Vdet1l	Vdet1l+0.025 Vdet1l+0.030	V V
V_{REL1L}	CELL2 Over-charge released voltage	R2=330Ω	VREL1L-0.05	VREL1L	VREL1L+0.05	V
Vdet2u	CELL1 Over-discharge threshold	Detect falling edge of supply voltage	Vdet2u×0.975	Vdet2u	Vdet2u×1.025	V
	CELL1 Released Voltage from Over- discharge	Detect rising edge of supply voltage	Vrel2u×0.975	Vrel2U	Vrel2u×1.025	V
tVdet2	Output delay of over-discharge	VDD-VC=3.2V to 1.9V VC- Vss=3.2V	89	128	167	ms
tVrel2	Output delay of release from over- discharge	VDD-Vc=1.9V to 3.2V, Vc- Vss=3.2V	0.7	1.2	1.7	ms
Vdet2L	CELL2 Over-discharge threshold	Detect falling edge of supply voltage	Vdet2l×0.975	Vdet2L	Vdet2l×1.025	V
Vrel2L	CELL2 Released Voltage from Over- discharge	Detect rising edge of supply voltage	Vrel2L×0.975	Vrel2L	Vrel2l×1.025	V
Vdet3	Excess discharge-current threshold	Detect rising edge of 'V-' pin voltage	Vdet3-0.015	Vdet3	Vdet3+0.015	V
tVdetз	Output delay of excess discharge current	Vpd-Vc=Vc-Vss=3.2V, V-=0V to 0.5V	8	12	16	ms
tVrel3	Output delay of release from excess discharge-current	Vpd-Vc=Vc-Vss=3.2V, V-=3V to 0V	0.7	1.2	1.7	ms
Vdet4	Excess charge-current threshold	Detect falling edge of 'V-' pin voltage	-0.44 -0.23 -0.13	-0.40 -0.20 -0.10	-0.36 -0.17 -0.07	v
tVdet4	Output delay of excess charge-current	$V_{DD}-V_{C}=V_{C}-V_{SS}=3.2V$, $V=0V$ to -1V	5	8	11	ms
	Output delay of release from excess	VDD-VC=VC-Vss=3.2V,	0.7	1.2	1.7	me
	charge-current	V-=-1V to 0V				ms
Vshort	Short protection voltage	VDD-VC=VC-Vss=3.2V	0.7	1.1	1.5	V
tshort	Output Delay of Short protection	Vpd-Vc=Vc-Vss=3.2V, V-=0V to 6.4V	150	300	500	μs
Rshort	Reset resistance for Excess discharge-current protection	VDD-VC=VC-Vss=3.2V, V-=1V	25	40	75	kΩ
Vds	Delay Shortening Mode input voltage	VDD-Vc=Vc-Vss=4.0V	-2.2	-1.6	-1.0	V
Vol1	Nch ON voltage of Cout	Io∟=50µA, Vdd-Vc=Vc-Vss=4.5V		0.4	0.5	V
Vон1	Pch ON voltage of Cout	Іон=-50µА, Vdd-Vc=Vc-Vss=3.2V	6.8	7.4		V
Vol2	Nch ON voltage of Dout	Io∟=50µA, Vdd-Vc=Vc-Vss=1.9V		0.2	0.5	V
Vон2	Pch ON voltage of Dout	Іон=-50µА, Vdd-Vc=Vc- Vss=3.2V	6.8	7.4		V
DD	Supply current	VDD-VC=VC-Vss=3.2V, V-=0V		4.0	8.0	μA
					1	<u> </u>
ls	Standby current	VDD-VC=VC-Vss=1.9V		1.2	2.0	μA

NO.EA-165-160603

R5460x2xxAC version

Unless otherwise specified, Ta=25°C	С
-------------------------------------	---

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
VDD1	Operating input voltage	Voltage defined as VDD-Vss	1.50	· yp.	10.0	V
Vst	Minimum operating Voltage for 0V charging	Voltage defined as VDD-V- Voltage defined as VDD-V- VDD-Vss=0V	1.50		1.8	V
Vdet1u	CELL1 Over-charge threshold	Detect rising edge of supply voltage $R1=330\Omega$ $R1=330\Omega$ (Ta=-5 to 55°C) ^{*Note}	Vdet1u-0.025 Vdet1u-0.030	Vdet1u Vdet1u	Vdet1u+0.025 Vdet1u+0.030	V V
Vrel1u	CELL1 Over-charge released voltage	R1=330Ω	Vrel1U-0.05	Vrel1u	Vrel10 +0.05	V
tVdet1	Output delay of over-charge	VDD=3.2V to 4.5V, Vc-Vss=3.2V	0.7	1.0	1.3	S
tVrel1	Output delay of release from over-charge	VDD=4.5V to 3.2V, Vc-Vss=3.2V	11	16	21	ms
Vdet1l	CELL2 Over-charge detector threshold	Detect rising edge of supply voltage R2=330 Ω R2=330 Ω (Ta=-5 to 5°C) ^{*Note}	Vdet1l-0.025 Vdet1l-0.030	Vdet1l Vdet1l	Vdet1l+0.025 Vdet1l+0.030	V V
Vrel1L	CELL2 Over-charge released voltage	R2=330Ω	Vrel1L-0.050	VREL1L	Vrel1L+0.050	V
	CELL1 Over-discharge threshold	Detect falling edge of supply voltage	Vdet2u×0.975	Vdet2u	Vdet2u×1.025	V
	Output delay of over-discharge	VDD-VC=3.2V to 1.9V Vc- Vss=3.2V	89	128	167	ms
tVrel2	Output delay of release from over- discharge	Vpp-Vc=1.9V to 3.2V Vc- Vss=3.2V	0.7	1.2	1.7	ms
Vdet2l	CELL2 Over-discharge threshold	Detect falling edge of supply voltage	Vdet2l×0.975	Vdet2L	VDET2L×1.025	V
Vdet3	Excess discharge-current threshold	Detect rising edge of 'V-' pin voltage	Vdet3-0.015	Vdet3	Vdet3+0.015	V
tVdetз	Output delay of excess discharge current	VDD-Vc=Vc-Vss=3.2V, V-=0V to 0.5V	8	12	16	ms
tVrel3	Output delay of release from excess discharge-current	Vpp-Vc=Vc-Vss=3.2V, V-=3V to 0V	0.7	1.2	1.7	ms
Vdet4	Excess charge-current threshold	Detect falling edge of 'V-' pin voltage	-0.44 -0.23 -0.13	-0.40 -0.20 -0.10	-0.36 -0.17 -0.07	V
tVdet4	Output delay of excess charge-current	VDD-VC=VC-Vss=3.2V, V-=0V to -	5	8	11	ms
tVrel4	Output delay of release from excess charge-current	Vpp-Vc=Vc-Vss=3.2V, V-=-1V to 0V	0.7	1.2	1.7	ms
Vshort	Short protection voltage	VDD-VC=VC-Vss=3.2V	0.7	1.1	1.5	V
	Output Delay of Short protection	Vpp-Vc=Vc-Vss=3.2V, V-=0V to 6.4V	150	300	500	μs
Rshort	Reset resistance for Excess discharge-current protection	VDD-Vcc=Vc-Vss=3.2V, V-=1V	25	40	75	kΩ
Vds	Delay Shortening Mode input voltage	VDD-VC=VC-Vss=4.0V	-2.2	-1.6	-1.0	V
Vol1	Nch ON voltage of Cout	IOL=50µA VDD-VC=VC-VSS=4.5V		0.4	0.5	V
Voh1	Pch ON voltage of Cout	Іон=-50µA Vdd-Vc=Vc-Vss=3.2V	6.8	7.4		V
Vol2	Nch ON voltage of Dout	IOL=50µA VDD-VC=VC-Vss=1.9V		0.2	0.5	V
	Pch ON voltage of Dout	Іон=-50µА, Vdd-Vc=Vc-	6.8	7.4		V
Vон2	I CIT OIN VOILage OF DOOT	Vss=3.2V				
Voh2 Idd	Supply current	Vss=3.2V Vdd-Vc=Vc-Vss=3.2V, V-=0V		4.0	8.0	μA

*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not production tested.

NO.EA-165-160603

R5460x2xxAF version

Unless otherwise specified, Ta=25°C

						I Inci
Symbol	Item	Conditions	Min.	Тур.	Max.	Uni t
Vdd1	Operating input voltage	Voltage defined as VDD-Vss	1.5		10.0	V
Vst	Minimum operating Voltage for 0V charging	Voltage defined as Vpp-V- Vpp-Vss=0V			1.8	V
Vdet1u	CELL1 Over-charge threshold	Detect rising edge of supply voltage R1=330 Ω R1=330 Ω (Ta=-5 to 55°C) ^{*Note}	Vdet1u-0.025 Vdet1u-0.030	Vdet1u Vdet1u	Vdet10+0.025V det10+0.030	V V
V_{REL1U}	CELL1 Over-charge released voltage	R1=330Ω	Vrel1u-0.05	Vrel1u	VREL1U+0.05	V
tV_{DET1}	Output delay of over-charge	VDD=3.2V to 4.5V, Vc-Vss=3.2V	0.7	1.0	1.3	s
tVREL1	Output delay of release from over- charge	VDD=4.5V to 3.2V, Vc-Vss=3.2V	11	16	21	m s
	CELL2 Over-charge detector threshold	Detect rising edge of supply voltage R2=330 Ω R2=330 Ω (Ta=-5 to 55°C) ^{'Note}	Vdet1l-0.025 Vdet1l-0.030	Vdet1l Vdet1l	Vdet1l+0.025 Vdet1l+0.030	V V
V_{REL1L}	CELL2 Over-charge released voltage	R2=330Ω	Vrel1L-0.050	Vrel1L	Vrel1L+0.050	V
Vdet2u	CELL1 Over-discharge threshold	Detect falling edge of supply voltage	Vdet2u×0.975	Vdet2u	Vdet2u×1.025	V
Vrel2U	CELL1 Released Voltage from Over- discharge	Detect rising edge of supply voltage	Vrel2u× 0.975	Vrel2u	Vrel2u×1.025	V
	Output delay of over-discharge	Vpp-Vc=3.2V to 1.9V Vc- Vss=3.2V	89	128	167	m s
tVREL2	Output delay of release from over- discharge	Vpp-Vc=1.9V to 3.2V Vc- Vss=3.2V	0.7	1.2	1.7	m s
Vdet2L	CELL2 Over-discharge threshold	Detect falling edge of supply voltage	Vdet2l×0.975	Vdet2L	Vdet2l×1.025	V
Vrel2L	CELL2 Released Voltage from Over- discharge	Detect rising edge of supply voltage	Vrel2l×0.975	Vrel2L	Vrel2L×1.025	V
Vdet3	Excess discharge-current threshold	Detect rising edge of 'V-' pin voltage	Vdet3-0.015	Vdet3	VDET3+0.015	V
tVdetз	Output delay of excess discharge current	Vpp-Vc=Vc-Vss=3.2V, V-=0V to 0.5V	8	12	16	m s
tVREL3	Output delay of release from excess discharge-current	Vpp-Vc=Vc-Vss=3.2V, V-=3V to 0V	0.7	1.2	1.7	m s
			-0.44	-0.40	-0.36	
Vdet4	Excess charge-current threshold	Detect falling edge of 'V-' pin voltage	-0.23	-0.20	-0.17	V
	-		-0.13	-0.10	-0.07	
tVdet4	Output delay of excess charge-current	VDD-Vc=Vc-Vss=3.2V, V-=0V to -1V	5	8	11	m s
tVREL4	Output delay of release from excess charge-current	Vpp-Vc=Vc-Vss=3.2V, V-=-1V to 0V	0.7	1.2	1.7	m s
Vshort	Short protection voltage	VDD-VC=VC-Vss=3.2V	0.7	1.1	1.5	V
	Output Delay of Short protection	V _{DD-Vc=Vc-Vss=} 3.2V, V-=0V to 6.4VV	150	300	500	μs
Rshort	Reset resistance for Excess discharge-current protection	VDD-Vc=Vc-Vss=3.2V, V-=1V	25	40	75	kΩ
Vds	Delay Shortening Mode input voltage	VDD-VC=VC-Vss=4.0V	-2.2	-1.6	-1.0	V
	Nch ON voltage of Cout	IOL=50µA VDD-VC=VC-Vss=4.5V		0.4	0.5	V
Voh1	Pch ON voltage of Cout	Іон=-50µA Vod-Vc=Vc-Vss=3.2V	6.8	7.4		V
Vol2	Nch ON voltage of Dout	IOL=50µA VDD-VC=VC-VSS=1.9V		0.2	0.5	V
Vон2	Pch ON voltage of Dout	Іон=-50µА, Vod-Vc=Vc- Vss=3.2V	6.8	7.4		V
ldd	Supply current	VDD-VC=VC-Vss=3.2V V-=0V		4.0	8.0	μA
ls	Standby current	VDD-VC=VC-Vss=1.9V			0.1	μA

*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not production tested.

R5460x2xx NO.EA-165-160603

OPERATION

• VDET1U, VDET1L / Over-Charge Detectors

The VDET1U and VDET1L monitor the voltage between VDD pin and Vc pin (the voltage of Cell1) and the voltage between Vc pin and Vss pin (the voltage of Cell2), if either voltage becomes equal or more than the over-charge detector threshold, the over-charge is detected, and an external charge control Nch MOSFET turns off with Court pin being at "L" level.

 V_{DET1U} is the detector of Cell1, and the V_{DET1L} is the detector of Cell2.

To reset the over-charge and make the Cout pin level to "H" again after detecting over-charge, in such conditions that a time when the both Cell1 and Cell2 are down to a level lower than over-charge voltage, by connecting a kind of load to Vbb after disconnecting a charger from the battery pack. Then, the output voltage of Cout pin becomes "H" and it makes an external Nch MOSFET turn on, and charge cycle is available. In case of the charger is continuously connected and over-charge becomes possible. Therefore there is a specific hysteresis for over-charge detectors. To judge whether or not load is connected, the built-in excess-discharge current detector is used. By connecting some load, V- pin voltage becomes equal or more than excess-discharge current detector threshold, and reset the over-charge detecting state.

Further, either or both voltage of Cell1 and Cell2 is higher than the over-charge detector threshold, if a charger is removed and some load is connected, Cout outputs "L", however, load current can flow through the parasitic diode of the external charge control Nch MOSFET. After that, when both voltages of Cell1 and Cell2 become lower than the over-charge detector threshold, Cout becomes "H".

Internal fixed output delay times for over-charge detection and release from over-charge exist. If either or both of the voltage of Cell1 or Cell2 keeps its level more than the over-charge detector threshold, and output delay time passes, over-charge voltage is detected. Even when the voltage of Cell1 or Cell2 pin level becomes equal or higher level than VDET1 if these voltages would be back to a level lower than the over-charge detector threshold within a time period of the output delay time, the over-charge is not detected. Besides, after detecting over-charge, while the both of Cell1 and Cell2 voltages are lower than the over-charge detector threshold is connected, if the voltage is recovered within output delay time of release from over-charge, over-charge state is not released.

A level shifter incorporated in a buffer driver for the Cout pin makes the "L" level of Cout pin to the V - pin voltage and the "H" level of Cout pin is set to VDD voltage with CMOS buffer.

• VDET2U, VDET2L / Over-Discharge Detectors

The VDET2U and VDET2L monitor the voltage between VDD pin and VC pin (Cell1 voltage) and the voltage between VC pin and Vss pin (Cell2 voltage). When either of the cell1 or cell2 voltage becomes equal or less than the over-discharge detector threshold, the over-discharge is detected and discharge stops by the external discharge control Nch MOSFET turning off with the Dout pin being at "L" level.

The conditions to release over-discharge voltage detector after detecting over-discharge voltage are as follows:

A/D versions: after connecting a charger, when the cell voltage becomes higher than over-discharge detector threshold or, without connecting charger, when the cell voltage becomes equal or higher than over-discharge released voltage.

C version: after connecting a charger, when the cell voltage becomes higher than over-discharge detector threshold voltage. E version: whether connecting a charger, or not, when the cell voltage becomes higher than released voltage from overdischarge.

F version: after connecting a charger, when the cell voltage becomes higher than released voltage from over-discharge. In case that connecting a charger, for A/C/D versions, there is no hysteresis for over-discharge detector. For E/F versions, even if a charger is connected to the battery pack, the hysteresis of over-discharge detector exists.

When a cell voltage equals to zero, if the voltage of a charger is equal or more than 0V-charge minimum voltage (Vst), Cout pin becomes "H" and a system is allowable to charge.

The output delay time for over-discharge detect is fixed internally. Even if either voltage of Cell1 or Cell2 is down to equal or lower than the over-discharge detector threshold, if the both voltages of Cell1 or Cell2 would be back to a level higher than the over-discharge detector threshold within a time period of the output delay time, the over-discharge is not detected. Output delay time for release from over-discharge is also set.

After detecting over-discharge, supply current would be reduced and be into standby by halting unnecessary circuits and

NO.EA-165-160603

consumption current of the IC itself is made as small as possible.

C/F version: after detecting over-discharge, all the circuits are halted and the R5460 will be into standby mode. Others: after detecting over-discharge, whole circuits except over-discharge released detector function are halted, and the R5460 will be into standby mode.

The output type of DOUT pin is CMOS having "H" level of VDD and "L" level of Vss.

• VDET3 /Excess discharge-current Detector, Short Circuit Protector

Both of the excess current detector and short circuit protection can work when the both of control FETs are in "ON" state. When the V- pin voltage is up to a value between the short protection voltage (Vshort) and excess discharge-current threshold VDET3, VDET3 operates and further soaring of V- pin voltage higher than Vshort makes the short circuit protector enabled. This leads the external discharge control Nch MOSFET turns off with the Dout pin being at "L" level.

An output delay time for the excess discharge-current detector is internally fixed.

A quick recovery of V- pin level from a value between Vshort and VDET3 within the delay time keeps the discharge control FET staying "H" state. Output delay time for Release from excess discharge-current detection is also set.

When the short circuit protector is enabled, the Dout would be "L" and the delay time is also set.

The V- pin has a built-in pull-down resistor to the Vss pin, that is, the resistance to release from excess-discharge current.

After an excess discharge-current or short circuit protection is detected, removing a cause of excess discharge-current or external short circuit makes an external discharge control FET to an "ON" state automatically with the V- pin level being down to the Vss level through the built-in pulled down resistor. The reset resistor of excess discharge-current is off at normal state. Only when detecting excess discharge-current or short circuit, the resistor is on.

Output delay time of excess discharge-current is set shorter than the delay time for over-discharge detector. Therefore, if V_{DD} voltage would be lower than V_{DET2} at the same time as the excess discharge-current is detected, the R5460x is at excess discharge-current detection mode. By disconnecting a load, V_{DET3} is automatically released from excess discharge-current.

• VDET4/ Excess charge-current detector

When the battery pack is chargeable and discharge is also possible, VDET4 senses V- pin voltage. For example, in case that a battery pack is charged by an inappropriate charger, an excess current flows, then the voltage of V- pin becomes equal or less than excess charge-current detector threshold. Then, the output of COUT becomes "L", and prevents from flowing excess current in the circuit by turning off the external Nch MOSFET.

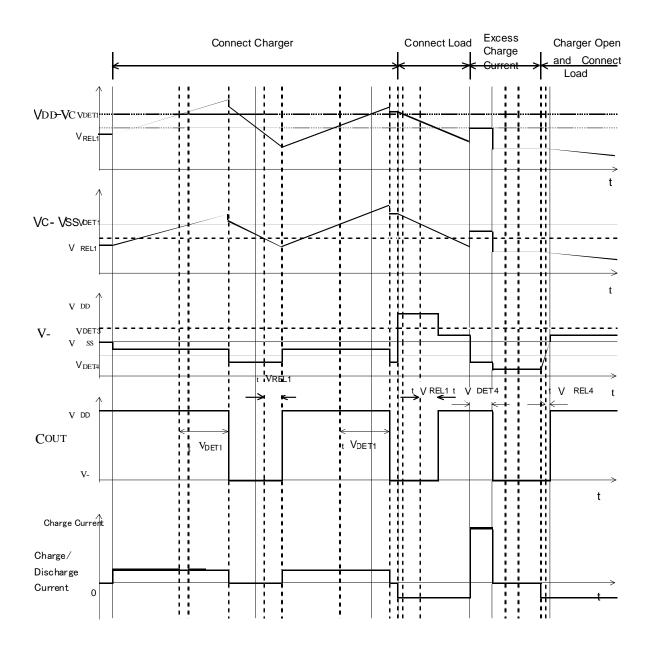
Output delay of excess charge current is internally fixed. Even the voltage level of V- pin becomes equal or lower than the excess charge-current detector threshold, the voltage is higher than the VDET4 threshold within the delay time, the excess charge current is not detected. Output delay for the release from excess charge current is also set.

 $\mathsf{V}_{\mathsf{DET4}}$ can be released with disconnecting a charger and connecting a load.

• DS (Delay Shorten) function

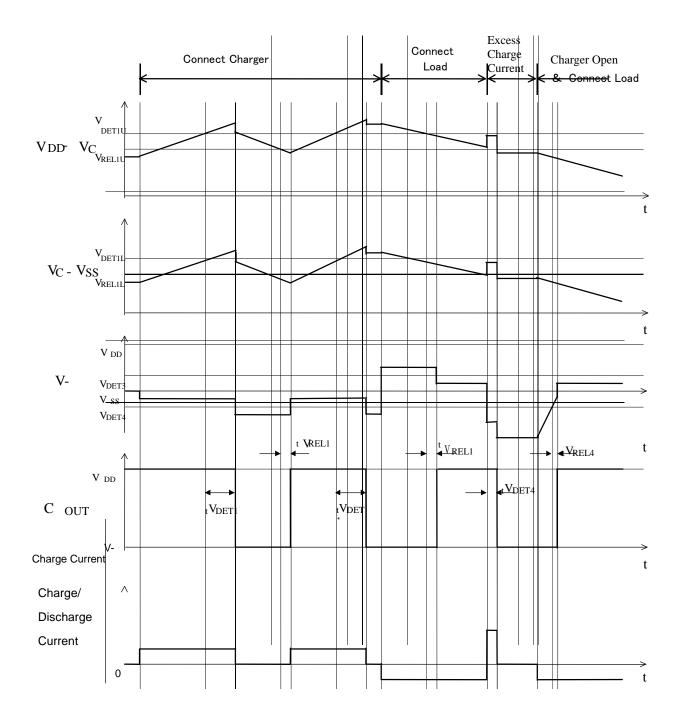
Output delay time of over-charge, over-discharge can be shorter than those setting value by forcing equal or less than the delay shortening mode voltage to V- pin when the Cout is "H".

Operation against 2-Cell Unbalance

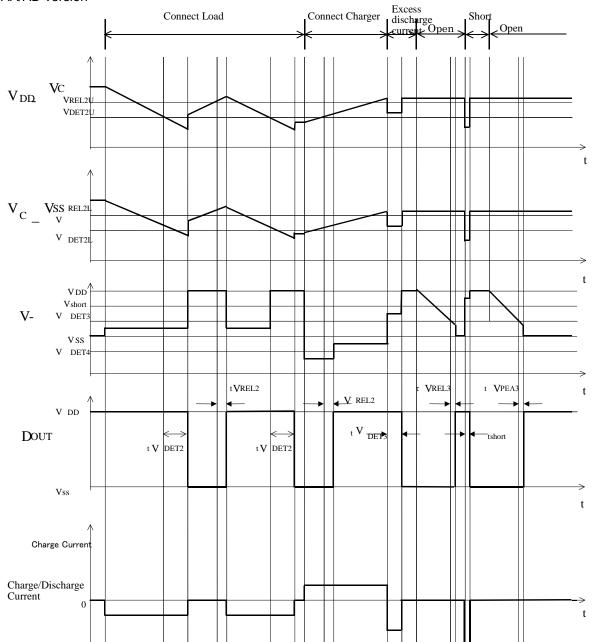

A/D/E version: If one of the cells detects over-charge and the output of Cout becomes "L" and keeps the status, even if the other cell detects over-charge or over-discharge or short, the over-charge status is maintained and the output of Cout keeps "L". If one of the cell detects over-charge and the output of Cout becomes "L", the other cell detects over-discharge and the former cell is released from over-charge, after the delay time of the released from over-charge, the output of Cout becomes "L". After detecting over-discharge, A/D/E version halts internal unnecessary circuits and be into the standby mode. (Supply current Max. 2.0µA)

C/F version: If one of the cells detects over-charge, and when the Cour becomes "L", even if the other cell would detect overdischarge or short, the over-charge detector will be dominant and Cour keeps the "L" level. If one of the cell detects the overdischarge, and when the Dour becomes "L", in case that a charger is connected to the battery pack and the other cell detects over-charge, the internal counter will start and after the delay time of over-discharge detector, Dour will become "H". After the delay time of over-charge release from when the internal counter starts, Cour will be "L". If the over-discharge is detected, internal unnecessary circuits will be cut off and the standby mode will be realized. (Standby current Max. 0.1μ A) In any versions, the external FETs do not turn off at the same time.

R5460x2xx NO.EA-165-160603

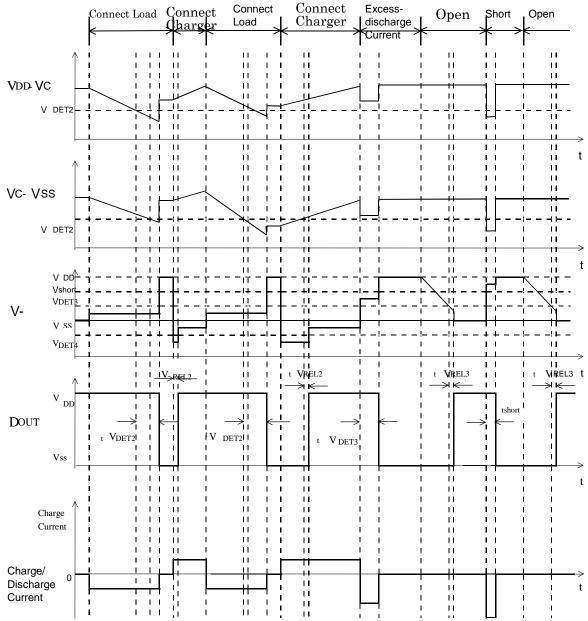

TIMING CHART

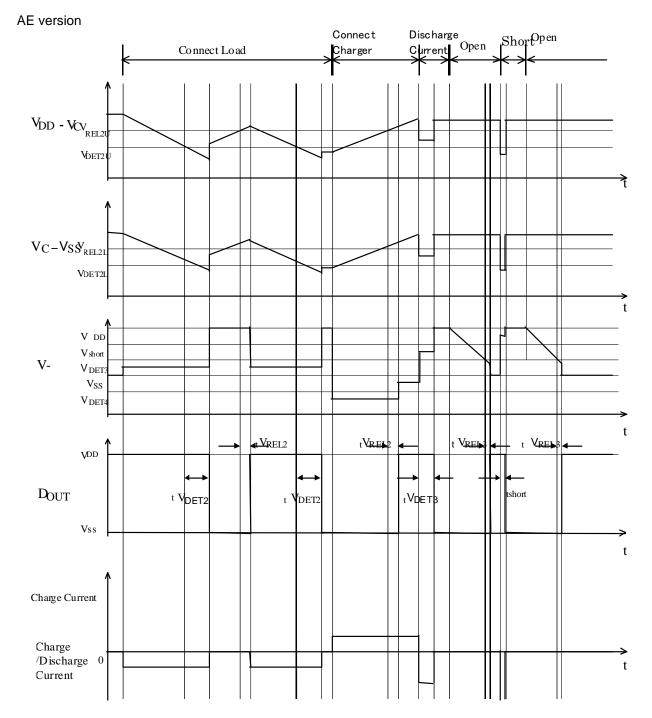
(1) Timing diagram of Over-charge, Excess charge current AA/AC/AD version



NO.EA-165-160603

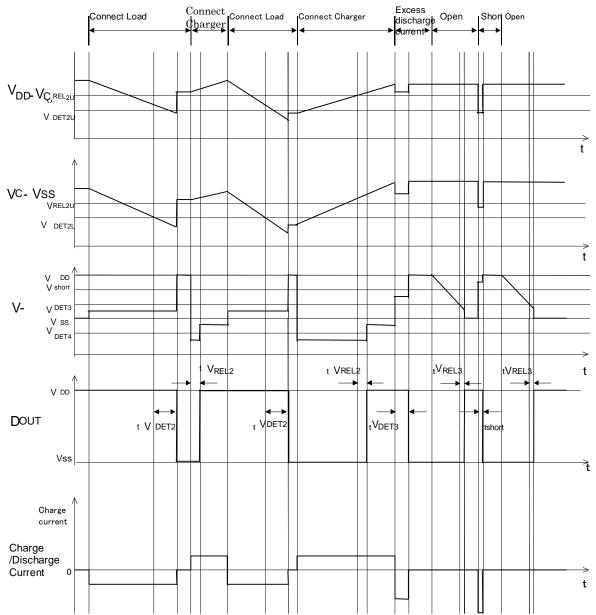
AE / AF version


NO.EA-165-160603

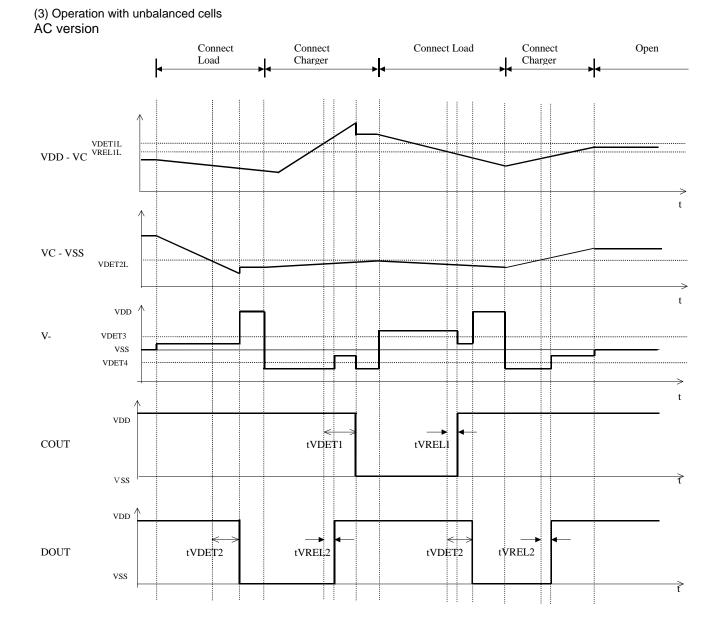

(2) Over-discharge, Excess discharge current, short circuit AA/AD version

NO.EA-165-160603

AC version

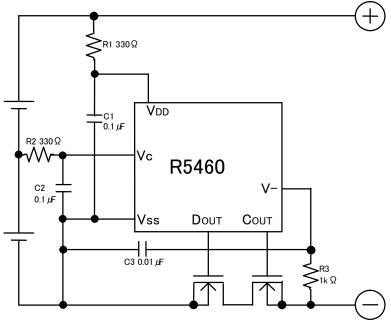


NO.EA-165-160603



NO.EA-165-160603

AF version



NO.EA-165-160603

NO.EA-165-160603

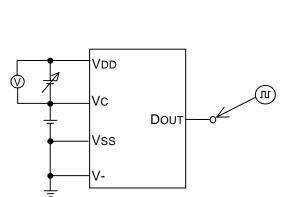
TYPICAL APPLICATION AND TECHNICAL NOTES

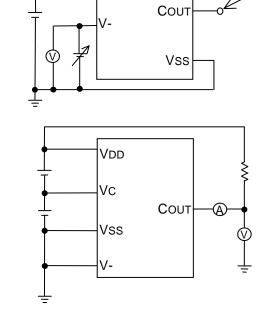
TECHNICAL NOTES

R1, R2, C1 and C2 stabilize a supply voltage to the R5460xxxxx. A recommended R1, R2 value is less than $1k\Omega$. A larger value of R1 and R2 makes the detection voltage shift higher because of some conduction current in the R5460x2xxxx.

To stabilize the operation, the value of C1 and C2 should be equal or more than 0.01μ F.

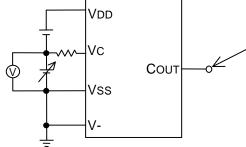
R1 and R3 can operate also as parts for current limit circuit against reverse charge or applying a charger with excess charging voltage beyond the absolute maximum rating of the R5460xxxxx, the battery pack. Small value of R1 and R3 may cause over-power consumption rating of power dissipation of the R5460xxxxx. Thus, the total value of 'R1+R3' should be equal or more than $1k\Omega$. If a large value R3 is set, after detecting over-discharge, the release by connecting a charger may not be possible. Therefore, recommendation value of R3 is equal or less than $3k\Omega$.

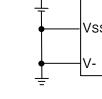

To stabilize the operation of the IC, make sure to mount 0.01μ F or more capacitor as C3.

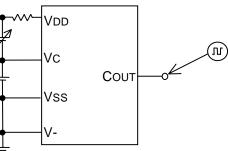

The typical application circuit diagram is just an example. This circuit performance largely depends on the PCB layout and external components. In the actual application, fully evaluation is necessary.

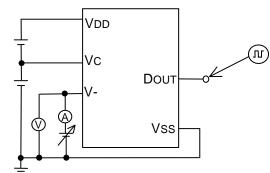
Over-voltage and the over current beyond the absolute maximum rating should not be forced to the protection IC and external components. Although the short protection circuit is built in the IC, if the positive terminal and the negative terminal of the battery pack are short, during the delay time of short limit detector, large current flows through the FET. Select an appropriate FET with large enough current capacity to prevent the IC from burning damage.

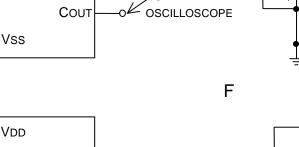
We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to humans or damages to property resulting from such failure, users should be careful enough to incorporate safe measures in design, such as redundancy feature, fire-containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.

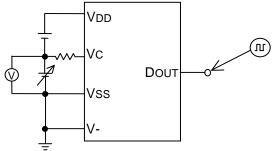

RICOH


Vdd


Vc




D



DOUT

(U)

TEST CIRCUITS

Vdd

/-

А

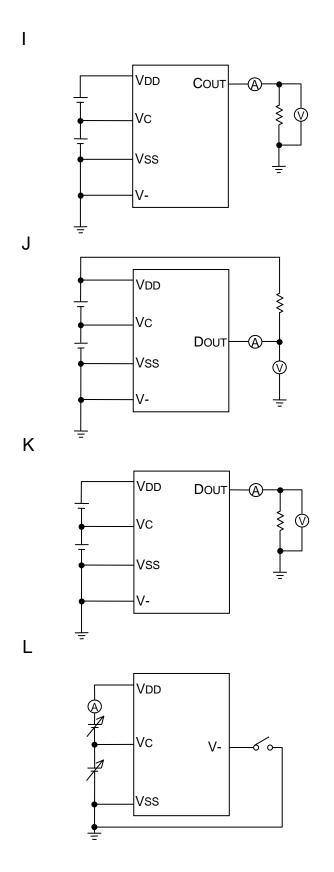
В

(V)

Ø

Е

G

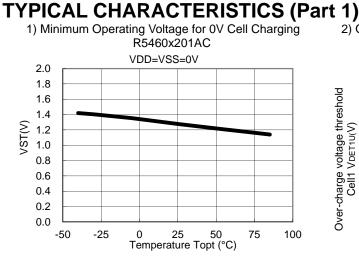

Н

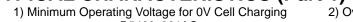
(JU)

R5460x2xx NO.EA-165-160603

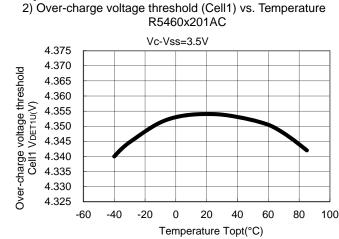
J.

R5460x2xx NO.EA-165-160603

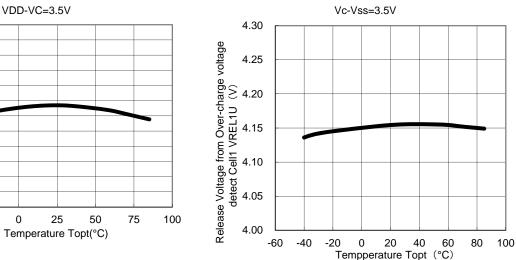


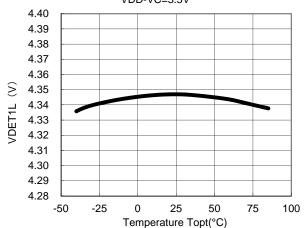

NO.EA-165-160603

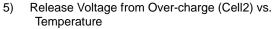
Typical Characteristics were obtained with using those above circuits:

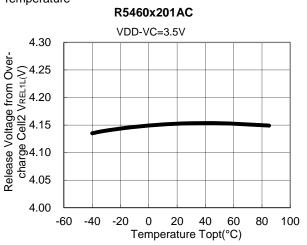

Test Circuit A:	Part1: Typical characteristics 1)
Test Circuit B:	Part1: Typical characteristics 2) 4) 6) 7)
Test Circuit C:	Part1: Typical characteristics 3) 5)
Test Circuit D:	Part1: Typical characteristics 8) 10) 12) 13)
Test Circuit E:	Part1: Typical characteristics 9) 11)
Test Circuit F:	Part1: Typical characteristics 14) 15) 16) 17) 18) 19)
Test Circuit G:	Part1: Typical characteristics 20) 21) 22) 23)
Test Circuit H:	Part1: Typical characteristics 24)
Test Circuit I:	Part1: Typical characteristics 25)
Test Circuit J:	Part1: Typical characteristics 26)
Test Circuit K:	Part1: Typical characteristics 27)
Test Circuit L:	Part1: Typical characteristics 28) 29) 30)

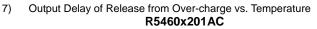
NO.EA-165-160603

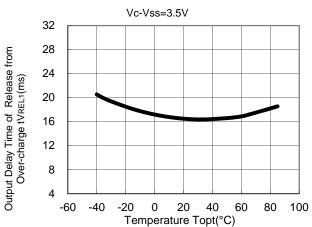




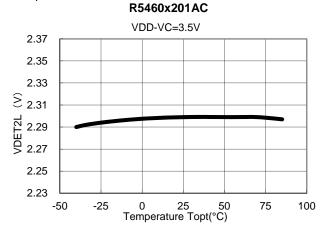


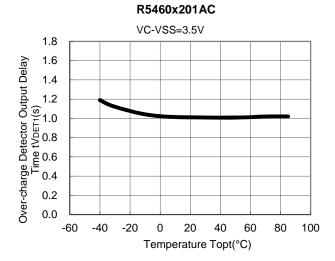

4) Release Voltage from Over-charge (Cell1) vs. Temperature R5460x201AC

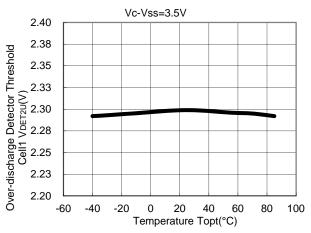


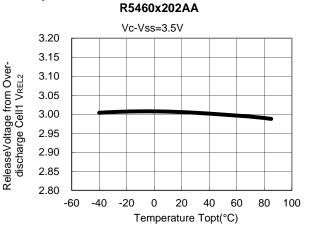


NO.EA-165-160603

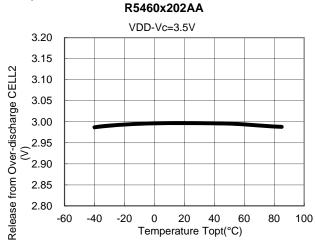




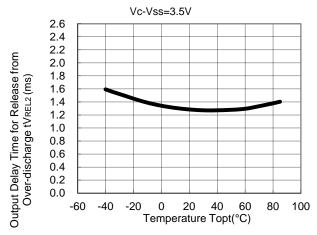

9) Over-discharge Detector Threshold (Cell2) vs. Temperature


6) Output Delay of Over-charge Detector vs. Temperature

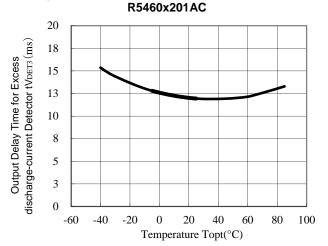
8) Over-discharge Detector Threshold (Cell1) vs. Temperature R5460x201AC

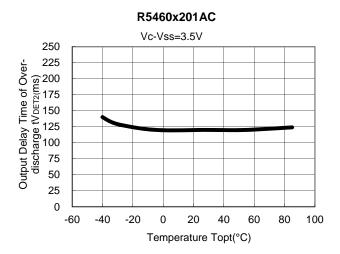


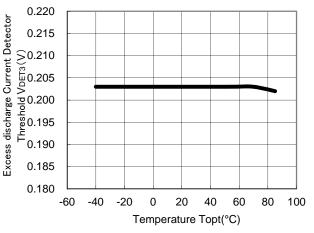
10) Release Voltage from Over-discharge (Cell1) vs. Temperature

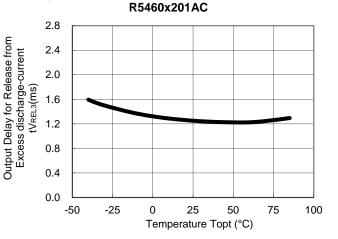


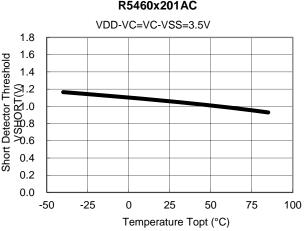
NO.EA-165-160603

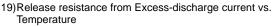

11) Release Voltage from Over-discharge (Cell2) vs. Temperature

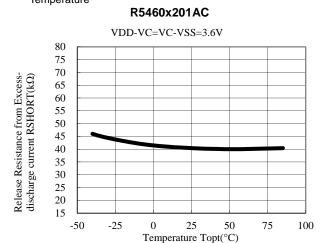



15)Output Delay Time for Excess discharge-current Detector vs. Temperature

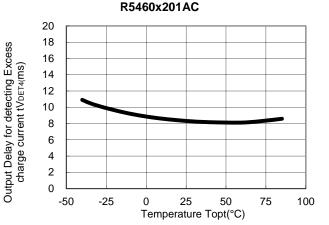

12) Output Delay Time for Over-discharge vs. Temperature

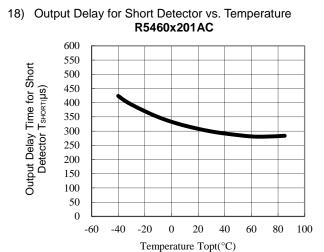

14) Excess discharge Current Detector Threshold vs. Temperature R5460x201AC

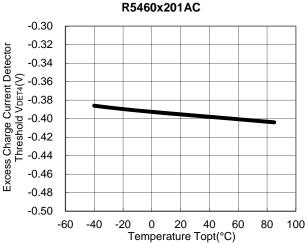

16) Output Delay for Release from Excess discharge-current vs. Temperature



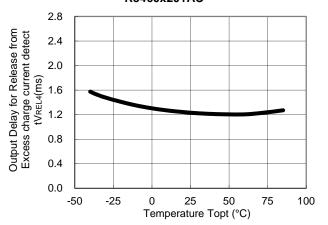
NO.EA-165-160603



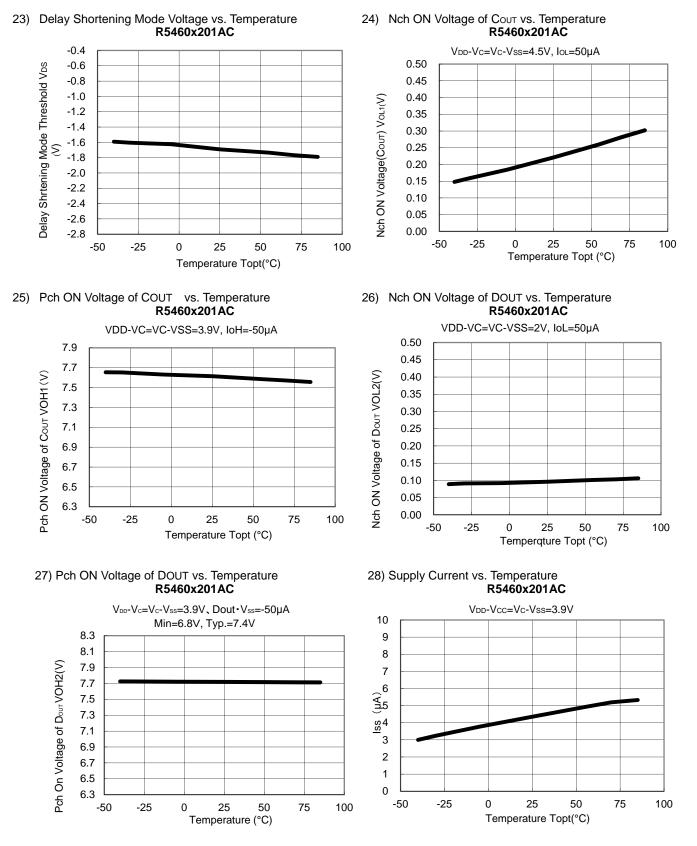

17) Short Detector Voltage Threshold vs. Temperature R5460x201AC

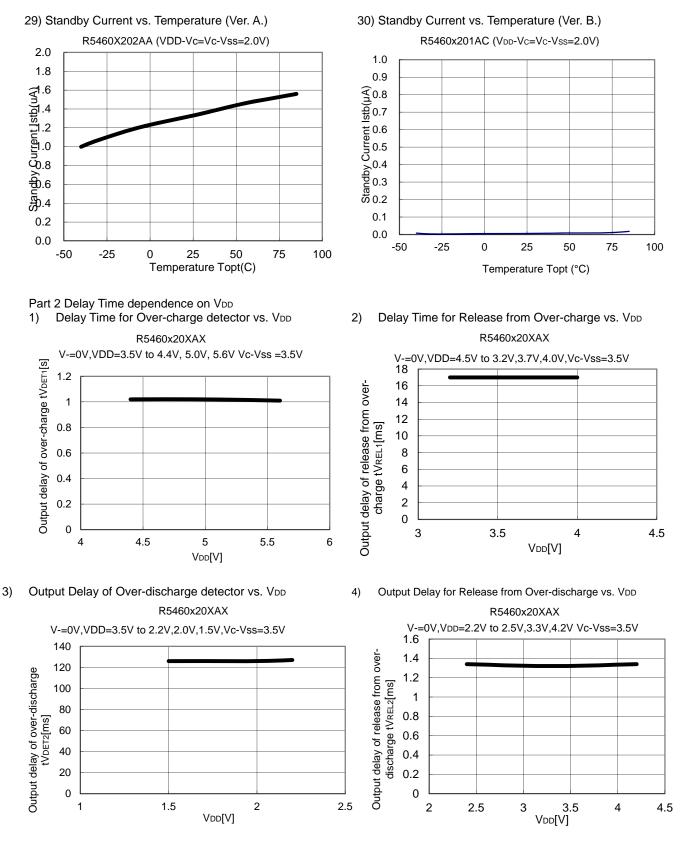


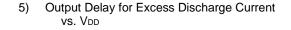
21) Output Delay Time of Excess-charge current Detector Threshold vs. Temperature

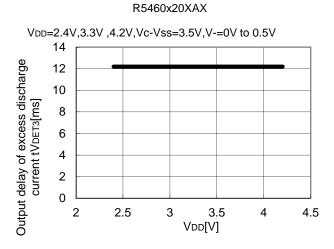


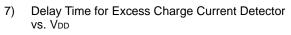


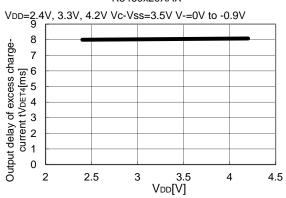

20) Excess-charge current Detector Threshold vs. Temperature

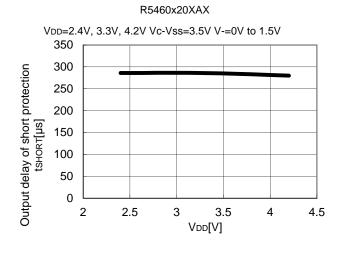

22) Output Delay Time for Release from Excess-charge current vs. Temperature R5460x201AC

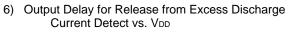


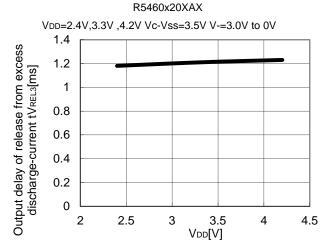


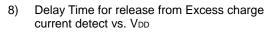

NO.EA-165-160603


NO.EA-165-160603

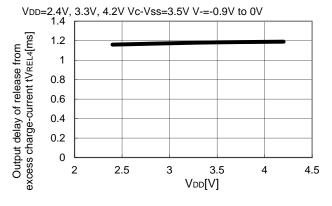


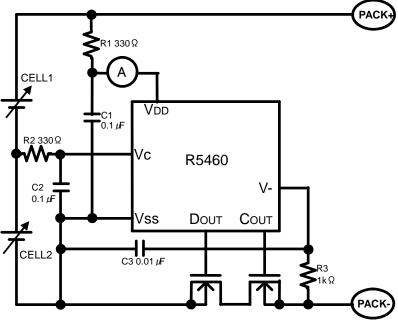



R5460x20XAX

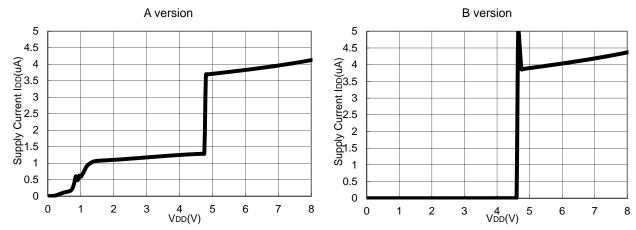


9) Output Delay for Short vs. VDD

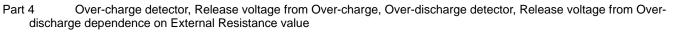


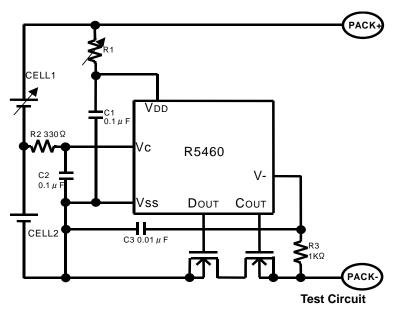


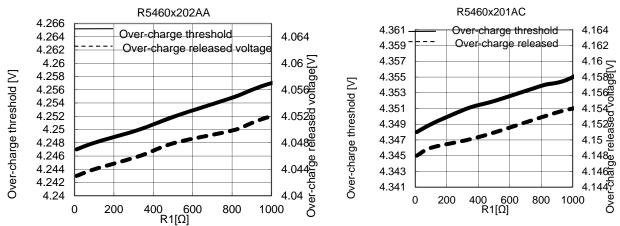
R5460x20XAX


NO.EA-165-160603

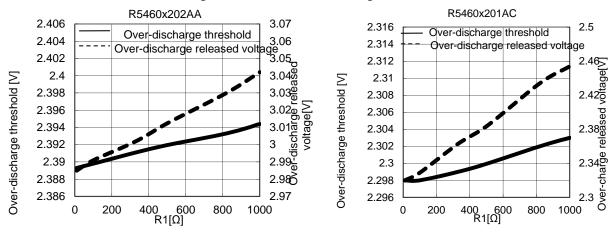
Part 3 Supply Current dependence on VDD

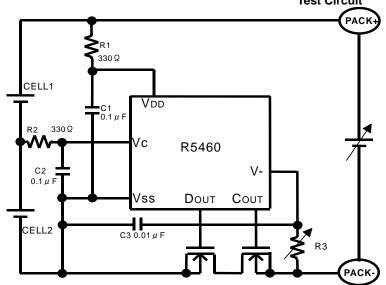



Test Circuit

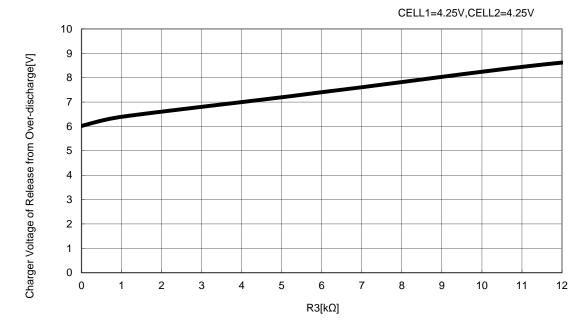


NO.EA-165-160603




Over-charge Detector Threshold / Released Voltage from Over-discharge vs. R1

Over-discharge / Released from Over-charge Threshold vs. R1


NO.EA-165-160603

Part 5 Charger Voltage at Released from Over-discharge with a Charger dependence on R2
Test Circuit

R5460x201AC

NO.EA-165-160603

R5460x2xxxx CODE LIST

													2016.05
Product Name	Code Name	CELL1 Overcharge	CELL1 Overcharge	CELL2 Overcharge	CELL2 Overcharge	CELL1 Overdischarge	CELL1 Overdischarge	CELL2 Overdischarge	CELL2 Overdischarge	Excess	Excess	Overcharge Output	Overdischarge Output
Name	Name	Detector Threshold	Release Threshold	Detector Threshold	Release Threshold	Detector Threshhold	Release	Detector Threshold	Release	discharge-current Threshold	charge-current Threshold	Delay Time	Delay Time
		VDET1U (V)	VREL1U (V)	VDET1L (V)	VREL1L (V)	Vdet2u (V)	VREL2U (V)	VDET2L (V)	VREL2L (V)	Vdet3 (V)	Vdet4 (V)	tVdet1 (s)	tVDET2 (ms)
R5460N	201AC	4.350	4.150	4.350	4.150	2.300	-	2.300	-	0.200	-0.400	1	128
R5460N	202AA	4.250	4.050	4.250	4.050	2.400	3.000	2.400	3.000	0.150	-0.400	1	128
R5460N	203AA	4.350	4.150	4.350	4.150	2.300	3.000	2.300	3.000	0.200	-0.400	1	128
R5460N	204AA	4.350	4.150	4.350	4.150	2.300	3.000	2.300	3.000	0.150	-0.200	1	128
R5460N	205AA	4.250	4.050	4.250	4.050	2.400	3.000	2.400	3.000	0.100	-0.200	1	128
R5460N	206AA	4.290	4.050	4.290	4.050	2.900	3.100	2.900	3.100	0.150	-0.200	1	128
R5460N	207AA	4.350	4.150	4.350	4.150	2.300	3.000	2.300	3.000	0.200	-0.200	1	128
R5460N	207AE	4.350	4.150	4.350	4.150	2.300	3.000	2.300	3.000	0.200	-0.200	1	128
R5460N	207AF	4.350	4.150	4.350	4.150	2.300	3.000	2.300	3.000	0.200	-0.200	1	128
R5460N	208AA	4.250	4.050	4.250	4.050	2.400	3.000	2.400	3.000	0.200	-0.200	1	128
R5460N	208AE	4.250	4.050	4.250	4.050	2.400	3.000	2.400	3.000	0.200	-0.200	1	128
R5460N	208AF	4.250	4.050	4.250	4.050	2.400	3.000	2.400	3.000	0.200	-0.200	1	128
R5460N	209AD	3.650	3.450	3.650	3.450	2.500	3.000	2.500	3.000	0.200	-0.200	1	128
R5460N	210AD	3.650	3.450	3.650	3.450	2.000	2.500	2.000	2.500	0.200	-0.200	1	128
R5460N	211AA	4.250	4.050	4.250	4.050	3.000	3.200	3.000	3.200	0.150	-0.200	1	128
R5460N	212AA	4.290	4.050	4.290	4.050	3.000	3.200	3.000	3.200	0.200	-0.200	1	128
R5460N	212AE	4.290	4.050	4.290	4.050	3.000	3.200	3.000	3.200	0.200	-0.200	1	128
R5460N	212AF	4.290	4.050	4.290	4.050	3.000	3.200	3.000	3.200	0.200	-0.200	1	128
R5460N	213AD	3.900	3.450	3.900	3.450	2.000	2.500	2.000	2.500	0.200	-0.200	1	128
R5460N	214AC	4.250	4.050	4.250	4.050	2.800	-	2.800	-	0.200	-0.200	1	128
R5460N	214AE	4.250	4.050	4.250	4.050	2.800	3.000	2.800	3.000	0.200	-0.200	1	128
R5460N	214AF	4.250	4.050	4.250	4.050	2.800	3.000	2.800	3.000	0.200	-0.200	1	128
R5460N	215AF	4.300	4.100	4.300	4.100	3.200	3.400	3.200	3.400	0.150	-0.200	1	128
R5460N	218AF	4.250	4.050	4.250	4.050	2.800	3.000	2.800	3.000	0.200	-0.100	1	128
R5460N	222AA	4.200	4.100	4.200	4.100	2.700	2.850	2.700	2.850	0.200	-0.200	1	128
R5460N	223AA	4.250	4.100	4.250	4.100	2.500	3.000	2.500	3.000	0.100	-0.100	1	128
R5460N	225AF	4.300	4.100	4.300	4.100	3.000	3.200	3.000	3.200	0.200	-0.150	1	128
R5460N	227AA	4.425	4.000	4.425	4.000	2.800	3.000	2.800	3.000	0.150	-0.150	1	128
R5460N	229AD	3.650	3.300	3.650	3.300	2.000	2.500	2.000	2.500	0.200	-0.200	1	128
R5460N	230AA	4.375	4.175	4.375	4.175	2.500	2.700	2.500	2.700	0.100	-0.100	1	128
R5460N	233AF	4.100	3.950	4.100	3.950	2.800	3.000	2.800	3.000	0.200	-0.200	1	128
R5460N	235AA	4.475	4.275	4.475	4.275	2.600	2.900	2.600	2.900	0.200	-0.200	1	128

R5460x 2xx Package Type N: SOT-23-6 K: PLP1820-6

<u>2xx</u>	Ах										
·	1 +										
Туре	Function	Function Vesion									
3-6	A: Over-Cl	A: Over-Charge = Auto-Release, Over-Discharge = Auto Release									
20-6	C:Over-C	C: Over-Charge = Auto-Release, Over-Discharge = Latch									
	D: Over-C	harge = Auto-Re	elease, Over-Dis	scharge = Auto F	Release, VDET1U/L	<4.0V					
	E:Over-C	E: Over-Charge = Auto-Release, Over-Discharge = Auto Release (No Hysteresis Cancellation)									
	F: Over-Cl	narge = Auto-Re	elease, Over-Dis	charge = Latch	(Hysteresis)						
	Delay Time Version										
↓ ↓	Ver.	tVdet1(s)	tVdet2(ms)	tVdet3(ms)	tVdet4(ms)	tSHORT(µA)					
Version	A	1	128	12	8	300					

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

https://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

Ricoh Electronic Devices Co., Ltd.

Shin-Yokohama Office (International Sales) 2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074

Ricoh Americas Holdings, Inc way, Suite 200 Campbell, CA 95008, U.S.A. 675 Campbell Technology Parl Phone: +1-408-610-3105

Ricoh Europe (Netherlands) B.V. Semiconductor Support Centre

Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

Ricoh International B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0

Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713

Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China

Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 Ricoh Electronic Devices Shanghai Co., Ltd.

Shenzhen Branch 1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China Phone: +86-755-8348-7600 Ext 225

Ricoh Electronic Devices Co., Ltd.

 Taipei office

 Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)

 Phone: +886-2-2313-1621/1622

 Fax: +886-2-2313-1621/1622