
Proton Compiler. Development Suite.

 1
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Crownhill reserves the right to make changes to the products contained in this publication in or-
der to improve design, performance or reliability. Except for the limited warranty covering a
physical CD-ROM and/or Hardware License key supplied with this publication as provided in
the End-User License agreement, the information and material content of this publication and
possible accompanying CD-ROM are provided “as is” without warranty of any kind express or
implied including without limitation any warranty concerning the accuracy adequacy or com-
pleteness of such information or material or the results to be obtained from using such informa-
tion or material. Neither Crownhill Associates Limited or the author shall be responsible for any
claims attributable to errors omissions or other inaccuracies in the information or materials con-
tained in this publication and in no event shall Crownhill Associates or the author be liable for
direct indirect or special incidental or consequential damages arising out of the use of such in-
formation or material. Neither Crownhill or the author convey any license under any patent or
other right, and make no representation that the circuits are free of patent infringement. Charts
and schedules contained herein reflect representative operating parameters, and may vary de-
pending upon a user’s specific application.

All terms mentioned in this manual that are known to be trademarks or service marks have
been appropriately marked. Use of a term in this publication should not be regarded as affect-
ing the validity of any trademark.

PICmicro™ is a trade name of Microchip Technologies Inc. www.microchip.com

Proton™ is a trade name of Crownhill Associates Ltd. www.crownhill.co.uk

EPIC™ is a trade name of microEngineering Labs Inc. www.microengineeringlabs.com

The Proton IDE was written by David Barker of Mecanique www.mecanique.co.uk

Proteus VSM © Copyright Labcenter Electronics Ltd 2004 www.labcenter.co.uk

Web url’s correct at time of publication.

The Proton compiler and documentation was written by Les Johnson

All Manufacturer Trademarks Acknowledged.

If you should find any anomalies or omission in this document, please contact us, as we appre-
ciate your assistance in improving our products and services.

First published by Crownhill Associates Limited, Cambridge, England, 2004.

http://www.labcenter.co.uk/

Proton Compiler. Development Suite.

 2
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Introduction
The Proton compiler was written with simplicity and flexibility in mind. Using BASIC, which is
almost certainly the easiest programming language around, you can now produce extremely
powerful applications for your PICmicro™ without having to learn the relative complexity of as-
sembler, or wade through the gibberish that is C.

The Proton IDE provides a seamless development environment, which allows you to write, de-
bug and compile your code within the same Windows environment, and by using a compatible
programmer, just one key press allows you to program and verify the resulting code in the
PICmicro™ of your choice!

Contact Details
For your convenience we have set up a web site www.picbasic.org, where there is a section
for users of the Proton compiler, to discuss the compiler, and provide self help with programs
written for Proton BASIC, or download sample programs. The web site is well worth a visit now
and then, either to learn a bit about how other peoples code works or to request help should
you encounter any problems with programs that you have written.

Should you need to get in touch with us for any reason our details are as follows: -

Postal
Crownhill Associates Limited.
Old Station Yard
Station Road
Ely
Cambridgeshire.
CB6 3PZ.

Telephone
(+44) 01353 749990

Fax
(+44) 01353 749991

Email
sales@crownhill.co.uk

Web Sites
http://www.crownhill.co.uk
http://www.picbasic.org

Proton Compiler. Development Suite.

 3
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Table of Contents.

Proton IDE Overview ... 11

Menu Bar... 12

Main Toolbar.. 13

Edit Toolbar ... 14

Code Explorer .. 16

Results View .. 19

Editor Options .. 20

Highlighter Options... 22

Compile and Program Options ... 24

Installing a Programmer.. 25

Creating a custom Programmer Entry... 26

Microcode Loader ... 28

Loader Options... 30

Loader Main Toolbar... 31

IDE Plugins .. 32

ASCII Table ... 33

Hex View ... 33

Assembler Window ... 34

Assembler Main Toolbar .. 35

Assembler Editor Options .. 36

Serial Communicator... 37

Serial Communicator Main Toolbar... 38

Labcenter Electronics Proteus VSM... 41

ISIS Simulator Quick Start Guide ... 41

Compiler Overview... 44

PICmicro Devices.. 45

Limited 12-bit Device Compatibility. ... 45

Programming Considerations for 12-bit core Devices. .. 46

Device Specific issues ... 47

Identifiers .. 48

Line Labels .. 48

Variables ... 49

Proton Compiler. Development Suite.

 4
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Floating Point Math..52
Floating Point To Integer Rounding ... 54
Floating Point Exception Flags... 55

Aliases..56

Constants ...59

Symbols ...59

Numeric Representations ...60

Quoted String of Characters ...60

Ports and other Registers...60

General Format ...61

A Typical basic Program Layout ..62

Line Continuation Character '_' ...63

Creating and using Arrays ..64

Creating and using Strings ...71

Creating and using Code Memory Strings ..77

Creating and using Eeprom Memory Strings with Edata ..79

String Comparisons ...81

Relational Operators ..84

Boolean Logic Operators ..85

Math Operators .. 86

Add..87

Subtract ...87

Multiply ..88

Multiply High...89

Multiply Middle ..89

Divide...90

Integer Modulus..91

Logical and ...92

Logical or..92

Logical Xor..93

Bitwise Shift Left ...93

Bitwise Shift Right ...94

Complement ...94

Bitwise Reverse '@' ...94

Decimal Digit extract '?' ...94

Abs ..95

Proton Compiler. Development Suite.

 5
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

fAbs .. 96

Acos.. 97

Asin... 98

Atan .. 99

Cos ..100

Dcd ..101

Exp ..102

fRound ...103

ISin ..104

ICos ...105

Isqr..106

Log ..107

Log10...108

Ncd ..109

Pow..110

Sin ...111

Sqr...112

Tan ..113

Div32 ...114

Commands and Directives ... 115

Adin ...119

Asm..EndAsm..121

Box ..122

Branch..123

BranchL..124

Break ...125

Bstart ...127

Bstop ...128

Brestart ..128

BusAck ...128

BusNack ...128

Busin..129

Busout..132

Button ..136

Call ..138

Proton Compiler. Development Suite.

 6
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Cdata ...139

CF_Init ...144

CF_Sector ...145

CF_Read...150

CF_Write ..153

Circle..157

Clear ..158

ClearBit ..159

Cls ...160

Config ..161
Config1 and Config2... 162

Continue...163

Context ..164
Context Save ... 164
Context Restore... 164

Counter ..166

Cread ...167

Cread8, Cread16, Cread32 ...168

Cursor ..170

Cwrite ..171

Dec ..172

Declare...173
Oscillator Frequency Declare. .. 173
Misc Declares. ... 174
Adin Declares. ... 178
Busin - Busout Declares.. 178
Hbusin - Hbusout Declare. .. 179
Hserin, Hserout, Hrsin and Hrsout Declares. ... 179
USART2 Declares for use with Hrsin2, Hserin2, Hrsout2 and Hserout2. ... 180
Hpwm Declares. .. 181
Alphanumeric (Hitachi) LCD Print Declares. .. 182
Graphic LCD Declares. .. 183
Samsung KS0108 Graphic LCD specific Declares. .. 183
Toshiba T6963 Graphic LCD specific Declares. .. 184
Keypad Declare.. 186
Rsin - Rsout Declares. .. 187
Serin - Serout Declare. ... 188
Shin - Shout Declare. ... 189
Compact Flash Interface Declares.. 189

DelayCs ..192

DelayMs ...193

DelayUs..194

Device ..195

Dig...196

Proton Compiler. Development Suite.

 7
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Dim..197

Disable ...202

DTMFout ..203

Edata ...204

Enable..209
Software Interrupts in BASIC .. 210

End ..211

Eread ...212

Ewrite...213

For...Next...Step..214

Freqout ..216

GetBit...218

Gosub ..219

Goto...223

HbStart...224

HbStop ...225

HbRestart ...225

HbusAck ...225

HbusNack ...225

Hbusin..226

Hbusout..229

High ...232

Hpwm ..233

Hrsin ..234

Hrsout ..240

Hserin ..245

Hserout ..251

I2Cin ..256

I2Cout..258

If..Then..ElseIf..Else..EndIf ..261

Include...263

Inc ...265

Inkey ...266

Input..267

LCDread ...268

LCDwrite...270

Proton Compiler. Development Suite.

 8
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Ldata ...272

Len ..277

Left$..279

Line..281

LineTo..282

LoadBit...283

LookDown ..284

LookDownL...285

LookUp...286

LookUpL ...287

Low..288

Lread ...289

Lread8, Lread16, Lread32 ..292

Mid$...294

On Goto ...296

On GotoL..298

On Gosub ...299

On_Hardware_Interrupt...301
Typical format of the interrupt handler with standard 14-bit core devices.. 302
Typical format of the interrupt handler with enhanced 14-bit core devices. ... 302
Typical format of the interrupt handler with 18F devices. .. 303

On_Low_Interrupt ...304

Output ...307

Org ..308

Oread...309

Owrite ..314

Pixel...316

Plot ..317

Pop ..319

Pot...321

Print...322
Using a Samsung KS0108 Graphic LCD .. 327
Using a Toshiba T6963 Graphic LCD .. 332

PulseIn...335

PulseOut...336

Push...337

Pwm ..342

Random..343

Proton Compiler. Development Suite.

 9
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

RC5in ...344

RCin ...345

Repeat...Until ..348

Resume ..349

Return..350

Right$..352

Rsin ...354

Rsout ...359

Seed ..364

Select..Case..EndSelect ..365

Serin ..367

Serout ..374

Servo ...382

SetBit ...384

Set_OSCCAL ...385

Set ...386

Shin ...387

Shout ...389

Snooze ...391

Sleep..392

SonyIn ...394

Sound ..395

Sound2...396

Stop ...397

Strn..398

Str$..399

Swap..401

Symbol ...402

Toggle..403

ToLower ...404

ToUpper ...406

Toshiba_Command..408

Toshiba_UDG..412

UnPlot ..414

USBinit ...415

USBin ...416

Proton Compiler. Development Suite.

 10
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

USBout...418

USBpoll ..422

Val ...423

VarPtr...425

While...Wend ..426

Xin ...427

Xout...429

Using the Optimiser ... 431

Caveats ..432

Using the Preprocessor ..433

Preprocessor Directives..433

Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and $elseif)436

Using the Proton Compiler with MPLAB IDE™ .. 439

Protected Compiler Words ... 448

Proton Compiler. Development Suite.

 11
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Proton IDE Overview
Proton IDE is a professional and powerful Integrated Development Environment (IDE) designed
specifically for the Proton compiler. Proton IDE is designed to accelerate product development
in a comfortable user friendly environment without compromising performance, flexibility or con-
trol.

Code Explorer
Possibly the most advanced code explorer for PICmicroTM based development on the market.
Quickly navigate your program code and device Special Function Registers (SFRs).

Compiler Results
Provides information about the device used, the amount of code and data used, the version
number of the project and also date and time. You can also use the results window to jump to
compilation errors.

Programmer Integration
The Proton IDE enables you to start your preferred programming software from within the de-
velopment environment . This enables you to compile and then program your microcontroller
with just a few mouse clicks (or keyboard strokes, if you prefer).

Integrated Bootloader
Quickly download a program into your microcontroller without the need of a hardware pro-
grammer. Bootloading can be performed in-circuit via a serial cable connected to your PC.

Real Time Simulation Support
Proteus Virtual System Modelling (VSM) combines mixed mode SPICE circuit simulation, ani-
mated components and microprocessor models to facilitate co-simulation of complete micro-
controller based designs. For the first time ever, it is possible to develop and test such designs
before a physical prototype is constructed.

Serial Communicator
A simple to use utility which enables you to transmit and receive data via a serial cable con-
nected to your PC and development board. The easy to use configuration window allows you to
select port number, baudrate, parity, byte size and number of stop bits. Alternatively, you can
use Serial Communicator favourites to quickly load pre-configured connection settings.

Online Updating
Online updates enable you to keep right up to date with the latest IDE features and fixes.

Plugin Architecture
The Proton IDE has been designed with flexibility in mind with support for IDE plugins.

Supported Operating Systems
Windows XP 32-bit or Windows 7 32-bit or 64-bit

Minimum Hardware Requirements
1 GHz Processor
1 GB RAM
40 GB hard drive space
16 bit graphics card.

Proton Compiler. Development Suite.

 12
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Menu Bar
File Menu

• New - Creates a new document. A header is automatically generated, showing informa-
tion such as author, copyright and date. To toggle this feature on or off, or edit the
header properties, you should select editor options.

• Open - Displays a open dialog box, enabling you to load a document into the Proton

IDE. If the document is already open, then the document is made the active editor page.

• Save - Saves a document to disk. This button is normally disabled unless the document
has been changed. If the document is 'untitled', a save as dialog is invoked. A save as
dialog is also invoked if the document you are trying to save is marked as read only.

• Save As - Displays a save as dialog, enabling you to name and save a document to

disk.
•

Close - Closes the currently active document.

• Close All - Closes all editor documents and then creates a new editor document.

• Reopen - Displays a list of Most Recently Used (MRU) documents.

• Print Setup - Displays a print setup dialog.

• Print Preview - Displays a print preview window.

• Print - Prints the currently active editor page.

• Exit - Enables you to exit the Proton IDE.

Edit Menu

• Undo - Cancels any changes made to the currently active document page.

• Redo - Reverse an undo command.

• Cut - Cuts any selected text from the active document page and places it into the clip-
board. This option is disabled if no text has been selected. Clipboard data is placed as
both plain text and RTF.

• Copy - Copies any selected text from the active document page and places it into the

clipboard. This option is disabled if no text has been selected. Clipboard data is placed
as both plain text and RTF.

• Paste - Paste the contents of the clipboard into the active document page. This option is

disabled if the clipboard does not contain any suitable text.

• Delete - Deletes any selected text. This option is disabled if no text has been selected.

• Select All - Selects the entire text in the active document page.

• Change Case - Allows you to change the case of a selected block of text.

Proton Compiler. Development Suite.

 13
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

• Find - Displays a find dialog.

• Replace - Displays a find and replace dialog.

• Find Next - Automatically searches for the next occurrence of a word. If no search word

has been selected, then the word at the current cursor position is used. You can also se-
lect a whole phrase to be used as a search term. If the editor is still unable to identify a
search word, a find dialog is displayed.

View Menu

• Results - Display or hide the results window.

• Code Explorer - Display or hide the code explorer window.

• Loader - Displays the MicroCode Loader application.

• Loader Options - Displays the MicroCode Loader options dialog.

• Compile and Program Options - Displays the compile and program options dialog.

• Editor Options - Displays the application editor options dialog.

• Toolbars - Display or hide the main, edit and compile and program toolbars. You can
also toggle the toolbar icon size.

• Plugin - Display a drop down list of available IDE plugins.

• Online Updates - Executes the IDE online update process, which checks online and in-

stalls the latest IDE updates.

Help Menu

• Help Topics - Displays the helpfile section for the toolbar.

• Online Forum - Opens your default web browser and connects to the online Proton Plus
developer forum.

• About - Display about dialog, giving both the Proton IDE and Proton compiler version

numbers.

Main Toolbar

New
Creates a new document. A header is automatically generated, showing information such as
author, copyright and date. To toggle this feature on or off, or edit the header properties, you
should select the editor options dialog from the main menu.

Open
Displays a open dialog box, enabling you to load a document into the Proton IDE. If the docu-
ment is already open, then the document is made the active editor page.

Proton Compiler. Development Suite.

 14
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Save
Saves a document to disk. This button is normally disabled unless the document has been
changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also in-
voked if the document you are trying to save is marked as read only.

Cut
Cuts any selected text from the active document page and places it into the clipboard. This op-
tion is disabled if no text has been selected. Clipboard data is placed as both plain text and
RTF.

Copy
Copies any selected text from the active document page and places it into the clipboard. This
option is disabled if no text has been selected. Clipboard data is placed as both plain text and
RTF.

Paste
Paste the contents of the clipboard into the active document page. This option is disabled if the
clipboard does not contain any suitable text.

Undo
Cancels any changes made to the currently active document page.

Redo
Reverse an undo command.

Print
Prints the currently active editor page.

Edit Toolbar

Find
Displays a find dialog.

Find and Replace
Displays a find and replace dialog.

Indent
Shifts all selected lines to the next tab stop. If multiple lines are not selected, a single line is
moved from the current cursor position. All lines in the selection (or cursor position) are moved
the same number of spaces to retain the same relative indentation within the selected block.
You can change the tab width from the editor options dialog.

Outdent
Shifts all selected lines to the previous tab stop. If multiple lines are not selected, a single line is
moved from the current cursor position. All lines in the selection (or cursor position) are moved
the same number of spaces to retain the same relative indentation within the selected block.
You can change the tab width from the editor options dialog.

Proton Compiler. Development Suite.

 15
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Block Comment
Adds the comment character to each line of a selected block of text. If multiple lines are not se-
lected, a single comment is added to the start of the line containing the cursor.

Block Uncomment
Removes the comment character from each line of a selected block of text. If multiple lines are
not selected, a single comment is removed from the start of the line containing the cursor.

Compile and Program Toolbar

Compile
Pressing this button, or F9, will compile the currently active editor page. The compile button will
generate a *.hex file, which you then have to manually program into your microcontroller.
Pressing the compile button will automatically save all open files to disk. This is to ensure that
the compiler is passed an up to date copy of the file(s) your are editing.

Compile and Program
Pressing this button, or F10, will compile the currently active editor page. Pressing the compile
and program button will automatically save all open files to disk. This is to ensure that the com-
piler is passed an up to date copy of the file(s) your are editing.

Unlike the compile button, the Proton IDE will then automatically invoke a user selectable appli-
cation and pass the compiler output to it. The target application is normally a device program-
mer, for example, MicroCode Loader. This enables you to program the generated *.hex file into
your MCU. Alternatively, the compiler output can be sent to an IDE Plugin. For example, the
Labcenter Electronics Proteus VSM simulator. You can select a different programmer or Plugin
by pressing the small down arrow, located to the right of the compile and program button...

In the above example, MicroCode Loader has been selected as the default device programmer.
The compile and program drop down menu also enables you to install new programming soft-
ware. Just select the 'Install New Programmer...' option to invoke the programmer configuration
wizard. Once a program has been compiled, you can use F11 to automatically start your pro-
gramming software or plugin. You do not have to re-compile, unless of course your program
has been changed.

Loader Verify
This button will verify a *.hex file (if one is available) against the program resident on the micro-
controller. The loader verify button is only enabled if MicroCode Loader is the currently selected
programmer.

Proton Compiler. Development Suite.

 16
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Loader Read
This button will upload the code and data contents of a microcontroller to MicroCode Loader.
The loader read button is only enabled if MicroCode Loader is the currently selected program-
mer.

Loader Erase
This button will erase program memory for the 18Fxxx(x) series of microcontroller. The loader
erase button is only enabled if MicroCode Loader is the currently selected programmer.

Loader Information
This button will display the microcontroller loader firmware version. The loader information but-
ton is only enabled if MicroCode Loader is the currently selected programmer.

Code Explorer
The code explorer enables you to easily navigate your program code. The code explorer tree
displays your currently selected processor, include files, declares, constants, variables, alias
and modifiers, labels, macros and data labels.

Device Node
The device node is the first node in the explorer tree. It displays your currently selected proces-
sor type. For example, if you program has the declaration: -

Device = 16F877

then the name of the device node will be 16F877. You don't need to explicitly give the device
name in your program for it to be displayed in the explorer. For example, you may have an in-
clude file with the device type already declared. The code explorer looks at all include files to
determine the device type. The last device declaration encountered is the one used in the ex-
plorer window. If you expand the device node, then all Special Function Registers (SFRs) be-
longing to the selected device are displayed in the explorer tree.

Proton Compiler. Development Suite.

 17
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Include File Node
When you click on an include file, the IDE will automatically open that file for viewing and edit-
ing. Alternatively, you can just explorer the contents of the include file without having to open it.
To do this, just click on the icon and expand the node. For example: -

In the above example, clicking on the icon for MyInclude.bas has expanded the node to re-
veal its contents. You can now see that MyInclude.bas has two constant declarations called
TransferMax and TransferMin and also two variables called Index and Transfer. The include file
also contains another include file called proton_4.inc. Again, by clicking the icon, the contents
of proton_4.inc can be seen, without opening the file. Clicking on a declaration name will open
the include file and automatically jump to the line number. For example, if you were to click on
TransferMax, the include file MyInclude.bas would be opened and the declaration TransferMax
would be marked in the IDE editor window.

Proton Compiler. Development Suite.

 18
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

When using the code explorer with include files, you can use the explorer history buttons to go
backwards or forwards. The explorer history buttons are normally located to the left of the main
editors file select tabs,

 History back button
 History forward button

Additional Nodes
Declares, constants, variables, alias and modifiers, labels, macros and data label explorer
nodes work in much the same way. Clicking on any of these nodes will take you to its declara-
tion. If you want to find the next occurrence of a declaration, you should enable automatically
select variable on code explorer click from View...Editor Options.

Selecting this option will load the search name into the 'find dialog' search buffer. You then just
need to press F3 to search for the next occurrence of the declaration in your program.
To sort the explorer nodes, right click on the code explorer and check the Sort Nodes option.

Explorer Warnings and Errors
The code explorer can identify duplicate declarations. If a declaration duplicate is found, the
explorer node icon changes from its default state to a . For example,

 Dim MyVar as Byte
 Dim MyVar as Byte

The above example is rather simplistic. It is more likely you see the duplicate declaration error
in you program without an obvious duplicate partner. That is, only one single duplicate error
symbol is being displayed in the code explorer. In this case, the declaration will have a dupli-
cate contained in an include file. For example,

The declaration TransferMax has been made in the main program and marked as a duplicate.
By exploring your include files, the problem can be identified. In this example, TransferMax has
already been declared in the include file MyInclude.bas

Proton Compiler. Development Suite.

 19
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Some features of the compiler of not available for some MCU types. For example, you cannot
have a string declaration when using a 14 core part (for example, the 16F877). If you try to do
this, the explorer node icon changes from its default state and displays a . You will also see
this icon displayed if the SFR View feature for a device is not available.

Notes
The code explorer uses an optimised parse and pattern match strategy in order to update the
tree in real time. The explorer process is threaded so as not to interfere or slow down other IDE
tasks, such as typing in new code. However, if you run computationally expensive background
tasks on your machine (for example, circuit simulation) you will notice a drop in update per-
formance, due to the threaded nature of the code explorer.

Results View
The results view performs two main tasks. These are (a) display a list of error messages,
should either compilation or assembly fail and (b) provide a summary on compilation success.

Compilation Success View
By default, a successful compile will display the results success view. This provides information
about the device used, the amount of code and data used, the version number of the project
and also date and time.

If you don't want to see full summary information after a successful compile, select View...Editor
Options from the IDE main menu and uncheck display full summary after successful compile.
The number of program words (or bytes used, if its a 16 core device) and the number of data
bytes used will still be displayed in the IDE status bar.

Version Numbers
The version number is automatically incremented after a successful build. Version numbers are
displayed as major, minor, release and build. Each number will rollover if it reaches 256. For
example, if your version number is 1.0.0.255 and you compile again, the number displayed will
be 1.0.1.0. You might want to start you version information at a particular number. For example
1.0.0.0. To do this, click on the version number in the results window to invoke the version in-
formation dialog. You can then set the version number to any start value. Automatic increment-
ing will then start from the number you have specified. To disable version numbering, click on
the version number in the results window to invoke the version information dialog and then un-
check enable version information.

Date and Time
Date and time information is extracted from the generated *.hex file and is always displayed in
the results view.

Success - With Warnings!
A compile is considered successful if it generates a *.hex file. However, you may have gener-
ated a number of warning messages during compilation. Because you should not normally ig-
nore warning messages, the IDE will always display the error view, rather than the success
view, if warnings have been generated.

Proton Compiler. Development Suite.

 20
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

To toggle between these different views, you can do one of the following click anywhere on the
IDE status bar right click on the results window and select the Toggle View option.

Compilation Error View
If your program generates warning or error messages, the error view is always displayed.

Clicking on each error or warning message will automatically highlight the offending line in the
main editor window. If the error or warning has occurred in an include file, the file will be
opened and the line highlighted. By default, the IDE will automatically highlight the first error
line found. To disable this feature, select View...Editor Options from the IDE main menu and
uncheck automatically jump to first compilation error. At the time of writing, some compiler er-
rors do not have line numbers bound to them. Under these circumstances, Proton IDE will be
unable to automatically jump to the selected line.

Occasionally, the compiler will generate a valid Asm file but warnings or errors are generated
during assembly. Proton IDE will display all assembler warnings or error messages in the error
view, but you will be unable to automatically jump to a selected line.

Editor Options
The editor options dialog enables you to configure and control many of the Proton IDE fea-
tures. The window is composed of four main areas, which are accessed by selecting the
General, Highlighter, Program Header and Online Updating tabs.

Show Line Numbers in Left Gutter
Display line numbers in the editors left hand side gutter. If enabled, the gutter width is in-
creased in size to accommodate a five digit line number.

Show Right Gutter
Displays a line to the right of the main editor. You can also set the distance from the left margin
(in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs
Normally, pressing the tab key will advance the cursor by a set number of characters. With
smart tabs enabled, the cursor will move to a position along the current line which depends on
the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces
When the tab key is pressed, the editor will normally insert a tab control character, whose size
will depend on the value shown in the width edit box (the default is four spaces). If you then
press the backspace key, the whole tab is deleted (that is, the cursor will move back four
spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space
control character (multiplied by the number shown in the width edit box). Pressing the back-
space key will therefore only move the cursor back by one space. Please note that internally,
the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

Proton Compiler. Development Suite.

 21
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Automatically Indent
When the carriage return key is pressed in the editor window, automatically indent will advance
the cursor to a position just below the first word occurrence of the previous line. When this fea-
ture is unchecked, the cursor just moves to the beginning of the next line.

Show Parameter Hints
If this option is enabled, small prompts are displayed in the main editor window when a particu-
lar compiler keyword is recognised. For example,

Parameter hints are automatically hidden when the first parameter character is typed. To view
the hint again, press F1. If you want to view more detailed context sensitive help, press F1
again.

Open Last File(s) When Application Starts
When checked, the documents that were open when Proton IDE was closed are automatically
loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar
By default, Proton IDE only displays the document filename in the main application title bar
(that is, no path information is includes). Check display full pathname if you would like to display
additional path information in the main title bar.

Prompt if File Reload Needed
Proton IDE automatically checks to see if a file time stamp has changed. If it has (for example,
and external program has modified the source code) then a dialog box is displayed asking if the
file should be reloaded. If prompt on file reload is unchecked, the file is automatically reloaded
without any prompting.

Automatically Select Variable on Code Explorer Click
By default, clicking on a link in the code explorer window will take you to the part of your pro-
gram where a declaration has been made. Selecting this option will load the search name into
the 'find dialog' search buffer. You then just need to press F3 to search for the next occurrence
of the declaration in your program.

Automatically Jump to First Compilation Error
When this is enabled, Proton IDE will automatically jump to the first error line, assuming any
errors are generated during compilation.

Automatically Change Identifiers to Match Declaration
When checked, this option will automatically change the identifier being typed to match that of
the actual declaration. For example, if you have the following declaration,

Dim MyIndex as Byte

and you type 'myindex' in the editor window, Proton IDE will automatically change 'myindex' to
'MyIndex'. Identifiers are automatically changed to match the declaration even if the declaration
is made in an include file.

Proton Compiler. Development Suite.

 22
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Please note that the actual text is not physically changed, it just changes the way it is displayed
in the editor window. For example, if you save the above example and load it into wordpad or
another text editor, it will still show as 'myindex'. If you print the document, the identifier will be
shown as 'MyIndex'. If you copy and paste into another document, the identifier will be shown
as 'MyIndex', if the target application supports formatted text (for example Microsoft Word).
In short, this feature is very useful for printing, copying and making you programs look consis-
tent throughout.

Clear Undo History After Successful Compile
If checked, a successful compilation will clear the undo history buffer. A history buffer takes up
system resources, especially if many documents are open at the same time. It's a good idea to
have this feature enabled if you plan to work on many documents at the same time.

Display Full Summary After Successful Compile
If checked, a successful compilation will display a full summary in the results window. Disabling
this option will still give a short summary in the IDE status bar, but the results window will not be
displayed.

Default Source Folder
Proton IDE will automatically go to this folder when you invoke the file open or save as dialogs.
To disable this feature, uncheck the 'Enabled' option, shown directly below the default source
folder.

Highlighter Options

Item Properties
The syntax highlighter tab lets you change the colour and attributes (for example, bold and
italic) of the following items: -

Comment
Device Name
Identifier
Keyword (Asm)
Keyword (Declare)
Keyword (Important)
Keyword (Macro Parameter)
Keyword (Proton)
Keyword (User)
Number
Number (Binary)
Number (Hex)
SFR
SFR (Bitname)
String
Symbol
Preprocessor

The point size is ranged between 6pt to 16pt and is global. That is, you cannot have different
point sizes for individual items.

Proton Compiler. Development Suite.

 23
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Reserved Word Formatting
This option enables you to set how Proton IDE displays keywords. Options include: -

Database Default - the IDE will display the keyword as declared in the applications keyword
database.

Uppercase - the IDE will display the keyword in uppercase.

Lowercase - the IDE will display the keyword in lowercase.

As Typed - the IDE will display the keyword as you have typed it.

Please note that the actual keyword text is not physically changed, it just changes the way it is
displayed in the editor window. For example, if you save your document and load it into word-
pad or another text editor, the keyword text will be displayed as you typed it. If you print the
document, the keyword will be formatted. If you copy and paste into another document, the
keyword will be formatted, if the target application supports formatted text (for example Micro-
soft Word).

Header options allows you to change the author and copyright name that is placed in a header
when a new document is created. For example: -

'* Name : Untitled.bas *
'* Author : J.R Hartley *
'* Notice : Copyright (c) 2011 MyCompany *
'* : All Rights Reserved *
'* Date : 06/03/11 *
'* Version : 1.0 *
'* Notes : *
'* : *
'**

If you do not want to use this feature, simply deselect the enable check box.

Proton Compiler. Development Suite.

 24
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Compile and Program Options

Compiler Tab

You can get the Proton IDE to locate a compiler directory automatically by clicking on the find
automatically button. The auto-search feature will stop when a compiler is found.

Alternatively, you can select the directory manually by selecting the find manually button. The
auto-search feature will search for a compiler and if one is found, the search is stopped and the
path pointing to the compiler is updated. If you have multiple versions of a compiler installed on
your system, use the find manually button. This ensures the correct compiler is used by the
IDE.

Programmer Tab

Use the programmer tab to install a new programmer, delete a programmer entry or edit the
currently selected programmer. Pressing the Install New Programmer button will invoke the
install new programmer wizard. The Edit button will invoke the install new programmer wizard in
custom configuration mode.

Proton Compiler. Development Suite.

 25
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Installing a Programmer
The Proton IDE enables you to start your preferred programming software from within the de-
velopment environment . This enables you to compile and then program your microcontroller
with just a few mouse clicks (or keyboard strokes, if you prefer). The first thing you need to do
is tell Proton IDE which programmer you are using. Select View...Options from the main menu
bar, then select the Programmer tab. Next, select the Add New Programmer button. This will
open the install new programmer wizard.

Select the programmer you want Proton IDE to use, then choose the Next button. Proton IDE
will now search your computer until it locates the required executable. If your programmer is not
in the list, you will need to create a custom programmer entry.
Your programmer is now ready for use. When you press the Compile and Program button on
the main toolbar, you program is compiled and the programmer software started. The *.hex file-
name and target device is automatically set in the programming software (if this feature is sup-
ported), ready for you to program your microcontroller.

You can select a different programmer, or install another programmer, by pressing the small
down arrow, located to the right of the compile and program button, as shown below

Proton Compiler. Development Suite.

 26
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Creating a custom Programmer Entry
In most cases, Proton IDE has a set of pre-configured programmers available for use. How-
ever, if you use a programmer not included in this list, you will need to add a custom program-
mer entry. Select View...Options from the main menu bar, then select the Programmer tab.
Next, select the Add New Programmer button. This will open the install new programmer wiz-
ard. You then need to select 'create a custom programmer entry', as shown below

Select Display Name
The next screen asks you to enter the display name. This is the name that will be displayed in
any programmer related drop down boxes. Proton IDE enables you to add and configure multi-
ple programmers. You can easily switch from different types of programmer from the compile
and program button, located on the main editor toolbar. The multiple programmer feature
means you do not have to keep reconfiguring your system when you switch programmers. Pro-
ton IDE will remember the settings for you. In the example below, the display name will be 'My
New Programmer'.

Proton Compiler. Development Suite.

 27
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Select Programmer Executable
The next screen asks for the programmer executable name. You do not have to give the full
path, just the name of the executable name will do.

Select Programmer Path
The next screen is the path to the programmer executable. You can let Proton IDE find it auto-
matically, or you can select it manually.

Select Parameters
The final screen is used to set the parameters that will be passed to your programmer. Some
programmers, for example, EPICWin™ allows you to pass the device name and hex filename.
Proton IDE enables you to 'bind' the currently selected device and *.hex file you are working on.

Proton Compiler. Development Suite.

 28
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

For example, if you are compiling 'blink.bas' in the Proton IDE using a 16F628, you would want
to pass the 'blink.hex' file to the programmer and also the name of the microcontroller you in-
tend to program. Here is the EPICWin™ example: -

-pPIC$target-device$ $hex-filename$

When EPICWin™ is started, the device name and hex filename are 'bound' to $target-device$
and $hex-filename$ respectively. In the 'blink.bas' example, the actual parameter passed to the
programmer would be: -

-pPIC16F628 blink.hex

Parameter Summary
Parameter Description
$target-device$ Microcontroller name
$hex-filename$ Hex filename and path, DOS 8.3 format
$long-hex-filename$ Hex filename and path
$asm-filename$ Asm filename and path, DOS 8.3 format
$long-asm-filename$ Asm filename and path

Microcode Loader
The PIC16F87x(A), 16F8x and PIC18Fxxx(x) series of microcontrollers have the ability to write
to their own program memory, without the need of a hardware programmer. A small piece of
software called a bootloader resides on the target microcontroller, which allows user code and
eeprom data to be transmitted over a serial cable and written to the device. The MicroCode
Loader application is the software which resides on the computer. Together, these two compo-
nents enable a user to program, verify and read their program and eeprom data all in circuit.

When power is first applied to the microcontroller (or it is reset), the bootloader first checks to
see if the MicroCode Loader application has something for it to do (for example, program your
code into the target device). If it does, the bootloader gives control to MicroCode Loader until it
is told to exit. However, if the bootloader does not receive any instructions with the first few
hundred milliseconds of starting, the bootloader will exit and the code previously written to the
target device will start to execute.

The bootloader software resides in the upper 256 words of program memory (336 words for
18Fxxx devices), with the rest of the microcontroller code space being available for your pro-
gram. All eeprom data memory and microcontroller registers are available for use by your pro-
gram. Please note that only the program code space and eeprom data space may be pro-
grammed, verified and read by MicroCode Loader. The microcontroller ID location and configu-
ration fuses are not available to the loader process. Configuration fuses must therefore be set
at the time the bootloader software is programmed into the target microcontroller.

Hardware Requirements
MicroCode Loader communicates with the target microcontroller using its hardware Universal
Synchronous Asynchronous Receiver Transmitter (USART). You will therefore need a devel-
opment board that supports RS232 serial communication in order to use the loader. There are
many boards available which support RS232.

Whatever board you have, if the board has a 9 pin serial connector on it, the chances are it will
have a MAX232 or equivalent located on the board. This is ideal for MicroCode Loader to
communicate with the target device using a serial cable connected to your computer. Alterna-
tively, you can use the following circuit and build your own.

Proton Compiler. Development Suite.

 29
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Note: Components R1, R2, and the Reset switch are optional, and serve to reset the microcon-
troller automatically. If these components are not used, the connections to R2in and R2out of
the MAX232 may be omitted.

MicroCode Loader supports a host of devices capable of using a bootloader and the support
will grow as new devices devices become available.

MicroCode Loader comes with a number of pre-compiled *.hex files, ready for programming
into the target microcontroller. If you require a bootloader file with a different configuration,
please contact Mecanique.

Using the Bootloader is very easy. Before using this guide make sure that your target microcon-
troller is supported by the loader and that you also have suitable hardware.

Programming the Loader Firmware
Before using the Bootloader, you need to ensure that the bootloader firmware has been pro-
grammed onto the target microcontroller using a hardware programmer. This is a one off opera-
tion, after which you can start programming your target device over an RS232 serial connec-
tion. You need to make sure that the bootloader *.hex file matches the clock speed of your tar-
get microcontroller. For example, if you are using a 16F877 on a development board running at
20MHz, then you need to use the firmware file called 16F877_20.hex. If you don't do this, the
Bootloader will be unable to communicate with the target microcontroller. The Compiler comes
with a number of pre-compiled *.hex files, ready for programming into the target microcontroller.
The loader firmware files can be found in the MCLoader folder, located in your main IDE instal-
lation folder. Default fuse settings are embedded in the firmware *.hex file. You should not nor-
mally change these default settings. You should certainly never select the code protect fuse. If
the code protect fuse is set the Bootloader will be unable to program your *.hex file.

C1
1uF

+5 Volts

V+

V+VCC

GND

MAX232

10

9

12

11 14

15

13

8

7

6

5

4

3

21

16

C1+
C1-
C2+
C2-

V-

T1in
T2in
R1out
R2out

T1out
T2out
R1in
R2in

C2
1uF

C3
1uF

C4
1uF

6
21 53

7
4

8 9

RX TX GND

9-way
D-Socket

0V

PIC RC.6

PIC RC.7

C5
1uF

+5 Volts

R2
100Ω

R1
4.7kΩ

RESET

PIC MCLR

Proton Compiler. Development Suite.

 30
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Configuring the Loader
Assuming you now have the firmware installed on your microcontroller, you now just need to tell
MicroCode Loader which COM port you are going to use. To do this, select View...Loader from
the MicroCode IDE main menu. Select the COM port from the MicroCode Loader main toolbar.
Finally, make sure that MicroCode Loader is set as your default programmer.

Click on the down arrow, to the right of the Compile and Program button. Check the MicroCode
Loader option, like this: -

Using MicroCode Loader
Connect a serial cable between your computer and development board. Apply power to the
board.

Press 'Compile and Program' or F10 to compile your program. If there are no compilation er-
rors, the MicroCode Loader application will start. It may ask you to reset the development board
in order to establish communications with the resident microcontroller bootloader. This is per-
fectly normal for development boards that do not implement a software reset circuit. If required,
press reset to establish communications and program you microcontroller.

Loader Options
Loader options can be set by selecting the Options menu item, located on the main menu bar.

Program Code
Optionally program user code when writing to the target microcontroller. Uncheck this option to
prevent user code from being programmed. The default is On.

Program Data
Optionally program Eeprom data when writing to the target microcontroller. Uncheck this option
to prevent Eeprom data from being programmed. The default is On.

Verify Code When Programming
Optionally verify a code write operation when programming. Uncheck this option to prevent user
code from being verified when programming. The default is On.

Verify Data When Programming
Optionally verify a data write operation when programming. Uncheck this option to prevent user
data from being verified when programming. The default is On.

Verify Code
Optionally verify user code when verifying the loaded *.hex file. Uncheck this option to prevent
user code from being verified. The default is On.

Verify Data
Optionally verify Eeprom data when verifying the loaded *.hex file. Uncheck this option to pre-
vent Eeprom data from being verified. The default is On.

Proton Compiler. Development Suite.

 31
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Verify After Programming
Performs an additional verification operation immediately after the target microcontroller has
been programmed. The default is Off.

Run User Code After Programming
Exit the bootloader process immediately after programming and then start running the target
user code. The default is On.

Load File Before Programming
Optionally load the latest version of the *.hex file immediately before programming the target
microcontroller. The default is Off.

Baud Rate
Select the speed at which the computer communicates with the target microcontroller. By de-
fault, the Auto Detect option is enabled. This feature enables MicroCode Loader to determine
the speed of the target microcontroller and set the best communication speed for that device.

If you select one of the baud rates manually, it must match the baud rate of the loader software
programmed onto the target microcontroller. For devices running at less that 20MHz, this is
19200 baud. For devices running at 20MHz, you can select either 19200 or 115200 baud.

Loader Main Toolbar

Open Hex File
The open button loads a *.hex file ready for programming.

Program
The program button will program the loaded hex file code and eeprom data into the target mi-
crocontroller. When programming the target device, a verification is normally done to ensure
the integrity of the programmed user code and eeprom data. You can override this feature by
un-checking either Verify Code When Programming or Verify Data When Programming. You
can also optionally verify the complete *.hex file after programming by selecting the Verify After
Programming option.

Pressing the program button will normally program the currently loaded *.hex file. However, you
can load the latest version of the *.hex file immediately before programming by checking Load
File Before Programming option. You can also set the loader to start running the user code im-
mediately after programming by checking the Run User Code After Programming option. When
programming the target device, both user code and eeprom data are programmed by default
(recommended). However, you may want to just program code or eeprom data. To change the
default configuration, use the Program Code and Program Data options.

Should any problems arise when programming the target device, a dialog window will be dis-
played giving additional details. If no problems are encountered when programming the device,
the status window will close at the end of the write sequence.

Read
The read button will read the current code and eeprom data from the target microcontroller.
Should any problems arise when reading the target device, a dialog window will be displayed
giving additional details. If no problems are encountered when reading the device, the status
window will close at the end of the read sequence.

Proton Compiler. Development Suite.

 32
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Verify
The verify button will compare the currently loaded *.hex file code and eeprom data with the
code and eeprom data located on the target microcontroller. When verifying the target device,
both user code and eeprom data are verified by default. However, you may want to just verify
code or eeprom data. To change the default configuration, use the Verify Code and Verify Data
options.

Should any problems arise when verifying the target device, a dialog window will be displayed
giving additional details. If no problems are encountered when verifying the device, the status
window will close at the end of the verification sequence.

Erase
The erase button will erase all of the code memory on a PIC16F8x and PIC18Fxxx(x) microcon-
troller.

Run User Code
The run user code button will cause the bootloader process to exit and then start running the
program loaded on the target microcontroller.

Loader Information
The loader information button displays the loader firmware version and the name of the target
microcontroller, for example PIC16F877.

Loader Serial Port
The loader serial port drop down box allows you to select the com port used to communicate
with the target microcontroller.

IDE Plugins
The Proton IDE has been designed with flexibility in mind. Plugins enable the functionality of
the IDE to be extended by through additional third party software, which can be integrated into
the development environment. Proton IDE comes with a default set of plugins which you can
use straight away. These are: -

ASCII Table
Assembler
Hex View
Serial Communicator
Labcenter Electronics Proteus VSM

To access a plugin, select the plugin icon just above the main editor window. A drop down list
of available plugins will then be displayed. Plugins can also be selected from the main menu, or
by right clicking on the main editor window.

Plugin Developer Notes
The plugin architecture has been designed to make writing third party plugins very easy, using
the development environment of your choice (for example Visual BASIC, C++ or Borland Del-
phi). This architecture is currently evolving and is therefore publicly undocumented until all of
the protocols have been finalised. As soon as the protocol details have been finalised, this
documentation will be made public. For more information, please feel free to contact us.

Proton Compiler. Development Suite.

 33
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

ASCII Table
The American Standard Code for Information Interchange (ASCII) is a set of numerical codes,
with each code representing a single character, for example, 'a' or '$'.

The ASCII table plugin enables you to view these codes in either decimal, hexadecimal or bi-
nary. The first 32 codes (0..31) are often referred to as non-printing characters, and are dis-
played as grey text.

Hex View
The Hex view plugin enables you to view program code and EEPROM data for 14 and 16 core
devices.

The Hex View window is automatically updated after a successful compile, or if you switch pro-
gram tabs in the IDE. By default, the Hex view window remains on top of the main IDE window.
To disable this feature, right click on the Hex View window and uncheck the Stay on Top op-
tion.

Proton Compiler. Development Suite.

 34
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Assembler Window
The Assembler plugin allows you to view and modify the *.asm file generated by the compiler.
Using the Assembler window to modify the generated *.asm file is not really recommended,
unless you have some experience using assembler.

Assembler Menu Bar

File Menu
New - Creates a new document. A header is automatically generated, showing information
such as author, copyright and date.

• Open - Displays a open dialog box, enabling you to load a document into the Assembler
plugin. If the document is already open, then the document is made the active editor
page.

• Save - Saves a document to disk. This button is normally disabled unless the document

has been changed. If the document is 'untitled', a save as dialog is invoked. A save as
dialog is also invoked if the document you are trying to save is marked as read only.

• Save As - Displays a save as dialog, enabling you to name and save a document to

disk.

• Close - Closes the currently active document.

• Close All - Closes all editor documents and then creates a new editor document.

• Reopen - Displays a list of Most Recently Used (MRU) documents.

• Print Setup - Displays a print setup dialog.

• Print - Prints the currently active editor page.

• Exit - Enables you to exit the Assembler plugin.

Edit Menu

• Undo - Cancels any changes made to the currently active document page.

• Redo - Reverse an undo command.

• Cut - Cuts any selected text from the active document page and places it into the clip-
board.

• Copy - Copies any selected text from the active document page and places it into the

clipboard.

• Paste - Paste the contents of the clipboard into the active document page. This option is
disabled if the clipboard does not contain any suitable text.

• Delete - Deletes any selected text. This option is disabled if no text has been selected.

• Select All - Selects the entire text in the active document page.

Proton Compiler. Development Suite.

 35
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

• Find - Displays a find dialog.

• Replace - Displays a find and replace dialog.

• Find Next - Automatically searches for the next occurrence of a word. If no search word

has been selected, then the word at the current cursor position is used. You can also se-
lect a whole phrase to be used as a search term. If the editor is still unable to identify a
search word, a find dialog is displayed.

View Menu

• Options - Displays the application editor options dialog.

• Toolbars - Display or hide the main and assemble and program toolbars. You can also
toggle the toolbar icon size.

Help Menu

• Help Topics - Displays the IDE help file.

• About - Display about dialog, giving the Assembler plugin version number.

Assembler Main Toolbar

New
Creates a new document. A header is automatically generated, showing information such as
author, copyright and date.

Open
Displays a open dialog box, enabling you to load a document into the Assembler plugin. If the
document is already open, then the document is made the active editor page.

Save
Saves a document to disk. This button is normally disabled unless the document has been
changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also in-
voked if the document you are trying to save is marked as read only.

Cut
Cuts any selected text from the active document page and places it into the clipboard. This op-
tion is disabled if no text has been selected.

Copy
Copies any selected text from the active document page and places it into the clipboard. This
option is disabled if no text has been selected.

Paste
Paste the contents of the clipboard into the active document page. This option is disabled if the
clipboard does not contain any suitable text.

Undo
Cancels any changes made to the currently active document page.

Proton Compiler. Development Suite.

 36
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Redo
Reverse an undo command.

Assembler Editor Options

Show Line Numbers in Left Gutter
Display line numbers in the editors left hand side gutter. If enabled, the gutter width is in-
creased in size to accommodate a five digit line number.

Show Right Gutter
Displays a line to the right of the main editor. You can also set the distance from the left margin
(in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs
Normally, pressing the tab key will advance the cursor by a set number of characters. With
smart tabs enabled, the cursor will move to a position along the current line which depends on
the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces
When the tab key is pressed, the editor will normally insert a tab control character, whose size
will depend on the value shown in the width edit box (the default is four spaces). If you then
press the backspace key, the whole tab is deleted (that is, the cursor will move back four
spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space
control character (multiplied by the number shown in the width edit box). Pressing the back-
space key will therefore only move the cursor back by one space. Please note that internally,
the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

Automatically Indent
When the carriage return key is pressed in the editor window, automatically indent will advance
the cursor to a position just below the first word occurrence of the previous line. When this fea-
ture is unchecked, the cursor just moves to the beginning of the next line.

Show Parameter Hints
If this option is enabled, small prompts are displayed in the main editor window when a particu-
lar compiler keyword is recognised.

Proton Compiler. Development Suite.

 37
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Open Last File(s) When Application Starts
When checked, the documents that were open when the Assembler plugin was closed are
automatically loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar
By default, the Assembler plugin only displays the document filename in the main application
title bar (that is, no path information is included). Check display full pathname if you would like
to display additional path information in the main title bar.

Prompt if File Reload Needed
The Assembler plugin automatically checks to see if a file time stamp has changed. If it has (for
example, and external program has modified the source code) then a dialog box is displayed
asking if the file should be reloaded. If prompt on file reload is unchecked, the file is automati-
cally reloaded without any prompting.

Automatically Jump to First Compilation Error
When this is enabled, the Assembler plugin will automatically jump to the first error line, assum-
ing any errors are generated during compilation.

Clear Undo History After Successful Compile
If checked, a successful compilation will clear the undo history buffer. A history buffer takes up
system resources, especially if many documents are open at the same time. It's a good idea to
have this feature enabled if you plan to work on many documents at the same time.

Default Source Folder
The Assembler plugin will automatically go to this folder when you invoke the file open or save
as dialogs. To disable this feature, uncheck the 'Enabled' option, shown directly below the de-
fault source folder.

Serial Communicator
The Serial Communicator plugin is a simple to use utility which enables you to transmit and
receive data via a serial cable connected to your PC and development board. The easy to use
configuration window allows you to select port number, baudrate, parity, byte size and number
of stop bits. Alternatively, you can use Serial Communicator favourites to quickly load pre-
configured connection settings.

Menu options

File Menu

• Clear - Clears the contents of either the transmit or receive window.

• Open - Displays a open dialog box, enabling you to load data into the transmit window.

• Save As - Displays a save as dialog, enabling you to name and save the contents of the
receive window.

• Exit - Enables you to exit the Serial Communicator software.

Edit Menu

• Undo - Cancels any changes made to either the transmit or receive window.

• Cut - Cuts any selected text from either the transmit or receive window.

Proton Compiler. Development Suite.

 38
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

• Copy - Copies any selected text from either the transmit or receive window.

• Paste - Paste the contents of the clipboard into either the transmit or receive window.

This option is disabled if the clipboard does not contain any suitable text.

• Delete - Deletes any selected text. This option is disabled if no text has been selected.

View Menu

• Configuration Window - Display or hide the configuration window.

• Toolbars - Display small or large toolbar icons.

Help Menu

• Help Topics - Displays the serial communicator help file.

• About - Display about dialog, giving software version information.

Serial Communicator Main Toolbar

Clear
Clears the contents of either the transmit or receive window.

Open
Displays a open dialog box, enabling you to load data into the transmit window.

Save As
Displays a save as dialog, enabling you to name and save the contents of the receive window.

Cut
Cuts any selected text from either the transmit or receive window.

Copy
Copies any selected text from either the transmit or receive window.

Paste
Paste the contents of the clipboard into either the transmit or receive window. This option is
disabled if the clipboard does not contain any suitable text.

Connect
Connects the Serial Communicator software to an available serial port. Before connecting, you
should ensure that your communication options have been configured correctly using the
configuration window.

Disconnect
Disconnect the Serial Communicator from a serial port.

Proton Compiler. Development Suite.

 39
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Configuration
The configuration window is used to select the COM port you want to connect to and also set
the correct communications protocols.

Clicking on a configuration link will display a drop down menu, listing available options. A sum-
mary of selected options is shown below the configuration links. For example, in the image
above, summary information is displayed under the heading 19200 Configuration.

Favourites
Pressing the favourite icon will display a number of options allowing you to add, manage or
load configuration favourites.

Add to Favourites
Select this option if you wish to save your current configuration. You can give your configuration
a unique name, which will be displayed in the favourite drop down menu. For example, 9600
Configuration or 115200 Configuration

Manage Favourites
Select this option to remove a previously saved configuration favourite.

Notes
After pressing the connect icon on the main toolbar, the configuration window is automatically
closed and opened again when disconnect is pressed. If you don't want the configuration win-
dow to automatically close, right click on the configuration window and un-check the Auto-Hide
option.

Proton Compiler. Development Suite.

 40
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Transmit Window
The transmit window enables you to send serial data to an external device connected to a PC
serial port. In addition to textual data, the send window also enables you to send control char-
acters. To display a list of transmit options, right click on the transmit window.

Clear
Clear the contents of the transmit window.

Word Wrap
This option allows you to wrap the text displayed in the transmit window.

Auto Clear After Transmit
Enabling this option will automatically clear the contents of the transmit window when data is
sent.

Transmit on Carriage Return
This option will automatically transmit data when the carriage return key is pressed. If this op-
tion is disabled, you will need to manually press the send button or press F4 to transmit.

Line Terminator
You can append your data with a number of line terminations characters. These include CR,
CR and LF, LF and CR, null and No Terminator.

Parse Control Characters
When enabled, the parse control characters option enables you to send control characters in
your message, using either a decimal or hexadecimal notation. For example, if you want to
send hello world followed by a carriage return and line feed character, you would use hello
world#13#10 for decimal, or hello worldDA for hex. Only numbers in the range 0 to 255 will
be converted. For example, sending the message letter #9712345 will be interpreted as letter
a12345.

If the sequence of characters does not form a legal number, the sequence is interpreted as
normal characters. For example, hello world#here I am. If you don't want characters to be in-
terpreted as a control sequence, but rather send it as normal characters, then all you need to
do is use the tilde symbol (~). For example, letter ~#9712345 would be sent as letter
#9712345.

Proton Compiler. Development Suite.

 41
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Receive Window
The receive window is used to capture data sent from an external device (for example, a PIC
MCU) to your PC. To display a list of transmit options, right click on the receive window.

Clear
Clear the contents of the receive window.

Word Wrap
When enabled, incoming data is automatically word wrapped.

Notes
In order to advance the cursor to the next line in the receive window, you must transmit either a
CR ($D) or a CR LF pair ($D $A) from your external device.

Labcenter Electronics Proteus VSM
Proteus Virtual System Modelling (VSM) combines mixed mode SPICE circuit simulation, ani-
mated components and microprocessor models to facilitate co-simulation of complete micro-
controller based designs. For the first time ever, it is possible to develop and test such designs
before a physical prototype is constructed.

The Proton Plus Development Suite comes shipped with a free demonstration version of the
Proteus simulation environment and also a number of pre-configured Virtual Hardware Boards
(VHB). Unlike the professional version of Proteus, you are unable to make any changes to the
pre-configured boards or create your own boards.
If you already have a full version of Proteus VSM installed on your system (6.5.0.5 or higher),
then this is the version that will be used by the IDE. If you don't have the full version, the IDE
will default to using the demonstration installation.

System Requirements
Windows XP or Vista
512MB RAM (1 GB or higher recommended)
500 MHz Processor

Further Information
You can find out more about the simulator supplied with the Proton Development Suite from
Labcenter Electronics

ISIS Simulator Quick Start Guide
This brief tutorial aims to outline the steps you need to take in order to use Labcenter Electron-
ics Proteus Virtual System Modelling (VSM) with the Proton IDE. The first thing you need to do
is load or create a program to simulate. In this worked example, we will keep things simple and
use a classic flashing LED program. In the IDE, press the New toolbar button and type in the
following: -

Device = 16F877
Declare Xtal = 20
Symbol LED = PORTD.0
MainProgram:
High LED

http://www.labcenter.co.uk/products/crowhill.htm

Proton Compiler. Development Suite.

 42
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Delayms 500
Low LED
Delayms 500
Goto MainProgram

You now need to make sure that the output of the compile and program process is re-directed
to the simulator. Normally, pressing compile and program will create a *.hex file which is then
sent to your chosen programmer. However, we want the output to be sent to the simulator, not
a device programmer. To do this, press the small down arrow to the right of the compile and
program toolbar icon and check the Labcenter Electronics Proteus VSM option, as shown be-
low: -

After selecting the above option, save your program and then press the compile and program
toolbar button to build your project. This will then start the Virtual Hardware Board (VHB) Ex-
plorer, as shown below: -

VHB Explorer is the IDE plugin that co-ordinates activity between the IDE and the simulator. Its
primary purpose is to bind a Virtual Hardware Board to your program. In this example, the pro-
gram has been built for the 16F877 MCU which flashes an LED connected to PortD.0. To run
the simulation for this program, just double click on the PIC16_ALCD_VHB hardware board
item. This will invoke the Proteus simulator which will then automatically start executing your
program using the selected board.

Additional Integration Tips
If you followed the Proteus VSM quick start guide, you will know how easy it is to load you pro-
gram into the simulation environment with the Virtual Hardware Board (VHB) Explorer. How-
ever, one thing you might have noticed is that each time you press compile and program the
VHB Explorer is always displayed. If you are using the same simulation board over and over
again, manually having to select the board using VHB Explorer can become a little tiresome.

Proton Compiler. Development Suite.

 43
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Virtual Hardware Boards Favourites
The good news is that every time you select a board using VHB Explorer, it is saved as a VHB
Explorer favourite. You can access VHB Explorer favourites from within Proton IDE by right
clicking on the main editor window and selecting the Virtual Hardware Boards option, as shown
below : -

In the quick start guide, the program was bound to a simulation board called
PIC16_ALCD_VHB. If we check this favourite and then press compile and program, VHB Ex-
plorer is not displayed. Instead, you project is loaded immediately into the Proteus simulation
environment. You can have more than one board bound to your project, allowing you to quickly
switch between target simulation boards during project development.

To add additional boards to your project, manually start VHB Explorer by selecting the plugin
icon and clicking on the Labcenter Electronics Proteus VSM... option. When VHB Explorer
starts, just double click on the board you want to be bound to your current project. Your new
board selection will be displayed next time you right click on the main editor window and select
Virtual Hardware Boards. You can delete a favourite board by manually starting VHB Explorer
and pressing the Favourites toolbar icon. Choose the Manage Favourites option to remove the
virtual hardware board from the favourites list.

Proton Compiler. Development Suite.

 44
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Compiler
Overview.

Compiler Overview

Proton Compiler. Development Suite.

 45
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

PICmicro Devices
The compiler supports most of the PICmicro™ range of devices, and takes full advantage of
their various features e.g. A/D converter, data memory eeprom area, hardware multiply etc.

This manual is not intended to give details about individual microcontroller devices, therefore,
for further information visit the Microchip website at www.microchip.com, and download the
multitude of datasheets and application notes available.

Limited 12-bit Device Compatibility.
The 12-bit core microcontrollers have been available for a long time, and are at the heart of
many excellent, and complex projects. However, with their limited architecture, they were never
intended to be used for high level languages such as BASIC. Some of these limits include only
a two-level hardware stack and small amounts of general purpose RAM memory. The code
page size is also small at 512 bytes. There is also a limitation that calls and computed jumps
can only be made to the first half (256 words) of any code page. Therefore, these limitations
have made it necessary to eliminate some compiler commands and modify the operation of
others.

While many useful programs can be written for the 12-bit core devices using the compiler, there
will be some applications that are not suited to them. Choosing a 14-bit core device with more
resources will, in most instances, be the best solution, or better still, choose a suitable 18F de-
vice.

Some of the commands that are not supported for the 12-bit core devices are illustrated in the
table below: -

Command Reason for omission
Dwords Memory limitations
Floats Memory limitations
Signed Variables Memory limitations
Adin No internal ADCs
Cdata No write modify feature
Cls Limited stack size
Cread No write modify feature
Cursor Limited stack size
Cwrite No write modify feature
DTMFout Limited stack size
Edata No on-board EEPROM
Eread No on-board EEPROM
Ewrite No on-board EEPROM
Freqout Limited stack size
LCDread No graphic LCD support
LCDwrite No graphic LCD support
Hpwm No 12-bit MSSP modules
Hrsin No hardware serial port
Hrsout No hardware serial port
Hserin No hardware serial port
Hserout No hardware serial port
Interrupts No Interrupts
Pixel No graphic LCD support
Plot No graphic LCD support

Proton Compiler. Development Suite.

 46
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Serout Limited memory
Serin Limited memory
Sound2 Limited resources
UnPlot No graphic LCD support
USBin No 12-bit USB devices
USBout No 12-bit USB devices
Xin Limited stack size
Xout Limited stack size

Trying to use any of the above commands with 12-bit core devices will result in the compiler
producing numerous Syntax errors. If any of these commands are a necessity, then choose a
comparable standard or enhanced 14-bit core device.

The available commands that have had their operation modified are: -

 Print, Rsout, Busin, Busout

Most of the modifiers are not supported for these commands because of memory and stack
size limitations, this includes the At, and the Str modifier. However, the @, Dec and Dec3
modifiers are still available.

Programming Considerations for 12-bit core Devices.
Because of the limited architecture of the 12-bit core microcontrollers, programs compiled for
them by the compiler will be larger and slower than programs compiled for the 14-bit core de-
vices. The two main programming limitations that will most likely occur are running out of RAM
memory for variables, and running past the first 256 word limit for the library routines.

Even though the compiler arranges its internal system variables more intuitively than previous
versions, it still needs to create temporary variables for complex expressions etc. It also needs
to allocate extra RAM for use as a Software-Stack so that the BASIC program is still able to
nest Gosubs up to 4 levels deep.

Some devices only have 25 bytes of RAM so there is very little space for user variables on
those devices. Therefore, use variables sparingly, and always use the appropriately sized vari-
able for a specific task. i.e. Byte variable if 0-255 is required, Word variable if 0-65535 re-
quired, Bit variables if a true or false situation is required. Try to alias any commonly used vari-
ables, such as loops or temporary stores etc.

As was mentioned earlier, 12-bit core microcontrollers can call only into the first half (256
words) of a code page. Since the compiler's library routines are all accessed by calls, they must
reside entirely in the first 256 words of the code space. Many library routines, such as Busin,
are quite large. It may only take a few routines to outgrow the first 256 words of code space.
There is no work around for this, and if it is necessary to use more library routines that will fit
into the first half of the first code page, it will be necessary to move to a 14-bit core device in-
stead of the 12-bit core device.

No 32-bit or floating point variable support with 12-bit core devices.
Because of the profound lack of RAM space available on most 12-bit core devices, the Proton
compiler does not allow 32-bit Dword type variables to be used. For 32-bit support, use one of
the many 14-bit core, or 18F equivalent devices. Floating point variables are also not supported
with 12-bit core devices.

Proton Compiler. Development Suite.

 47
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Device Specific issues
Before venturing into your latest project, always read the datasheet for the specific device being
used. Because some devices have features that may interfere with expected pin operations.
The PIC16C62x and the 16F62x devices are examples of this. These devices have analogue
comparators on PortA. When these chips first power up, PortA is set to analogue mode. This
makes the pin functions on PortA work in a strange manner. To change the pins to digital, sim-
ply add the following line near the front of your BASIC program, or before any of the pins are
accessed: -

 CMCON = 7

Any device with analogue inputs will power up in analogue mode. If you intend to use them as
digital types you must set the pins to digital by using the following line of code: -

 Declare All_Digital = True

This will set analogue pins to digital on any compatible device.

Alternatively, you can manipulate the hardware registers directly: -

 ADCON1 = 7

Note that not all devices require the same registers manipulated and the datasheet should al-
ways be consulted before attempting this for the first time.

Another example of potential problems is that bit-4 of PortA (PortA.4) exhibits unusual behav-
iour when used as an output. This is because the pin has an open drain output rather than the
usual bipolar stage as in the rest of the output pins. This means it can pull to ground when set
to 0 (low), but it will simply float when set to a 1 (high), instead of going high.

To make this pin act as expected, add a pull-up resistor between the pin and 5 Volts. A typical
value resistor may be between 1KΩ and 33KΩ, depending on the device it is driving. If the pin
is used as an input, it behaves the same as any other pin.

Some devices, such as the PIC16F87x range, allow low-voltage programming. This function
takes over one of the PortB (PortB.3) pins and can cause the device to act erratically if this pin
is not pulled low. In normal use, It's best to make sure that low-voltage programming is disabled
at the time the device is programmed. By default, the low voltage programming fuse is disabled,
however, if the Config directive is used, then it may inadvertently be omitted.

All of the microcontroller’s pins are set to inputs on power-up. If you need a pin to be an output,
set it to an output before you use it, or use a BASIC command that does it for you. Once again,
always read the PICmicro™ data sheets to become familiar with the particular part.

The name of the port pins on the 8 pin devices such as the PIC12C50X, PIC12C67x ,12CE67x
and 12F675 is GPIO. The name for the Tris register is TrisIO: -

 GPIO.0 = 1 ' Set GPIO.0 high
 TRISIO = %101010 ' Manipulate ins and outs

However, these are also mapped as PortB, therefore any reference to PortB on these devices
will point to the relevant pin.

Proton Compiler. Development Suite.

 48
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Some devices have internal pull-up resistors on PortB, or GPIO. These may be enabled or dis-
abled by issuing the PortB_Pullups command: -

 Declare PortB_Pullups = On ' Enable PortB pull-up resistors
 or
 Declare PortB_Pullups = Off ' Disable PortB pull-up resistors

Identifiers
An identifier is a technical term for a name. Identifiers are used for line labels, variable names,
and constant aliases. An identifier is any sequence of letters, digits, and underscores, although
it must not start with a digit. Identifiers are not case sensitive, therefore label, LABEL, and Label
are all treated as equivalent. And while labels might be any number of characters in length, only
the first 32 are recognised.

Line Labels
In order to mark statements that the program may wish to reference with the Goto, Call, or Go-
sub commands, the compiler uses line labels. Unlike many older BASICs, the compiler does
not allow or require line numbers and doesn’t require that each line be labelled. Instead, any
line may start with a line label, which is simply an identifier followed by a colon ':'.

Label:
 Print "Hello World"
 Goto Label

Proton Compiler. Development Suite.

 49
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Variables
Variables are where temporary data is stored in a BASIC program. They are created using the
Dim keyword. Because RAM space on 8-bit micrcontrollers is somewhat limited, choosing the
right size variable for a specific task is important. Variables may be Bits, Bytes, Words,
Dwords , SBytes, SWords, SDwords or Floats.

Space for each variable is automatically allocated in the microcontroller's RAM area. The for-
mat for creating a variable is as follows: -

 Dim Label as Size

Label is any identifier, (excluding keywords). Size is Bit, Byte, Word, Dword, SByte, SWord,
SDword or Float. Some examples of creating variables are: -

 Dim Cat as Bit ' Create a single bit variable (0 or 1)
 Dim Dog as Byte ' Create an 8-bit unsigned variable (0 to 255)
 Dim Rat as Word ' Create a 16-bit unsigned variable (0 to 65535)
 Dim Lrg_Rat as Dword ' Create a 32-bit unsigned variable (0 to 4294967295)

 Dim sDog as SByte ' Create an 8-bit signed variable (-128 to +127)
 Dim sRat as SWord ' Create a 16-bit signed variable (-32768 to +32767)
 Dim sLrg_Rat as SDword ' Create a 32-bit signed variable (-2147483648 to
 ' +2147483647)

 Dim Pointy_Rat as Float ' Create a 32-bit floating point variable

The number of variables available depends on the amount of RAM on a particular device and
the size of the variables within the BASIC program. The compiler will reserve RAM for its own
use and may also create additional temporary (System) variables for use when calculating
equations, or more complex command structures. Especially if floating point calculations are
carried out.

Intuitive Variable Handling.
The compiler handles its System variables intuitively, in that it only creates those that it re-
quires. Each of the compiler's built in library subroutines i.e. Print, Rsout etc, require a certain
amount of System RAM as internal variables. Previous versions of the compiler defaulted to 26
RAM spaces being created before a program had been compiled. However, with the 12-bit core
device compatibility, 26 RAM slots is more than some devices possess.

Try the following program, and look at the RAM usage message on the bottom Status bar.

 Dim Wrd1 as Word ' Create a Word variable i.e. 16-bits
Loop:
 High PORTB.0 ' Set bit 0 of PortB high
 For Wrd1= 1 to 20000 : Next ' Create a delay without using a library call
 Low PORTB.0 ' Set bit 0 of PortB high
 For Wrd1= 1 to 20000 : Next ' Create a delay without using a library call
 Goto Loop ' Do it forever

Only two bytes of RAM were used, and those were the ones declared in the program as vari-
able Wrd1.

Proton Compiler. Development Suite.

 50
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

The compiler will increase it's System RAM requirements as programs get larger, or more com-
plex structures are used, such as complex expressions, inline commands used in conditions,
Boolean logic used etc. However, with the limited RAM space available on some PICmicro™
devices, every byte counts.

There are certain reserved words that cannot be used as variable names, these are the system
variables used by the compiler.

The following reserved words should not be used as variable names, as the compiler will create
these names when required: -

PP0, PP0H, PP1, PP1H, PP2, PP2H, PP3, PP3H, PP4, PP4H, PP5, PP5H, PP6, PP6H,
PP7, PP7H, PP8, PP9H,GEN, GENH, GEN2, GEN2H, GEN3, GEN3H, GEN4, GEN4H, GPR,
BPF, BPFH.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list be-
low illustrates this.

 Float Requires 4 bytes of RAM.
 Dword Requires 4 bytes of RAM.
 SDword Requires 4 bytes of RAM.
 Word Requires 2 bytes of RAM.
 SWord Requires 2 bytes of RAM.
 Byte Requires 1 byte of RAM.
 SByte Requires 1 byte of RAM.
 Bit Requires 1 byte of RAM for every 8 Bit variables created.

Each type of variable may hold a different minimum and maximum value.

• Bit type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring
a single Bit type variable in a program will not save RAM space, but it will save code
space, as Bit type variables produce the most efficient use of code for comparisons etc.

• Byte type variables may hold an unsigned value from 0 to 255, and are the usual work

horses of most programs. Code produced for Byte sized variables is very low compared
to signed or unsigned Word, DWord or Float types, and should be chosen if the pro-
gram requires faster, or more efficient operation.

• SByte type variables may hold a 2's complemented signed value from -128 to +127.

Code produced for SByte sized variables is very low compared to SWord, Float, or
SDword types, and should be chosen if the program requires faster, or more efficient
operation. However, code produced is usually larger for signed variables than unsigned
types.

• Word type variables may hold an unsigned value from 0 to 65535, which is usually large

enough for most applications. It still uses more memory than an 8-bit byte variable, but
not nearly as much as a Dword or SDword type.

• SWord type variables may hold a 2's complemented signed value from -32768 to

+32767, which is usually large enough for most applications. SWord type variables will
use more code space for expressions and comparisons, therefore, only use signed vari-
ables when required.

Proton Compiler. Development Suite.

 51
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

• Dword type variables may hold an unsigned value from 0 to 4294967295 making this

the largest of the variable family types. This comes at a price however, as Dword calcu-
lations and comparisons will use more code space within the microcontroller Use this
type of variable sparingly, and only when necessary.

• SDword type variables may hold a 2's complemented signed value from -2147483648 to

+2147483647, also making this the largest of the variable family types. This comes at a
price however, as SDword expressions and comparisons will use more code space than
a regular Dword type. Use this type of variable sparingly, and only when necessary.

• Float type variables may theoretically hold a value from -1e37 to +1e38, but because of

the 32-bit architecture of the compiler, a maximum and minimum value should be
thought of as -2147483646.999 to +2147483646.999 making this the most varsatile of
the variable family types. However, more so than Dword types, this comes at a price as
floating point expressions and comparisons will use more code space within the
PICmicro™. Use this type of variable sparingly, and only when strictly necessary. Smaller
floating point values usually offer more accuracy.

See also : Aliases, Arrays, Dim, Constants Symbol, Floating Point Math.

Proton Compiler. Development Suite.

 52
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Floating Point Math
The Proton compiler can perform 32 x 32 bit IEEE 754 'Compliant' Floating Point calculations.

Declaring a variable as Float will enable floating point calculations on that variable.

 Dim Flt as Float

To create a floating point constant, add a decimal point. Especially if the value is a whole num-
ber.

 Symbol PI = 3.14 ' Create an obvious floating point constant

 Symbol FlNum = 5.0 ' Create a floating point value of a whole number

Please note. Floating point arithmetic is not the ultimate in accuracy, it is merely a means of
compressing a complex or large value into a small space (4 bytes in the compiler's case). Per-
fectly adequate results can usually be obtained from correct scaling of integer variables, with an
increase in speed and a saving of RAM and code space. 32 bit floating point math is extremely
microcontroller intensive since the PICmicro™ is only an 8 bit processor. It also consumes large
amounts of RAM, and code space for its operation, therefore always use floating point spar-
ingly, and only when strictly necessary. Floating point is not available on 12-bit core PICmicros
because of memory restrictions, and is most efficient when used with 18F devices because of
the more linear code and RAM specifications.

Floating Point Format
The Proton compiler uses the Microchip variation of IEEE 754 floating point format. The differ-
ences to standard IEEE 745 are minor, and well documented in Microchip application note
AN575 (downloadable from www.microchip.com).

Floating point numbers are represented in a modified IEEE-754 format. This format allows the
floating-point routines to take advantage of the PICmicro's architecture and reduce the amount
of overhead required in the calculations. The representation is shown below compared to the
IEEE-754 format: where s is the sign bit, y is the lsb of the exponent and x is a placeholder for
the mantissa and exponent bits.

The two formats may be easily converted from one to the other by manipulation of the Expo-
nent and Mantissa 0 bytes. The following assembly code shows an example of this operation.

 Format Exponent Mantissa 0 Mantissa 1 Mantissa 2
 IEEE-754 sxxx xxxx yxxx xxxx xxxx xxxx xxxx xxxx
 Microchip xxxx xxxy sxxx xxxx xxxx xxxx xxxx xxxx

IEEE-754 to Microchip
 Rlf Mantissa0
 Rlf Exponent
 Rrf Mantissa0

Microchip to IEEE-754
 Rlf Mantissa0
 Rrf Exponent
 Rrf Mantissa0

Proton Compiler. Development Suite.

 53
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Variables Used by the Floating Point Libraries.
Several 8-bit RAM registers are used by the math routines to hold the operands for and results
of floating point operations. Since there may be two operands required for a floating point op-
eration (such as multiplication or division), there are two sets of exponent and mantissa regis-
ters reserved (A and B). For argument A, PBP_AARGHHH holds the exponent and
PBP_AARGHH, PBP_AARGH and PBP_AARG hold the mantissa. For argument B,
PBP_BARGHHH holds the exponent and PBP_BARGHH, PBP_BARGH and PBP_BARG hold
the mantissa.

Floating Point Example Programs.

' Multiply two floating point values
 Device = 18F452
 Declare Xtal = 4
 Dim Flt as Float
 Symbol FlNum = 1.234 ' Create a floating point constant value

Cls
 Flt = FlNum * 10
 Print Dec Flt
 Stop

' Add two floating point variables
 Device = 18F452
 Declare Xtal = 4
 Dim Flt as Float
 Dim Flt1 as Float
 Dim Flt2 as Float

Cls
 Flt1 = 1.23
 Flt2 = 1000.1
 Flt = Flt1 + Flt2
 Print Dec Flt
 Stop

' A digital volt meter, using the on-board ADC
 Device = 16F877
 Declare Xtal = 4
 Declare Adin_Res = 10 ' 10-bit result required
 Declare Adin_Tad = FRC ' RC OSC chosen
 Declare Adin_Delay = 50 ' Allow 50us sample time

Dim Raw as Word
 Dim Volts as Float
 Symbol Quanta = 5.0 / 1024 ' Calculate the quantising value

Cls
 TRISA = %00000001 ' Configure AN0 (PortA.0) as an input
 ADCON1 = %10000000 ' Set analogue input on PortA.0
 While 1 = 1
 Raw = Adin 0
 Volts = Raw * Quanta
 Print At 1,1,Dec2 Volts,"V "
 Wend

Proton Compiler. Development Suite.

 54
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Notes.
Any expression that contains a floating point variable or constant will be calculated as a floating
point. Even if the expression also contains integer constants or variables.

If the assignment variable is an integer variable, but the expression is of a floating point nature,
then the floating point result will be converted into an integer.

 Device = 16F877
 Dim Dwd as Dword
 Dim Flt as Float
 Symbol PI = 3.14
 Flt = 10
 Dwd = Flt + PI ' Float calculation will result 13.14,reduced to integer 13
 Print Dec Dwd ' Display the integer result 13
 Stop

For a more in-depth explanation of floating point, download the Microchip application notes
AN575, and AN660. These can be found at www.microchip.com.

Code space requirements.
As mentioned above, floating point accuracy comes at a price of speed, and code space. Both
these issues are not a problem if an 18F device is used, however 14-bit core devices can pose
a problem. The compiler attempts to load the floating point libraries into low memory, along with
all the other library subroutines, but if it does not fit within the first 2048 bytes of code space,
and the PICmicro™ has more than 2048 bytes of code available, the floating point libraries will
be loaded into the top 1000 bytes of code memory. This is invisible to the user, however, the
compiler will warn that this is occurring in case that part of memory is being used by your BA-
SIC program.

Floating Point To Integer Rounding
Assigning a floating point variable to an integer type will be truncated to the nearest value by default. For
example:

FloatVar = 3.9
DwordVar = FloatVar

The variable DwordVar will hold the value of 3.

If rounding to the nearest integer value is required, use the fRound command.

Proton Compiler. Development Suite.

 55
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Floating Point Exception Flags
The floating point exception flags are accessible from within the BASIC program via the system variable
_FP_FLAGS. This must be brought into the BASIC program for the code to recognise it:

Dim _FP_FLAGS as Byte System

The exceptions are:

_FP_FLAGS.1 ' Floating point overflow
_FP_FLAGS.2 ' Floating point underflow
_FP_FLAGS.3 ' Floating point divide by zero
_FP_FLAGS.5 ' Domain error exception

The exception bits can be aliased for more readability within the program:

Symbol FpOverflow = _FP_FLAGS.1 ' Floating point overflow
 Symbol FpUnderFlow = _FP_FLAGS.2 ' Floating point underflow
 Symbol FpDiv0 = _FP_FLAGS.3 ' Floating point divide by zero
 Symbol FpDomainError = _FP_FLAGS.5 ' Domain error exception

After an exception is detected and handled in the program, the exception bit should be cleared so that
new exceptions can be detected, however, exceptions can be ignored because new operations are not
affected by old exceptions.

More Accurate Display or Conversion of Floating Point values.
By default, the compiler uses a relatively small routine for converting floating point values to
decimal, ready for Rsout, Print Str$ etc. However, because of its size, it does not perform any
rounding of the value first, and is only capable of converting relatively small values. i.e. approx
6 digits of accuracy. In order to produce a more accurate result, the compiler needs to use a
larger routine. This is implemented by using a Declare: -

Declare Float_Display_Type = Fast or Standard

Using the Fast model for the above declare will trigger the compiler into using the more accu-
rate floating point to decimal routine. Note that even though the routine is larger than the stan-
dard converter, it operates much faster.

The compiler defaults to Standard if the Declare is not issued in the BASIC program.

See also : Dim, Symbol, Aliases, Arrays, Constants .

Proton Compiler. Development Suite.

 56
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Aliases
The Symbol directive is the primary method of creating an alias, however Dim can be used to
create an alias to a variable. This is extremely useful for accessing the separate parts of a vari-
able.

 Dim Fido as Dog ' Fido is another name for Dog
 Dim Mouse as Rat.LowByte ' Mouse is the first byte (low byte) of word Rat
 Dim Tail as Rat.HighByte ' Tail is the second byte(high byte) of word Rat
 Dim Flea as Dog.0 ' Flea is bit-0 of Dog, which is aliased to Fido

There are modifiers that may also be used with variables. These are HighByte, LowByte,
Byte0, Byte1, Byte2, Byte3, Word0, Word1, SHighByte, SLowByte, SByte0, SByte1,
SByte2, SByte3, SWord0, and SWord1,

Word0, Word1, Byte2, Byte3, SWord0, SWord1, SByte2, and SByte3 may only be used in
conjunction with 32-bit Dword or SDword type variables.

HighByte and Byte1 are one and the same thing, when used with a Word or SWord type vari-
able, they refer to the unsigned High byte of a Word or SWord type variable: -

 Dim Wrd as Word ' Declare an unsigned Word variable
 Dim Wrd_Hi as Wrd.HighByte
' Wrd_Hi now represents the unsigned high byte of variable Wrd

Variable Wrd_Hi is now accessed as a Byte sized type, but any reference to it actually alters
the high byte of Wrd.

SHighByte and SByte1 are one and the same thing, when used with a Word or SWord type
variable, they refer to the signed High byte of a Word or SWord type variable: -

 Dim Wrd as SWord ' Declare a signed Word variable
 Dim Wrd_Hi as Wrd.SHighByte
' Wrd_Hi now represents the signed high byte of variable Wrd

Variable Wrd_Hi is now accessed as an SByte sized type, but any reference to it actually alters
the high byte of Wrd.

However, if Byte1 is used in conjunction with a Dword type variable, it will extract the second
byte. HighByte will still extract the high byte of the variable, as will Byte3. If SByte1 is used in
conjunction with an SDword type variable, it will extract the signed second byte. SHighByte
will still extract the signed high byte of the variable, as will SByte3.

The same is true of LowByte, Byte0, SLowByte and SByte0, but they refer to the unsigned or
signed Low Byte of a Word or SWord type variable: -

 Dim Wrd as Word ' Declare an unsigned Word variable
 Dim Wrd_Lo as Wrd.LowByte
' Wrd_Lo now represents the low byte of variable Wrd

Variable Wrd_Lo is now accessed as a Byte sized type, but any reference to it actually alters
the low byte of Wrd.

Proton Compiler. Development Suite.

 57
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

The modifier Byte2 will extract the 3rd unsigned byte from a 32-bit Dword or SDword type vari-
able as an alias. Likewise Byte3 will extract the unsigned high byte of a 32-bit variable.

 Dim Dwd as Dword ' Declare a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Byte0 ' Alias unsigned Part1 to the low byte of Dwd
 Dim Part2 as Dwd.Byte1 ' Alias unsigned Part2 to the 2nd byte of Dwd
 Dim Part3 as Dwd.Byte2 ' Alias unsigned Part3 to the 3rd byte of Dwd
 Dim Part4 as Dwd.Byte3 ' Alias unsigned Part3 to the high (4th) byte of
Dwd

The modifier SByte2 will extract the 3rd signed byte from a 32-bit Dword or SDword type vari-
able as an alias. Likewise SByte3 will extract the signed high byte of a 32-bit variable.

 Dim sDwd as SDword ' Declare a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SByte0 ' Alias signed Part1 to the low byte of sDwd
 Dim sPart2 as sDwd.SByte1 ' Alias signed Part2 to the 2nd byte of sDwd
 Dim sPart3 as sDwd.SByte2 ' Alias signed Part3 to the 3rd byte of sDwd
 Dim sPart4 as sDwd.SByte3 ' Alias signed Part3 to the 4th byte of sDwd

The Word0 and Word1 modifiers extract the unsigned low word and high word of a Dword or
SDword type variable, and is used the same as the Byten modifiers.

 Dim Dwd as Dword ' Declare a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Word0 ' Alias unsigned Part1 to the low word of Dwd
 Dim Part2 as Dwd.Word1 ' Alias unsigned Part2 to the high word of Dwd

The SWord0 and SWord1 modifiers extract the signed low word and high word of a Dword or
SDword type variable, and is used the same as the SByten modifiers.

 Dim sDwd as SDword ' Declare a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SWord0 ' Alias Part1 to the low word of sDwd
 Dim sPart2 as sDwd.SWord1 ' Alias Part2 to the high word of sDwd

RAM space for variables is allocated within the microcontroller in the order that they are placed
in the BASIC code. For example: -

 Dim Var1 as Byte
 Dim Var2 as Byte

Places Var1 first, then Var2: -

 Var1 equ n
 Var2 equ n

This means that on a device with more than one RAM Bank, the first n variables will always be
in Bank0 (the value of n depends on the specific PICmicro™ used).

Proton Compiler. Development Suite.

 58
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Finer points for variable handling.
The position of the variable within Banks is usually of little importance if BASIC code is used,
however, if assembler routines are being implemented, always assign any variables used within
them first.

Problems may also arise if a Word, SWord, Dword, SDword or Float variable crosses a Bank
boundary. If this happens, a warning message will be displayed in the error window. Most of the
time, this will not cause any problems, however, to err on the side of caution, try and ensure
that Word, SWord, Dword, SDword or Float type variables are fully inside a Bank. This is eas-
ily accomplished by placing a dummy Byte variable before the offending variable, or relocating
the offending variable within the list of Dim statements.

Word and SWord type variables have a low byte and a high byte. The high byte may be ac-
cessed by simply adding the letter H to the end of the variable's name. For example: -

 Dim Wrd as Word

Will produce the assembler code: -

 Wrd equ n
 WrdH equ n

To access the high byte of variable Wrd, use: -

 WrdH = 1

This is especially useful when assembler routines are being implemented, such as: -

 Movlw 1
 Movwf WrdH ; Load the high byte of Wrd with 1

Dword, SDWord and Float type variables have a low, mid1, mid2, and high byte. The high
byte may be accessed by by using Byte0, Byte1, Byte2, or Byte3. For example: -

 Dim Dwd as Dword

To access the high byte of variable Dwd, use: -

 Dwd.Byte3 = 1

The same is true of all the alias modifiers such as SWord0, Word0 etc...

Casting a variable from signed to unsigned and vice-versa is also possible using the modifiers.
For example:

 Dim sDwd as SDword ' Declare a 32-bit signed variable

 sDwd.Byte3 = 1 ' Load the unsigned high byte with the value 1
 sDwd.SByte0 = -1 ' Load the signed low byte with the value -1
 sDwd.SWord0 = 128 ' Load the signed low and mid1 bytes with the value 128

Proton Compiler. Development Suite.

 59
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Constants
Named constants may be created in the same manner as variables. It can be more informative
to use a constant name instead of a constant number. Once a constant is declared, it cannot be
changed later, hence the name ‘constant'.

 Dim Label as Constant expression

 Dim Mouse as 1
 Dim Mice as Mouse * 400
 Dim Mosue_PI as Mouse + 2.14

Although Dim can be uses to create constants, Symbol is more often used.

Symbols
The Symbol directive provides yet another method for aliasing variables and constants. Sym-
bol cannot be used to create a variable. Constants declared using Symbol do not use any RAM
within the PICmicro™.

 Symbol Cat = 123
 Symbol Tiger = Cat ' Tiger now holds the value of Cat
 Symbol Mouse = 1 ' Same as Dim Mouse as 1
 Symbol TigOuse = Tiger + Mouse ' Add Tiger to Mouse to make Tigouse

Floating point constants may also be created using Symbol by simply adding a decimal point to
a value.

 Symbol PI = 3.14 ' Create a floating point constant named PI
 Symbol FlNum = 5.0 ' Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

 ' Create a floating point constant holding the result of the expression
 Symbol Quanta = 5.0 / 1024

If a variable or register's name is used in a constant expression then the variable's or register's
address will be substituted, not the value held in the variable or register: -

 Symbol Con = (PORTA + 1) ' Con will hold the value 6 (5+1)

Symbol is also useful for aliasing Ports and Registers: -

 Symbol LED = PORTA.1 ' LED now references bit-1 of PortA
 Symbol T0IF = INTCON.2 ' T0IF now references bit-2 of INTCON register

The equal sign between the constant's name and the alias value is optional: -

 Symbol LED PORTA.1 ' Same as Symbol LED=PortA.1

Proton Compiler. Development Suite.

 60
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Numeric Representations
The compiler recognises several different numeric representations: -

 Binary is prefixed by %. i.e. %0101
 Hexadecimal is prefixed by $. i.e. $0A
 Character byte is surrounded by quotes. i.e. "a" represents a value of 97
 Decimal values need no prefix.
 Floating point is created by using a decimal point. i.e. 3.14

Quoted String of Characters
A Quoted String of Characters contains one or more characters (maximum 200) and is delim-
ited by double quotes. Such as "Hello World"

The compiler also supports a subset of C language type formatters within a quoted string of
characters. These are: -

\a Bell (alert) character $07
\b Backspace character $08
\f Form feed character $0C
\n New line character $0A
\r Carriage return character $0D
\t Horizontal tab character $09
\v Vertical tab character $0B
\\ Backslash $5C
\" Double quote character $22

Example: -

Print "HELLO WORLD\n\r"

Strings are usually treated as a list of individual character values, and are used by commands
such as Print, Rsout, Busout, Ewrite etc. And of course, String variables.

Null Terminated
Null is a term used in computer languages for zero. So a null terminated String is a collection of
characters followed by a zero in order to signify the end of characters. For example, the string
of characters "Hello", would be stored as: -

"H", "e", "l", "l" ,"o", 0

Notice that the terminating null is the value 0 not the character "0".

Ports and other Registers
All of the PICmicro™ registers, including the ports, can be accessed just like any other byte-
sized variable. This means that they can be read from, written to or used in equations directly.

 PORTA = %01010101 ' Write value to PortA

 Var1 = Wrd * PORTA ' Multiply variable Wrd with the contents of PortA

Proton Compiler. Development Suite.

 61
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

The compiler can also combine16-bit registers such as TMR1 into a Word type variable. Which
makes loading and reading these registers simple: -

' Combine TMR1L and TMR1H into unsigned Word variable wTimer1
 Dim wTimer1 as TMR1L.Word

 wTimer1 = 12345 ' Load TMR1L and TMR1H with the value 12345
or
 Wrd1 = wTimer1 ' Load Wrd1 with contents of TMR1

The .Word extension links registers TMR1L, and TMR1H, (which are assigned in the .ppi file
associated with the relevant device used).

Any hardware register that can hold a 16-bit result can be assigned as a Word type variable: -

' Combine ADRESL and ADRESH into unsigned Word variable AD_Result
 Dim AD_Result as ADRES.Word
' Combine PRODL and PRODH into unsigned Word variable MUL_PROD
 Dim MUL_PROD as PRODL.Word

General Format
The compiler is not case sensitive, except when processing string constants such as "hello".

Multiple instructions and labels can be combined on the same line by separating them with co-
lons ':'.

The examples below show the same program as separate lines and as a single-line: -

Multiple-line version: -

 TRISB = %00000000 ' Make all pins on PortB outputs
 For Var1 = 0 to 100 ' Count from 0 to 100
 PORTB = Var1 ' Make PortB = count (Var1)
 Next ' Continue counting until 100 is reached

Single-line version: -

 TRISB = %00000000 : For Var1 = 0 to 100 : PORTB = Var1 : Next

Proton Compiler. Development Suite.

 62
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

A Typical basic Program Layout
The compiler is very flexible, and will allow most types of constant, declaration, or variable to be placed
anywhere within the BASIC program. However, it may not produce the correct results, or an unexpected
syntax error may occur due to a variable being declared after it is supposed to be used.

The recommended layout for a program is shown below.

 Device
{
 Declares
}
{
 Includes
}
{

Constants and Variables
}

GoTo Main ' Jump over the subroutines (if any)

{
 Subroutines go here
}
{
 Main:
 Main Program code goes here
}

For example:

 Device = 18F25K20
'---
 Declare Xtal = 20
 Declare Hserial_Baud = 9600
'---
' Load the ADC include file (if required)
 Include "ADC.inc"
'---
' Define Variables

Dim WordVar as Word ' Create a Word size variable
'---
' Define Constants and/or aliases

Symbol Value = 10 ' Create a constant
'---

GoTo Main ' Jump over the subroutine/s (if any)
'---
' Simple Subroutine
AddIt:

WordVar = WordVar + Value ' Add the constant to the variable
Return ' Return from the subroutine

'---
' Main Program Code
Main:
 WordVar = 10 ' Pre-load the variable

GoSub AddIt ' Call the subroutine
 Hrsout Dec WordVar, 13 ' Display the result on the serial terminal

Of course, it depends on what is within the include file as to where it should be placed within the pro-
gram, but the above outline will usually suffice. Any include file that requires placing within a certain po-
sition within the code should be documented to state this fact.

Proton Compiler. Development Suite.

 63
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Line Continuation Character '_'
Lines that are too long to display, may be split using the continuation character '_'. This will di-
rect the continuation of a command to the next line. It's use is only permitted after a comma de-
limiter: -

 Var1 = LookUp Var2,[1,2,3,_
 4,5,6,7,8]
or
 Print At 1,1,_
 "Hello World",_
 Dec Var1,_
 Hex Var2

Proton Compiler. Development Suite.

 64
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Creating and using Arrays
The Proton compiler supports multi part Byte, Word, Dword, SByte, SWord and SDword
variables named arrays (Dword and SDword arrays are only supported with 18F or enhanced
14-bit core devices). An array is a group of variables of the same size (8-bits, 16-bits or 32-bits
wide), sharing a single name, but split into numbered cells, called elements.

An array is defined using the following syntax: -

 Dim Name[length] as Byte
 Dim Name[length] as Word
 Dim Name[length] as Dword
 Dim Name[length] as SByte
 Dim Name[length] as SWord
 Dim Name[length] as SDword

where Name is the variable's given name, and the new argument, [length], informs the com-
piler how many elements you want the array to contain. For example: -

 Dim MyArray[10] as Byte ' Create a 10 element unsigned byte array.
 Dim MyArray[10] as Word ' Create a 10 element unsigned word array.
 Dim MyArray[10] as Dword ' Create a 10 element unsigned dword array.
 Dim sMyArray[10] as SByte ' Create a 10 element signed byte array.
 Dim sMyArray[10] as SWord ' Create a 10 element signed word array.
 Dim sMyArray[10] as SDword ' Create a 10 element signed dword array.

On 18F or enhanced core devices, arrays may have as many elements as RAM permits, how-
ever, with 12-bit core and standard 14-bit core devices, arrays may contain a maximum of 256
elements, (128 for word arrays when using standard 14-bit core devices). Because of the rather
complex way that some PICmicro's RAM cells are organised (i.e. Banks), there are a few rules
that need to be observed when creating arrays with standard 14-bit core devices.

PICmicro™ Memory Map Complexities.
Some microcontrollers have more RAM available for variable storage, however, accessing the
RAM on the standard 14-bit core devices is not as straightforward as one might expect. The
RAM is organised in Banks, where each Bank is 128 bytes in length. Crossing these Banks re-
quires bits 5 and 6 of the STATUS register to be manipulated. The larger devices such as the
16F877 have 512 RAM locations, but only 368 of these are available for variable storage, the
rest are known as Special Function Registers (SFRs) and are used to control certain aspects of
the microcontroller i.e. TRIS, IO ports, USART etc. The compiler attempts to make this complex
system of Bank switching as transparent to the user as possible, and succeeds where standard
Bit, Byte, Word, and Dword variables are concerned. However, Array variables will inevitably
need to cross the Banks in order to create arrays larger than 96 bytes, which is the largest sec-
tion of RAM within Bank0. Coincidently, this is also the largest array size permissible by most
other compilers at the time of writing this manual.

Proton Compiler. Development Suite.

 65
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Large arrays (normally over 96 elements) require that their Starting address be located within
the first 255 bytes of RAM (i.e. within Bank0 and Bank2), the array itself may cross this bound-
ary. This is easily accomplished by declaring them at, or near the top of the list of variables.
The compiler does not manipulate the variable declarations. If a variable is placed first in the
list, it will be placed in the first available RAM slot within the microcontroller. This way, you, the
programmer maintains finite control of the variable usage. For example, commonly used vari-
ables should be placed near the top of the list of declared variables. An example of declaring
an array is illustrated below: -

 Device 16F877 ' Choose a microcontroller with extra RAM
 Dim Small_Array[20] as Byte ' Create a small array of 20 elements
 Dim Var1 as Byte ' Create a standard Byte variable
 Dim Large_Array[256] as Byte ' Create a Byte array of 256 elements
or
 Dim Array1[120] as Byte ' Create an array of 120 elements
 Dim Array2[100] as Byte ' Create another smaller array of 100 elements

If an array cannot be resolved, then a warning will be issued informing you of the offending line:
Warning Array ‘array name' is declared at address ‘array address'. Which is over the 255
RAM address limit, and crosses Bank3 boundary!

Ignoring this warning will spell certain failure of your program.

The following array declaration will produce a warning when compiled for a 16F877 device: -

 Device 16F877 ' Choose a microcontroller with extra RAM
 Dim Array1[200] as Byte ' Create an array of 200 elements
 Dim Array2[100] as Byte ' Create another smaller array of 100 elements

Examining the assembler code produced, will reveal that Array1 starts at address 32 and fin-
ishes at address 295. This is acceptable and the compiler will not complain. Now look at Ar-
ray2, its start address is at 296 which is over the 255 address limit, thus producing a warning
message.

The above warning is easily remedied by re-arranging the variable declaration list: -

 Dim Array2[100] as Byte ' Create a small array of 100 elements
 Dim Array1[200] as Byte ' Create an array of 200 elements

Again, examining the asm code produced, now reveals that Array2 starts at address 32 and fin-
ishes at address 163. everything OK there then. And Array1 starts at address 164 and finishes
at address 427, again, its starting address was within the 255 limit so everything's OK there as
well, even though the array itself crossed several Banks. A simple re-arrangement of code
meant the difference between a working and not working program.

Of course, the smaller microcontrollers do not have this limitation as they do not have 255 RAM
cells anyway. Therefore, arrays may be located anywhere in the variable declaration list. The
same goes for the 18F devices, as these can address any area of their RAM.

Proton Compiler. Development Suite.

 66
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

18F and enhanced 14-bit core device simplicity.
The 18F devices have no such complexities in their memory map as the standard 14-bit core
devices do. The memory is still banked, but each bank is 256 bytes in length, and runs linearly
from one to the other. Add to that, the ability to access all RAM areas using indirect addressing,
makes arrays extremely easy to use. If many large arrays are required in a program, then the
18F devices are highly recommended.

Once an array is created, its elements may be accessed numerically. Numbering starts at 0 and
ends at n-1. For example: -

 MyArray [3] = 57
 Print "MyArray[3] = ", Dec MyArray[3]

The above example will access the fourth element in the Byte array and display "MyArray[3] =
57" on the LCD. The true flexibility of arrays is that the index value itself may be a variable. For
example: -

 Device 16F84 ' We'll use a smaller device this time
 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Dim Index as Byte ' Create a Byte variable.
 For Index = 0 to 9 ' Repeat with Index= 0,1,2...9
 MyArray[Index] = Index * 10 ' Write Index*10 to each element of the array.
 Next
 For Index = 0 to 9 ' Repeat with Index= 0,1,2...9
 Print At 1, 1, Dec MyArray [Index] ' Show the contents of each element.
 DelayMs 500 ' Wait long enough to view the values
 Next
 Stop

If the above program is run, 10 values will be displayed, counting from 0 to 90 i.e. Index * 10.

A word of caution regarding arrays: If you're familiar with other BASICs and have used their ar-
rays, you may have run into the "subscript out of range" error. Subscript is simply another term
for the index value. It is considered 'out-of range' when it exceeds the maximum value for the
size of the array.

For example, in the example above, MyArray is a 10-element array. Allowable index values are
0 through 9. If your program exceeds this range, the compiler will not respond with an error
message. Instead, it will access the next RAM location past the end of the array.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded
variables are overwritten. It's up to the programmer (you!) to help prevent this from happening.

Even more flexibility is allowed with arrays because the index value may also be an expression.

 Device 16F84 ' We'll use a smaller device
 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Dim Index as Byte ' Create a Byte variable.
 For Index = 0 to 8 ' Repeat with Index= 0,1,2...8
 MyArray[Index + 1] = Index * 10 ' Write Index*10 to each element of array
 Next
 For Index = 0 to 8 ' Repeat with Index= 0,1,2...8
 Print At 1, 1, Dec MyArray[Index + 1] ' Show the contents of elements
 DelayMs 500 ' Wait long enough to view the values
 Next
 Stop

Proton Compiler. Development Suite.

 67
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

The expression within the square braces should be kept simple, and arrays are not allowed as
part of the expression.

Using Arrays in Expressions.
Of course, arrays are allowed within expressions themselves. For example: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Dim Index as Byte ' Create a Byte variable.
 Dim Var1 as Byte ' Create another Byte variable
 Dim Result as Byte ' Create a variable to hold result of expression
 Index = 5 ' And Index now holds the value 5
 Var1 = 10 ' Variable Var1 now holds the value 10
 MyArray[Index] = 20 ' Load the 6th element of MyArray with value 20
 Result = (Var1 * MyArray[Index]) / 20 ' Do a simple expression
 Print At 1, 1, Dec Result, " " ' Display result of expression
 Stop

The previous example will display 10 on the LCD, because the expression reads as: -

 (10 * 20) / 20

Var1 holds a value of 10, MyArray[Index] holds a value of 20, these two variables are multiplied
together which will yield 200, then they're divided by the constant 20 to produce a result of 10.

An index expression used within an array that is used within an expression itself is limited to
two operands.

Proton Compiler. Development Suite.

 68
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Arrays as Strings
Arrays may also be used as simple strings in certain commands, because after all, a string is
simply a byte array used to store text.

For this, the Str modifier is used.

The commands that support the Str modifier are: -

Busout - Busin
Hbusout - Hbusin
Hrsout - Hrsin
Owrite - Oread
Rsout - Rsin
Serout - Serin
Shout - Shin
Print

The Str modifier works in two ways, it outputs data from a pre-declared array in commands that
send data i.e. Rsout, Print etc, and loads data into an array, in commands that input informa-
tion i.e. Rsin, Serin etc. The following examples illustrate the Str modifier in each compatible
command.

Using Str with the Busin and Busout commands.

Refer to the sections explaining the Busin and Busout commands.

Using Str with the Hbusin and Hbusout commands.

Refer to the sections explaining the Hbusin and Hbusout commands.

Using Str with the Rsin command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Rsin Str Array1 ' Load 10 bytes of data directly into Array1

Using Str with the Rsout command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Rsout Str Array1 ' Send 10 bytes of data directly from Array1

Using Str with the Hrsin and Hrsout commands.

Refer to the sections explaining the Hrsout and Hrsin commands.

Proton Compiler. Development Suite.

 69
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Using Str with the Shout command.

 Symbol DTA = PORTA.0 ' Alias the two lines for the Shout command
 Symbol CLK = PORTA.1
 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
' Send 10 bytes of data from Array1
 Shout DTA, CLK, MSBFIRST, [Str Array1]

Using Str with the Shin command.

 Symbol DTA = PORTA.0 ' Alias the two lines for the Shin command
 Symbol CLK = PORTA.1
 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
' Load 10 bytes of data directly into Array1
 Shin DTA, CLK, MSBPRE, [Str Array1]

Using Str with the Print command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Print Str Array1 ' Send 10 bytes of data directly from Array1

Using Str with the Serout and Serin commands.

Refer to the sections explaining the Serin and Serout commands.

Using Str with the Oread and Owrite commands.

Refer to the sections explaining the Oread and Owrite commands.

The Str modifier has two forms for variable-width and fixed-width data, shown below: -

Str bytearray ASCII string from bytearray until byte = 0 (null terminated).

Or array length is reached.

Str bytearray\n ASCII string consisting of n bytes from bytearray.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

The example below is the variable-width form of the Str modifier: -

 Dim MyArray[5] as Byte ' Create a 5 element array
 MyArray[0] = "A" ' Fill the array with ASCII
 MyArray[1] = "B"
 MyArray[2] = "C"
 MyArray[3] = "D"
 MyArray[4] = 0 ' Add the null Terminator
 Print Str MyArray ' Display the string

The code above displays "ABCD" on the LCD. In this form, the Str formatter displays each
character contained in the byte array until it finds a character that is equal to 0 (value 0, not
ASCII "0"). Note: If the byte array does not end with 0 (null), the compiler will read and

Proton Compiler. Development Suite.

 70
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

output all RAM register contents until it cycles through all RAM locations for the declared length
of the byte array.

For example, the same code as before without a null terminator is: -

 Dim MyArray[4] as Byte ' Create a 4 element array
 MyArray[0] = "A" ' Fill the array with ASCII
 MyArray[1] = "B"
 MyArray[2] = "C"
 MyArray[3] = "D"
 Print Str MyArray ' Display the string

The code above will display the whole of the array, because the array was declared with only
four elements, and each element was filled with an ASCII character i.e. "ABCD".

To specify a fixed-width format for the Str modifier, use the form Str MyArray\n; where MyArray
is the byte array and n is the number of characters to display, or transmit. Changing the Print
line in the examples above to: -

 Print Str MyArray \ 2

would display "AB" on the LCD.

Str is not only used as a modifier, it is also a command, and is used for initially filling an array
with data. The above examples may be re-written as: -

 Dim MyArray[5] as Byte ' Create a 5 element array
 Str MyArray = "ABCD", 0 ' Fill array with ASCII, and null terminate it
 Print Str MyArray ' Display the string

Strings may also be copied into other strings: -

 Dim String1[5] as Byte ' Create a 5 element array
 Dim String2[5] as Byte ' Create another 5 element array
 Str String1 = "ABCD", 0 ' Fill array with ASCII, and null terminate it
 Str String2 = "EFGH", 0 ' Fill other array with ASCII, null terminate it
 Str String1 = Str String2 ' Copy String2 into String1
 Print Str String1 ' Display the string

The above example will display "EFGH", because String1 has been overwritten by String2.

Using the Str command with Busout, Hbusout, Shout, and Owrite differs from using it with
commands Serout, Print, Hrsout, and Rsout in that, the latter commands are used more for
dealing with text, or ASCII data, therefore these are null terminated.

The Hbusout, Busout, Shout, and Owrite commands are not commonly used for sending
ASCII data, and are more inclined to send standard 8-bit bytes. Thus, a null terminator would
cut short a string of byte data, if one of the values happened to be a 0. So these commands will
output data until the length of the array is reached, or a fixed length terminator is used i.e.
MyArray\n.

Proton Compiler. Development Suite.

 71
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Creating and using Strings
The Proton compiler supports String variables, only when targeting an 18F or enhanced 14-bit
core device.

The syntax to create a string is : -

 Dim String Name as String * String Length

String Name can be any valid variable name. See Dim .
String Length can be any value up to 255, allowing up to 255 characters to be stored.

The line of code below will create a String named ST that can hold 20 characters: -

 Dim ST as String * 20

Two or more strings can be concatenated (linked together) by using the plus (+) operator: -

 Device = 18F4520 ' A suitable device for Strings
' Create three strings capable of holding 20 characters
 Dim DestString as String * 20
 Dim SourceString1 as String * 20
 Dim SourceString2 as String * 20

 SourceString1 = "HELLO " ' Load String SourceString1 with the text HELLO
' Load String SourceString2 with the text WORLD
 SourceString2 = "WORLD"
' Add both Source Strings together. Place result into String DestString
 DestString = SourceString1 + SourceString2

The String DestString now contains the text "HELLO WORLD", and can be transmitted serially
or displayed on an LCD: -

 Print DestString

The Destination String itself can be added to if it is placed as one of the variables in the addi-
tion expression. For example, the above code could be written as: -

 Device = 18F452 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim DestString as String * 20
' Create another String capable of holding 20 characters
 Dim SourceString as String * 20

 DestString = "HELLO " ' Pre-load String DestString with the text HELLO
 SourceString = "WORLD" ' Load String SourceString with the text WORLD
' Concatenate DestString with SourceString
 DestString = DestString + SourceString
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop

Note that Strings cannot be subtracted, multiplied or divided, and cannot be used as part of a
regular expression otherwise a syntax error will be produced.

Proton Compiler. Development Suite.

 72
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

It's not only other strings that can be added to a string, the functions Cstr, Estr, Mid$, Left$,
Right$, Str$, ToUpper, and ToLower can also be used as one of variables to concatenate.

A few examples of using these functions are shown below: -

Cstr Example
' Use Cstr function to place a code memory string into a RAM String variable

 Device = 18F4520 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim DestString as String * 20
 Dim SourceString as String * 20 ' Create another String
 SourceString = "HELLO " ' Load the string with characters
 DestString = SourceString + Cstr CodeStr ' Concatenate the string
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop
CodeStr:
 Cdata "WORLD",0

The above example is really only for demonstration because if a Label name is placed as one
of the parameters in a string concatenation, an automatic (more efficient) Cstr operation will be
carried out. Therefore the above example should be written as: -

More efficient Example of above code
' Place a code memory string into a String variable more efficiently than
' using Cstr

 Device = 18F4520 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim DestString as String * 20
 Dim SourceString as String * 20 ' Create another String
 SourceString = "HELLO " ' Load the string with characters
 DestString = SourceString + CodeStr ' Concatenate the string
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop
CodeStr:
 Cdata "WORLD",0

A null terminated string of characters held in Data (on-board eeprom) memory can also be
loaded or concatenated to a string by using the Estr function: -

Estr Example
' Use the Estr function in order to place a
' Data memory string into a String variable
' Remember to place Edata before the main code
' so it’s recognised as a constant value

 Device = 18F4520 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String for 20 characters
 Dim SourceString as String * 20 ' Create another String

Data_Str Edata "WORLD",0 ' Create a string in Data memory
 SourceString = "HELLO " ' Load the string with characters
 DestString = SourceString + Estr Data_Str ' Concatenate the strings
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop

Proton Compiler. Development Suite.

 73
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Converting an integer or floating point value into a string is accomplished by using the Str$
function: -

Str$ Example
' Use the Str$ function in order to concatenate
' an integer value into a String variable

 Device = 18F4520 ' A suitable device for Strings
 Dim DestString as String * 30 ' Create a String capable of holding 30
characters
 Dim SourceString as String * 20 ' Create another String
 Dim Wrd1 as Word ' Create a Word variable

 Wrd1 = 1234 ' Load the Word variable with a value
 SourceString = "Value = " ' Load the string with characters
 DestString = SourceString + Str$(Dec Wrd1) ' Concatenate the string
 Print DestString ' Display the result which is "Value = 1234"
 Stop

Left$ Example
' Copy 5 characters from the left of SourceString
' and add to a quoted character string

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
 DestString = Left$(SourceString, 5) + " WORLD"
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop

Right$ Example
' Copy 5 characters from the right of SourceString
' and add to a quoted character string

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
 DestString = "HELLO " + Right$(SourceString, 5)
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop

Mid$ Example
' Copy 5 characters from position 4 of SourceString
' and add to quoted character strings

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
 DestString = "HEL" + Mid$(SourceString, 4, 5) + "RLD"
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop

Proton Compiler. Development Suite.

 74
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Converting a string into uppercase or lowercase is accomplished by the functions ToUpper and
ToLower: -

ToUpper Example
' Convert the characters in SourceString to upper case

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "hello world" ' Load source with lowercase characters
 DestString = ToUpper(SourceString)
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop

ToLower Example
' Convert the characters in SourceString to lower case

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the string with uppercase characters
 DestString = ToLower(SourceString)
 Print DestString ' Display the result which is "hello world"
 Stop

Loading a String Indirectly
If the Source String is asigned or unsigned Byte, Word, Float or an Array variable, the value
contained within the variable is used as a pointer to the start of the Source String's address in
RAM.

Example
' Copy SourceString into DestString using a pointer to SourceString

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Locate the start address of SourceString in RAM
 StringAddr = VarPtr(SourceString)
 DestString = StringAddr ' Source string into the destination string
 Print DestString ' Display the result, which will be "HELLO"
 Stop

Proton Compiler. Development Suite.

 75
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Slicing a String.
Each position within the string can be accessed the same as an unsigned Byte Array by using
square braces: -

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String

 SourceString[0] = "H" ' Place letter "H" as first character in the string
 SourceString[1] = "E" ' Place the letter "E" as the second character
 SourceString[2] = "L" ' Place the letter "L" as the third character
 SourceString[3] = "L" ' Place the letter "L" as the fourth character
 SourceString[4] = "O" ' Place the letter "O" as the fifth character
 SourceString[5] = 0 ' Add a null to terminate the string

 Print SourceString ' Display the string, which will be "HELLO"
 Stop

The example above demonstrates the ability to place individual characters anywhere in the
string. Of course, you wouldn't use the code above in an actual BASIC program.

A string can also be read character by character by using the same method as shown above: -

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim Var1 as Byte

 SourceString = "HELLO" ' Load the source string with characters
' Copy character 1 from the source string and place it into Var1
 Var1 = SourceString[1]
 Print Var1 ' Display character extracted from string. Which will be "E"
 Stop

When using the above method of reading and writing to a string variable, the first character in
the string is referenced at 0 onwards, just like an unsigned Byte Array.

The example below shows a more practical String slicing demonstration.

' Display a string's text by examining each character individually
 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim Charpos as Byte ' Holds the position within the string

 SourceString = "HELLO WORLD" ' Load the source string with characters
 Charpos = 0 ' Start at position 0 within the string
 Repeat ' Create a loop
 ' Display the character extracted from the string
 Print SourceString[Charpos]
 Inc Charpos ' Move to the next position within the string
 ' Keep looping until the end of the string is found
 Until Charpos = Len(SourceString)
 Stop

Proton Compiler. Development Suite.

 76
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Notes
A word of caution regarding Strings: If you're familiar with interpreted BASICs and have used
their String variables, you may have run into the "subscript out of range" error. This error occurs
when the amount of characters placed in the string exceeds its maximum size.

For example, in the examples above, most of the strings are capable of holding 20 characters.
If your program exceeds this range by trying to place 21 characters into a string only created for
20 characters, the compiler will not respond with an error message. Instead, it will access the
next RAM location past the end of the String.

If you are not careful about this, it can cause all sorts of subtle anomalies as previously loaded
variables are overwritten. It's up to the programmer (you!) to prevent this from happening by
ensuring that the String in question is large enough to accommodate all the characters re-
quired, but not too large that it uses up too much precious RAM.

The compiler will help by giving a reminder message when appropriate, but this can be ignored
if you are confident that the String is large enough.

See also : Creating and using Virtual Strings with Cdata
 Creating and using Virtual Strings with Edata
 Cdata, Len, Left$, Mid$, Right$
 String Comparisons, Str$, ToLower, ToUpper, VarPtr .

Proton Compiler. Development Suite.

 77
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Creating and using Code Memory Strings
Some devices have the ability to read and write to their own flash memory. And although writing
to this memory too many times is unhealthy for the PICmicro™, reading this memory is both
fast, and harmless. Which offers a unique form of data storage and retrieval, the Cdata com-
mand and the new Dim as Code directive proves this, as they uses the mechanism of reading
and storing in the microcntroller's flash memory.

Combining the unique features of the 'self modifying devices ' with a string format, the compiler
is capable of reducing the overhead of printing, or transmitting large amounts of text data. The
Cstr modifier may be used in commands that deal with text processing i.e. Print, Serout,
Hrsout, and Rsout .

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is
used for initially creating the string of characters: -

String1: Cdata "HELLO WORLD", 0

The above line of code will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address String1. Note the null terminator after the ASCII text.

 null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 Print Cstr String1

The label that declared the address where the list of Cdata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code: -

First the standard way of displaying text: -

 Device = 18F4520
 Cls
 Print "HELLO WORLD"
 Print "HOW ARE YOU?"
 Print "I AM FINE!"
 Stop

Now using the Cstr modifier: -

 Cls
 Print Cstr TEXT1
 Print Cstr TEXT2
 Print Cstr TEXT3
 Stop

TEXT1: Cdata "HELLO WORLD", 0
TEXT2: Cdata "HOW ARE YOU?", 0
TEXT3: Cdata "I AM FINE!", 0

Proton Compiler. Development Suite.

 78
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the
microcontroller will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot
(rather should not) be written too, but only read from.

Not only label names can be used with the Cstr modifier, constants, variables and expressions
can also be used that will hold the address of the Cdata 's label (a pointer). For example, the
program below uses a Word size variable to hold 2 pointers (address of a label, variable or ar-
ray) to 2 individual null terminated text strings formed by Cdata .

Example 1
' Use the Proton development board for the example
 Include "Proton_4.Inc"
 Dim Address as Word ' Pointer variable

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD

 Address = String1 ' Point address to string 1
 Print Cstr Address ' Display string 1
 Address = String2 ' Point Address to string 2
 Print Cstr Address ' Display string 2
 Stop

' Create the text to display
String1:
 Cdata "Hello ", 0
String2:
 Cdata "World", 0

It is also possible to eliminate the Cstr modifier altogether and place the label’s name directly.
The compiler will see this as an implied Cstr and act accordingly. For example:

' Use the Proton development board for the example
 Include "Proton18_4.Inc"

 Dim CodeString1 as Code = "Hello ", 0
 Dim CodeString2 as Code = "World", 0

 Cls ' Clear the LCD

 Print CodeString1 ' Display CodeString1
 Print CodeString2 ' Display CodeString2
 Stop

Proton Compiler. Development Suite.

 79
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Creating and using Eeprom Memory Strings with Edata
Some 14-bit core and most 18F microcontrollers have on-board eeprom memory, and although
writing to this memory too many times is unhealthy for the device, reading this memory is both
fast and harmless. Which offers a great place for text storage and retrieval.

Combining the eeprom memory of a device with a string format, the compiler is capable of re-
ducing the overhead of printing, or transmitting large amounts of text data using a memory re-
source that is very often left unused and ignored. The Estr modifier may be used in commands
that deal with text processing i.e. Print, Serout, Hrsout, and Rsout and String handling etc.

The Estr modifier is used in conjunction with the Edata command, which is used to initially cre-
ate the string of characters: -

String1 Edata "HELLO WORLD", 0

The above line of code will create, in eeprom memory, the values that make up the ASCII text
"HELLO WORLD", at address String1 in Data memory. Note the null terminator after the ASCII
text.

To display, or transmit this string of characters, the following command structure could be used:

 Print Estr String1

The identifier that declared the address where the list of Edata values resided, now becomes
the string's name. In a large program with lots of text formatting, this type of structure can save
many bytes of valuable code space.

Try both these small programs, and you'll see that using Estr saves code space: -

First the standard way of displaying text: -

 Device 18F4520
 Cls
 Print "HELLO WORLD"
 Print "HOW ARE YOU?"
 Print "I AM FINE!"
 Stop

Now using the Estr modifier: -

TEXT1 Edata "HELLO WORLD", 0
TEXT2 Edata "HOW ARE YOU?", 0
TEXT3 Edata "I AM FINE!", 0

 Cls
 Print Estr TEXT1
 Print Estr TEXT2
 Print Estr TEXT3
 Stop

Again, note the null terminators after the ASCII text in the Edata commands. Without these, the
PICmicro™ will continue to transmit data in an endless loop.

Proton Compiler. Development Suite.

 80
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

The term 'virtual string' relates to the fact that a string formed from the Edata command cannot
(rather should not) be written to often, but can be read as many times as wished without caus-
ing harm to the device.

Not only identifiers can be used with the Estr modifier, constants, variables and expressions
can also be used that will hold the address of the Edata's identifier (a pointer). For example, the
program below uses a Byte size variable to hold 2 pointers (address of a variable or array) to 2
individual null terminated text strings formed by Edata .

' Use the Proton development board for the example
 Include "Proton_4.Inc"

 Dim Address as Word ' Pointer variable
' Create the text to display in eeprom memory
String1 Edata "HELLO ", 0
String2 Edata "WORLD", 0

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Address = String1 ' Point address to string 1
 Print Estr Address ' Display string 1
 Address = String2 ' Point Address to string 2
 Print Estr Address ' Display string 2
 Stop

Notes
Note that the identifying text must be located on the same line as the Edata directive or a syn-
tax error will be produced. It must also not contain a postfix colon as does a line label or it will
be treat as a line label. Think of it as an alias name to a constant.

Any Edata directives must be placed at the head of the BASIC program as is done with Sym-
bols, so that the name is recognised by the rest of the program as it is parsed. There is no need
to jump over Edata directives as you have to with Ldata or Cdata, because they do not occupy
code memory, but reside in high Data memory.

Proton Compiler. Development Suite.

 81
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

String Comparisons
Just like any other variable type, String variables can be used within comparisons such as If-
Then, Repeat-Until, and While-Wend . In fact, it's an essential element of any programming
language. However, there are a few rules to obey because of the PICmicro's architecture.

Equal (=) or Not Equal (<>) comparisons are the only type that apply to Strings, because one
String can only ever be equal or not equal to another String. It would be unusual (unless your
using the C language) to compare if one String was greater or less than another.

So a valid comparison could look something like the lines of code below: -

 If String1 = String2 Then Print "EQUAL" : Else : Print "not EQUAL"
or
 If String1 <> String2 Then Print "not EQUAL" : Else : Print "EQUAL"

But as you've found out if you read the Creating Strings section, there is more than one type of
String in a PICmicro™. There is a String variable, a code memory string, and a quoted charac-
ter string .

Note that pointers to String variables are not allowed in comparisons, and a syntax error will be
produced if attempted.

Starting with the simplest of string comparisons, where one string variable is compared to an-
other string variable. The line of code would look similar to either of the two lines above.

Example 1
' Simple string variable comparison

 Device = 18F452 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim String1 as String * 20
 Dim String2 as String * 20 ' Create another String

 Cls
 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 String2 = "BACON" ' Load String String2 with the text BACON

 If String1 = String2 Then ' Is String1 equal to String2 ?
 Print At 1,1, "EQUAL" ' Yes. So display EQUAL on line 1 of the LCD
 Else ' Otherwise
 Print At 1,1, "not EQUAL" ' Display not EQUAL on line 1 of the LCD
 EndIf

 String2 = "EGGS" ' Now make the strings the same as each other
 If String1 = String2 Then ' Is String1 equal to String2 ?
 Print At 2,1, "EQUAL" ' Yes. So display EQUAL on line 2 of the LCD
 Else ' Otherwise
 Print At 2,1, "not EQUAL" ' Display not EQUAL on line 2 of the LCD
 EndIf
 Stop

The example above will display not Equal on line one of the LCD because String1 contains the
text "EGGS" while String2 contains the text "BACON", so they are clearly not equal.

Proton Compiler. Development Suite.

 82
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Line two of the LCD will show Equal because String2 is then loaded with the text "EGGS" which
is the same as String1, therefore the comparison is equal.

A similar example to the previous one uses a quoted character string instead of one of the
String variables.

Example 2
' String variable to Quoted character string comparison

 Device = 18F4520 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim String1 as String * 20

 Cls
 String1 = "EGGS" ' Pre-load String String1 with the text EGGS

 If String1 = "BACON" Then ' Is String1 equal to "BACON" ?
 Print At 1,1, "equal" ' Yes. So display EQUAL on line 1 of the LCD
 Else ' Otherwise…
 Print At 1,1, "not equal" ' Display not EQUAL on line 1 of the LCD
 EndIf

 If String1 = "EGGS" Then ' Is String1 equal to "EGGS" ?
 Print At 2,1, "equal" ' Yes. So display EQUAL on line 2 of the LCD
 Else ' Otherwise…
 Print At 2,1, "not equal" ' Display not EQUAL on line 2 of the LCD
 EndIf
 Stop

The example above produces exactly the same results as example1 because the first compari-
son is clearly not equal, while the second comparison is equal.

Example 3
' Use a string comparison in a Repeat-Until loop

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String
 Dim Charpos as Byte ' Character position within the strings

 Cls
 Clear DestString ' Fill DestString with nulls
 SourceString = "HELLO" ' Load String SourceString with the text HELLO

 Repeat ' Create a loop
 ' Copy SourceString into DestString one character at a time

DestString[Charpos] = SourceString[Charpos]
 Inc Charpos ' Move to the next character in the strings
 ' Stop when DestString is equal to the text "HELLO"
 Until DestString = "HELLO"
 Print DestString ' Display DestString
 Stop

Proton Compiler. Development Suite.

 83
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Example 4
' Compare a string variable to a string held in code memory
 Device = 18F4520 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim String1 as String * 20

 Cls
 String1 = "BACON" ' Pre-load String String1 with the text BACON
 If CodeString= "BACON" Then ' Is CodeString equal to "BACON" ?
 Print At 1,1, " equal " ' Yes. So display EQUAL on line 1 of the LCD
 Else ' Otherwise…
 Print At 1,1, "not equal" ' Display not EQUAL on line 1 of the LCD
 EndIf

 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 If String1 = CodeString Then ' Is String1 equal to CodeString ?
 Print At 2,1, " equal " ' Yes. So display EQUAL on line 2 of the LCD
 Else ' Otherwise…
 Print At 2,1, "not equal " ' Display not EQUAL on line 2 of the LCD
 EndIf
 Stop

CodeString:

Cdata "EGGS", 0

Example 5
' String comparisons using Select-Case
 Device = 18F4520 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim String1 as String * 20

 Cls
 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 Select String1 ' Start comparing the string
 Case "EGGS" ' Is String1 equal to EGGS?
 Print At 1,1,"Found EGGS"
 Case "BACON" ' Is String1 equal to BACON?
 Print At 1,1,"Found BACON"
 Case "COFFEE" ' Is String1 equal to COFFEE?
 Print At 1,1,"Found COFFEE"
 Case Else ' Default to...
 Print At 1,1,"No Match" ' Displaying no match
 EndSelect
 Stop

See also : Creating and using Strings
 Creating and using Virtual Strings with Cdata
 Cdata, If-Then-Else-EndIf, Repeat-Until
 Select-Case, While-Wend .

Proton Compiler. Development Suite.

 84
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Relational Operators
Relational operators are used to compare two values. The result can be used to make a deci-
sion regarding program flow.

The list below shows the valid relational operators accepted by the compiler:

Operator Relation Expression Type
 = Equality X = Y
 == Equality X == Y (Same as above Equality)
 <> Inequality X <> Y
 != Inequality X != Y (Same as above Inequality)
 < Less than X < Y
 > Greater than X > Y
 <= Less than or Equal to X <= Y
 >= Greater than or Equal to X >= Y

See also : If-Then-Else-EndIf, Repeat-Until, Select-Case, While-Wend.

Proton Compiler. Development Suite.

 85
Rosetta Technologies/Crownhill Associates Limited 2012 - All Rights Reserved Version 3.5 2012-09-06

Boolean Logic Operators
The If-Then-Else-EndIf, While-Wend, and Repeat-Until conditions now support the logical
operators not, and, or, and xor. The not operator inverts the outcome of a condition, changing
false to true, and true to false. The following two If-Then conditions are equivalent: -

 If Var1 <> 100 Then NotEqual ' Goto notEqual if Var1 is not 100.
 If not Var1 = 100 Then NotEqual ' Goto notEqual if Var1 is not 100.

The operators and, or, and xor join the results of two conditions to produce a single true/false
result. and and or work the same as they do in everyday speech. Run the example below once
with and (as shown) and again, substituting or for and: -

 Dim Var1 as Byte
 Dim Var2 as Byte
 Cls
 Var1 = 5
 Var2 = 9
 If Var1 = 5 and Var2 = 10 Then Res_True
 Stop
Res_True:
 Print "Result IS True."
 Stop

The condition "Var1 = 5 and Var2 = 10" is not true. Although Var1 is 5, Var2 is not 10. and
works just as it does in plain English, both conditions must be true for the statement to be true.
or also works in a familiar way; if one or the other or both conditions are true, then the state-
ment is true. xor (short for exclusive-or) may not be familiar, but it does have an English coun-
terpart: If one condition or the other (but not both) is true, then the statement is true.

Parenthesis (or rather the lack of it!).
Every compiler has it's quirky rules, and the Proton compiler is no exception. One of its quirks
means that parenthesis is not supported in a Boolean condition, or indeed with any of the If-
Then-Else-EndIf, While-Wend, and Repeat-Until conditions. Parenthesis in an expression
within a condition is allowed however. So, for example, the expression: -

 If (Var1 + 3) = 10 Then do something. Is allowed.
but: -
 If((Var1 + 3) = 10) Then do something. Is not allowed.

The boolean operands do have a precedence within a condition. The and operand has the
highest priority, then the or, then the xor. This means that a condition such as: -

 If Var1 = 2 and Var2 = 3 or Var3 = 4 Then do something

Will compare Var1 and Var2 to see if the and condition is true. It will then see if the or condition
is true, based on the result of the and condition.

Then operand always required.
The Proton compiler relies heavily on the Then part. Therefore, if the Then part of a condition is
left out of the code listing, a Syntax Error will be produced.

	Proton IDE Overview
	Menu Bar
	Main Toolbar
	Edit Toolbar
	Code Explorer
	Results View
	Editor Options
	Highlighter Options
	Compile and Program Options
	Installing a Programmer
	Creating a custom Programmer Entry
	Microcode Loader
	Loader Options
	Loader Main Toolbar
	IDE Plugins
	ASCII Table
	Hex View
	Assembler Window
	Assembler Main Toolbar
	Assembler Editor Options
	Serial Communicator
	Serial Communicator Main Toolbar
	Labcenter Electronics Proteus VSM
	ISIS Simulator Quick Start Guide
	Compiler Overview
	PICmicro Devices
	Limited 12-bit Device Compatibility.
	Programming Considerations for 12-bit core Devices.
	Device Specific issues
	Identifiers
	Line Labels
	Variables
	Floating Point Math
	Aliases
	Constants
	Symbols
	Numeric Representations
	Quoted String of Characters
	Ports and other Registers
	General Format
	A Typical basic Program Layout
	Line Continuation Character '_'
	Creating and using Arrays
	Creating and using Strings
	Creating and using Code Memory Strings
	Creating and using Eeprom Memory Strings with Edata
	String Comparisons
	Relational Operators
	Boolean Logic Operators

	Math Operators
	Bitwise Reverse '@'
	Decimal Digit extract '?'
	Abs
	fAbs
	Acos
	Asin
	Atan
	Cos
	Dcd
	Exp
	fRound
	ISin
	ICos
	Isqr
	Log
	Log10
	Ncd
	Pow
	Sin
	Sqr
	Tan
	Div32

	Commands and Directives
	Adin
	Asm..EndAsm
	Box
	Branch
	BranchL
	Break
	Bstart
	Bstop
	Brestart
	BusAck
	BusNack
	Busin
	Busout
	Button
	Call
	Cdata
	CF_Init
	CF_Sector
	CF_Read
	CF_Write
	Circle
	Clear
	ClearBit
	Cls
	Config
	Continue
	Context
	Counter
	Cread
	Cread8, Cread16, Cread32
	Cursor
	Cwrite
	Dec
	Declare
	DelayCs
	DelayMs
	DelayUs
	Device
	Dig
	Dim
	Disable
	DTMFout
	Edata
	Enable
	End
	Eread
	Ewrite
	For...Next...Step
	Freqout
	GetBit
	Gosub
	Goto
	HbStart
	HbStop
	HbRestart
	HbusAck
	HbusNack
	Hbusin
	Hbusout
	High
	Hpwm
	Hrsin
	Hrsout
	Hserin
	Hserout
	I2Cin
	I2Cout
	If..Then..ElseIf..Else..EndIf
	Include
	Inc
	Inkey
	Input
	LCDread
	LCDwrite
	Ldata
	Len
	Left$
	Line
	LineTo
	LoadBit
	LookDown
	LookDownL
	LookUp
	LookUpL
	Low
	Lread
	Lread8, Lread16, Lread32
	Mid$
	On Goto
	On GotoL
	On Gosub
	On_Hardware_Interrupt
	On_Low_Interrupt
	Output
	Org
	Oread
	Owrite
	Pixel
	Plot
	Pop
	Pot
	Print
	PulseIn
	PulseOut
	Push
	Pwm
	Random
	RC5in
	RCin
	Repeat...Until
	Resume
	Return
	Right$
	Rsin
	Rsout
	Seed
	Select..Case..EndSelect
	Serin
	Serout
	Servo
	SetBit
	Set_OSCCAL
	Set
	Shin
	Shout
	Snooze
	Sleep
	SonyIn
	Sound
	Sound2
	Stop
	Strn
	Str$
	Swap
	Symbol
	Toggle
	ToLower
	ToUpper
	Toshiba_Command
	Toshiba_UDG
	UnPlot
	USBinit
	USBin
	USBout
	USBpoll
	Val
	VarPtr
	While...Wend
	Xin
	Xout

	Using the Optimiser
	Caveats

	Using the Preprocessor
	Preprocessor Directives
	Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and $elseif)

	Using the Proton Compiler with MPLAB IDE™
	Protected Compiler Words

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [612.000 792.000]
>> setpagedevice

