
1
17
17
17
17
17
17
18
18
19
19
19
19
20
20
20
20
23
23
23
23
23
23
24
24
24
25
25
26
26
27
27
27
27
28
28
28
28
29
29
29
29
29
30
30
30
31
31
32
32
32

Table of Contents
Table of Contents
Getting Started

Road Map
Supported Document Types
File Editing
Usage Comfort and Environment Customization

Main Window Details
Data Processing Engine

Operation History
Multiple Selection
Operation Efficiency
Multi-Document & Multi-Editor Environment
Encodings Support
Native Support of x64 Platform
Parallel Operation
Programming Access

Features
What's New

Version 6.25
Version 6.20
Version 6.12
Version 6.01
Version 5.14
Version 5.13
Version 5.12
Version 5.11
Version 5.10
Version 5.01
Version 4.97
Version 4.96
Version 4.95
Version 4.94

Portable Installations Improvements
Version 4.93
Version 4.92

General Bug Fixes
General
Structure Viewer

Version 4.91
Transactional Installation
Restart Manager Support
Per-User Installation
Portable Installation
Command-line Parameters

Version 4.85
Version 4.83
Version 4.82
Version 4.81
Version 4.76
Version 4.75
Version 4.73

Hex Editor Neo Documentation Table of Contents

1

33
33
35
35
36
36
36
36
37
37
39
39
39
39
40
40
40
41
41
41
43
43
43
43
44
44
44
45
45
45
45
45
45
45
45
45
46
46
46
46
47
47
47
47
47
47
48
48
49
49
49
50
50
50

Version 4.72
Version 4.71
Version 4.64
Version 4.51
Version 4.41
Version 4.33
Version 4.32
Version 4.21
Version 4.11
Version 4.01

Definitive Guide
User Interface Elements

Commands
Main Menu
Toolbars
Keyboard Shortcuts
Tool Windows

Location
Floating Tool Window
Docked Tool Window
Auto-Hidden Tool Windows

Tool Window Visibility
Tool Window Configuration

Window Switching
Other Window-Switching methods

Default Layout
Choosing Another Default Layout

Documents
Supported Document Types

Files and Streams
Working with Files in Shared Mode
Volumes
Disks
Process Memory
Computer Physical Memory (RAM)

Opening Documents
Errors Opening Files
Opening Files

File Open Command
Using the Right-click Menu in the Windows Explorer
Drag&Drop
Specify Files to Open in Command Line

Opening Files in Shared Mode
File Open Shared Command
Using the Right-click Menu in the Windows Explorer
Specify Files to Open in Command Line

Opening Encoded Hex Files
Opening Volumes

Volume Navigator Support
Opening Disks
Opening Processes

Support for 32-Bit Processes on 64-Bit Operating System
Memory Map
Opening Blocks

Hex Editor Neo Documentation Table of Contents

2

51
51
51
51
51
52
52
52
52
52
52
53
53
53
53
54
54
54
54
56
58
58
58
59
59
59
59
59
59
60
60
60
61
61
61
61
62
62
62
63
63
65
65
66
66
67
67
67
67
67
67
68
68
68

Opening Physical Memory
Limitations

Creating New Documents
Closing Documents
Saving Documents

Save All Command
Always Create Backups Option
Requirements

Working with Shared Files
Supporting Scenarios
Limitations
Solving File Conflicts

Rename Change Notification
Delete Change Notification
Modify Change Notification

Highlighting Changes in the File
Notes

Editor Windows
Basic Elements
Encodings

Working with Encodings
UTF-8 Support

Byte Order
Effect on Floating-Point Types
Data Inspector and Structure Viewer

Simple Editing
Cursor Movement and Navigation

“Unlimited” Editing Space
Keyboard Movement
Navigation with Mouse
Cursor Movement with Mouse

Insert Mode
Influence on Editor Commands

Data Modification
View Types
Modifying File Data

Editor Windows List
Customization

Editor Windows Placement
Layout and Color Schemes

Configurable Options
Cell Coloring
Color Schemes

Default Editor Windows Settings
Associating Editor Window Settings with Documents

Selection
Multiple Selection

Single Selection Mode Option
Selecting with Keyboard
Selecting with Mouse
Selection Tool Window

Information
Details

Working with Selection

Hex Editor Neo Documentation Table of Contents

3

69
69
69
70
70
70
71
71
71
72
72
73
73
74
75
75
76
76
77
77
77
78
78
78
78
78
78
79
79
79
79
79
79
80
80
80
81
81
81
81
82
82
82
82
83
84
85
85
85
85
85
86
86
86

Performance Considerations
Editor Commands

Pattern Window
Byte Order
Regular Expressions

Fill
Insert
Delete
Insert File
Insert Hex
Go to Offset

Selection
Go to Offset (Process)
Change File Size
Encrypt
Decrypt
Modify Bits

Printing Documents
Printing Options
Page Setup
Printing

Printing Selection
Find and Replace

Find & Find All
Find Window
Find

Find Operations
Regular Expressions

Find All
Find All Results
Regular Expressions

Replace & Replace All
Find & Replace Window
Replace

Find & Replace Operations
Regular Expressions

Replace All
Replace All Results
Regular Expressions

Find in Files & Replace in Files
Scalability
Safety
Regular Expressions
Find in Files Window
Folder List Window
Find in Files Tool Window
Find in Files

Find at Least One Occurrence
Find All Occurrences
Regular Expressions

Replace in Files
Replace All Occurrences and Save
Replace All Occurrences and Open
Regular Expressions

Hex Editor Neo Documentation Table of Contents

4

86
87
87
87
89
89
90
90
90
91
91
91
91
91
91
91
91
92
92
92
92
92
93
93
93
93
93
93
94
94
95
97

100
101
102
102
103
103
103
103
104
104
105
105
106
106
107
108
108
108
108
108
109
109

Regular Expressions
Capturing Sub-expressions
Usage Tips and Performance Considerations
Regular Expressions Syntax
Replace Pattern Syntax
Examples
Named Classes

Recursive Grammars
Creating and Managing Classes

Regular Expression Syntax Errors
Example

Clipboard
Supported Formats

Internal Format
Windows Explorer Format

Hex Editor Neo's Document Data to File
File Data to Hex Editor Neo's Document

Text
Copying, Cutting and Merge Modifier

Important Considerations
Advanced Copy & Export
Limitations

Pasting Data
Paste Command Complexity

Pasting Text
Pasting Raw Text
Pasting Formatted Numbers

Examples
Advanced Copy & Export

Copy & Export Tool Window
Raw Text Format
Formatted Data Format
Encoded Data Format

NTFS Streams
Streams Support in Hex Editor Neo
NTFS Streams Tool Window

Find Stream Mode
Searching for Streams

Search Process and Results
Operation History

Organization
Branches

Pinned Branches
History Tool Window

Operation Tree Actions
History Commands
Purging History
Saving and Loading History

Saving History
Loading History

Operation History Tree Window
Full Mode
Forks Only Mode
Navigation

Hex Editor Neo Documentation Table of Contents

5

109
109
109
109
110
110
110
110
111
111
111
111
112
112
113
113
113
113
114
114
115
115
115
115
115
115
115
115
116
116
116
116
117
117
118
118
118
119
121
121
122
122
122
122
123
123
124
124
125
126
127
127
127
128

Legend
Shortcut Menu

File Comparison
Compare Files Window
File Comparison Tool Window
Comparison Algorithms

Simple Comparison Algorithm
Difference Algorithm

Patches
Distribution
Limitations
Creating Patches
Applying Patches

PatchApply.exe
Command Line Interface

Patch API
Pattern Coloring

Pattern Coloring Tool Window
Creating and Editing Rules
Rule Schemes
Regular Expressions

Structure Viewer
What's New in Structure Viewer

What's New in Structure Viewer (version 6.31)
What's New in Structure Viewer (version 6.25)

New Language Features
What's New in Structure Viewer (version 6.01)

New Language Features
Fixed bugs

What's New in Structure Viewer (version 5.12)
New Language Features
Fixed bugs

What's New in Structure Viewer (version 5.01)
New Language Features
New UI Features

What's New in Structure Viewer (version 4.96)
What's New in Structure Viewer (version 4.92)
What's New in Structure Viewer (version 4.71)

Structure Library Tool Window
Library Management
Compilation

Structure Editor
Find
Replace
Go to Line
Structure Editor Coloring
Licenses

Structure Binding
Structure Viewer Tool Window

Managing Bound Structures
Working with Schemes

Structure Viewer Settings Page
Include Directories
File Associations

Hex Editor Neo Documentation Table of Contents

6

128
128
128
129
129
129
130
130
131
131
132
132
132
133
133
133
133
134
134
135
135
136
136
136
137
137
137
137
138
138
138
139
139
139
139
139
140
140
141
141
142
142
142
143
143
143
143
144
144
144
144
145
145
145

Language Reference
Workflow
Tokenization
Comments
Preprocessor

#include directive
Using Absolute and Relative Paths

#pragma once Directive
#define Directive

Defining Constants
Defining Macros
Variadic Macros
#undef Directive

#error Directive
Preprocessor Operators

Stringizing Operator
Token-Pasting Operator

Conditional Compilation Directives
#if, #elif, #else, #endif, defined() operator
#ifdef, #ifndef

Predefined Macros
Built-in Types

Integer Types
Type Modifiers
Floating-Point Types
String Types

Expressions
Operators
Optimization
Immediates

Integer Number
Floating-Point Number
Character Constants
String Constants

References
Limitations

Byte Arrays
Field Access

this Pseudo-Field
array_index Built-In Variable
current_offset Built-In Variable

. Field Access Operator
[] Array Indexing Operator
() Expression Grouping Operator
() Function Call Operator
- Unary Minus Operator
~ Bitwise NOT Operator
& Bitwise AND Operator
^ Bitwise XOR Operator
| Bitwise OR Operator
! Logical NOT Operator
&& Logical AND Operator
|| Logical OR Operator
sizeof() Operator

Hex Editor Neo Documentation Table of Contents

7

146
146
146
147
147
147
147
148
148
148
148
149
149
149
149
150
150
150
150
152
152
153
153
154
154
154
154
155
155
155
155
156
156
157
157
158
158
158
159
159
160
160
160
161
161
161
162
162
164
164
164
165
165
165

& Address-Of Operator
* Multiplication Operator
/ Division Operator
% Modulo Division Operator
+ Addition Operator
- Subtraction Operator
<< Left Shift Operator
>> Right Shift Operator
>>> Right Unsigned Shift Operator
< Less Than Operator
<= Less Than or Equal Operator
> Greater Than Operator
>= Greater Than or Equal Operator
== Equality Operator
!= Inequality Operator
?: Conditional Operator

Functions
Internal Functions

Built-In Functions
Examples

Native Functions
Function Scope
Function Optimization

External Functions
Attaching Scripts
Examples
javascript Keyword
External Functions
Script Objects
Example

Statements
if Statement
switch Statement
break Statement
while Statement
for Statement
do…while Statement
return Statement

Scopes
Constants and Constant Arrays

Constant Arrays
Variables and Variable Arrays

Optimizations
Using Variables
Variable Arrays

Enumerations
Using Enumerations

User-Defined Types
Supported Types

Structures
Packing and Alignment
Byte Order
Unions
Case Unions

Hex Editor Neo Documentation Table of Contents

8

166
166
167
167
167
168
168
168
169
169
170
170
170
170
170
170
171
171
171
171
171
171
172
172
172
173
173
173
174
174
174
175
175
175
177
179
179
179
179
180
180
180
182
182
183
184
184
184
184
184
184
185
185
185

Case Union Optimization
Forward Declarations
Data Fields

Plain Field
Array Field
Simple and Ordinary Arrays
“Infinite” Arrays
Visualization
Bit Field
Pointer Field

Attributes
Field Attributes
Type Attributes
Field Attributes
noindex Attribute
noautohide Attribute
onread Attribute
format Attribute
description Attribute
color_scheme Attribute
exact_only Attribute
Type Attributes
display Attribute

Typedefs
Directives

$assert Directive
$print Directive
$break_array Directive
$bind Directive
$alert Directive
$revert_to Directive
$shift_by Directive
$remove_to Directive

Format String Syntax
Errors

Examples
Disassembler

Example
Supported Instruction Sets
Definitions
Starting Disassembler

Disassembler Window
Symbols Window
Disassembler View

View Refresh
Positioning within a Document
Searching for a Text
Exporting and Copying to Clipboard

Bookmarks
Bookmarks Tool Window

Active vs. Selected Bookmark Group
Creating and Deleting Bookmarks Groups

Working with Bookmarks
Working with Active Bookmarks Group

Hex Editor Neo Documentation Table of Contents

9

185
185
186
186
187
187
187
187
187
187
188
188
188
188
188
190
190
190
191
191
192
192
193
194
194
194
194
195
195
195
195
196
197
197
197
197
197
198
198
198
198
199
199
199
199
199
199
200
200
200
200
201
202
202

Working with Selected Bookmarks Group
Other Commands

Statistics
Statistics Tool Window

Histogram View
Table View

General Statistics
Pattern Statistics

Edit Pattern Window
Regular Expressions

Descriptive Statistics and Entropy Analysis
Descriptive Statistics
Entropy Analysis

Attributes
Attributes Tool Window

Base Converter
Base Converter Tool Window

Data Inspector
Fields
Data Modification
Byte Order
Creating New Format

Checksum Calculation
Checksum Tool Window

Displaying Results
Adding, Removing and Restoring Algorithms
Performance Considerations

Configuring Custom CRC
Volume Navigator

Features
Volume Navigator Tool Window

Volume Navigator Commands
Built-In Explorer

Explorer Tool Window
Data Operations

Bitwise Operations
Bitwise Operation Window
Using Patterns as Operands
Alignment

Arithmetic Operations
Arithmetic Operation Window
Alignment

Shift Operations
Shift Operation Window
Alignment

Case Change Operations
Reverse Operations

Reverse Bits
Byte Swap

Customization
General Settings

General Group
Editor Group
Notifications Group

Hex Editor Neo Documentation Table of Contents

10

202
202
202
203
203
203
203
203
203
204
205
206
206
206
207
207
207
208
209
209
209
209
209
209
210
210
210
210
211
212
212
212
213
213
213
213
214
215
215
215
215
215
215
215
215
216
216
216
216
216
216
216
217
217

NTFS Streams
Printing
Copy&Export

Toolbar Customization
Creating New Toolbar
Deleting Toolbar
Configuring a Toolbar
Other Options

Keyboard Customization
Keyboard Map

Regular Expressions Settings
Proxy Settings

Server Settings
Proxy Server Authentication
Security Considerations

Tasks
Languages

Online Languages
Purchasing Hex Editor Neo

Choosing Appropriate Edition
Choosing Additional Options

Lifetime Upgrades Service
How to Buy

Ordering On-Line
Ordering Off-Line
Purchase Orders

My Account Web Site Section
Downloading License Files
Installing License Files

Upgrading Hex Editor Neo
Upgrading from the Free Edition
Upgrading from Standard or Professional Editions

Getting Support
How to Get Support
Crash Dumps

Crash Reporting Configuration
Crash Report Processing

Scripting
File Document Object
Multiple Selection Object
Sequence Object
Thread Safety
Lengthy Operations Limitations
Document Object

Creating Document Object
Working with Document Object

Initializing Document Object
Closing Document Object
Saving Changes
Reading and Writing Data
Inserting Data
Deleting Data
Filling Data
Find and Find All

Hex Editor Neo Documentation Table of Contents

11

217
217
217
217
217
217
217
218
218
218
218
218
218
218
219
219
219
219
219
219
219
219
225
226
226
226
227
227
227
227
228
228
229
229
229
230
230
230
231
231
232
232
232
233
233
234
235
235
236
237
237
238
239
239

Replace and Replace All
Calculating Statistics
Inserting Files
Controlling File's Size
Undo and Redo
Working with Operation History
Clipboard Methods
Bitwise and Other Operations
Regular Expressions

Multiple Selection Object
Creating Multiple Selection Object
Working with Multiple Selection Object

Sequence Object
Creating Sequence Object
Working with Sequence Object

Parser Object
Obtaining Parser Object
Working with Parser Object

Reference
Document Object

IFileDocument Interface
Declaration
IFileDocument Properties

AutoCreateBranch
FileName
FileSize
Modified
Stream
ReadOnly
RegExpSyntaxError
CanRedo
CanUndo
CanPaste

IFileDocument Methods
Close
New
Open
OpenPhysicalDisk
OpenPhysicalMemory
OpenProcess
OpenVolume
Save
SaveAs
GetModifiedSel
Decrypt
Delete
DeleteMulti
Encrypt
Fill
FillByte
FillByteMulti
FillMulti
Insert
InsertByte

Hex Editor Neo Documentation Table of Contents

12

240
240
241
241
242
243
243
243
244
244
244
245
246
246
247
247
248
248
249
250
251
252
253
254
255
256
257
257
258
259
259
260
260
261
261
262
263
264
264
265
265
266
266
267
268
269
269
270
271
271
272
273
273
274

InsertPattern
PutFile
Read
Write
CreatePatch
LoadHistory
Purge
Redo
SaveHistory
Undo
Copy
Cut
Paste
Paste2
Paste3
PasteText
PasteText2
Find
FindRegExp
FindRegExp2
FindAll
FindAllRegExp
FindAllRegExp2
Replace
ReplaceAll
ReplaceAllRegExp
ReplaceAllRegExp2
ReplaceAllRegExpWithRegExp
ArithmeticOp
BitwiseOp
CaseOp
ShiftOp
ReverseOp
GatherStatistics
PatternStatistics
PatternStatisticsRegExp
PatternStatisticsRegExp2
CreateEmptySelection
CreateSequence
BitwiseOpS
FillMultiS
FillS
FindAllS
FindS
InsertPatternS
InsertS
ReadS
ReplaceAllRegExpS
ReplaceAllRegExp2S
ReplaceAllS
ReplaceS
ToNumber
WriteS

PatchOptions Enumeration

Hex Editor Neo Documentation Table of Contents

13

274
274
275
275
275
275
275
276
276
276
276
276
276
277
277
278
278
279
279
279
280
280
280
281
282
282
283
283
284
284
284
284
284
284
285
285
285
285
286
286
286
287
287
287
288
288
288
288
288
289
289
290
290
291

HistoryPurgeLevel Enumeration
TextType Enumeration
Paste3Flags Enumeration
RegExpFlags Enumeration
ArithmeticOpType Enumeration
OperandSizeType Enumeration
BitwiseOpType Enumeration
CaseOpType Enumeration
ShiftOpType Enumeration
ReverseOpType Enumeration

Multiple Selection Object
IMultiSelection Interface

Declaration
IMultiSelection Properties

Count
Empty
TotalSize

IMultiSelection Methods
AddRange
Clear
DeleteRange
InsertRange
Invert
IsIn
Load
RemoveRange
Save
ToggleRange

LoadMode Enumeration
Sequence Object

ISequence Interface
Declaration
ISequence Properties

Empty
Length
Value

ISequence Methods
AddData
AddText
Clear
Copy
CreateSubSequence
Remove

SequenceDataType Enumeration
Parser Object

IParser Interface
Declaration
IParser Methods

abort
alert
bind
eval
print
add_coloring_scheme

Hex Editor Neo Documentation Table of Contents

14

292
292
293
293
293
294

Built-In Updater
Component Updates Window

Settings Manager
Exporting & Importing Settings
Settings Page

Settings Management

Hex Editor Neo Documentation Table of Contents

15

Hex Editor Neo Documentation Table of Contents

16

Getting Started
Road Map
This documentation provides an in-depth description of Hex Editor Neo features. It is structurally divided into several
sections. The Getting Started with Hex Editor Neo section provides generic information about the product, briefly describes
its features and technologies. The Hex Editor Neo Definitive Guide section provides detailed description of every Hex Editor
Neo feature. The File Document Scripting section describes the programming interface provided by the product.

Supported Document Types

Hex Editor Neo supports editing files, shared files, volumes, disks, process memory and physical memory.

File Editing

Hex Editor Neo is an advanced file editor. Numerous powerful features, such as Pattern Coloring, Structure Viewer,
Bookmarks as well as highly-optimized commands can be utilized to make file editing task quick and simple.

Any loaded or created file is called a document in the editor. There is at least one editor window for each document. For
convenience, multiple editor windows may be opened for a single document, each having its own properties (view type,
encoding, cursor position and selection). Hex Editor Neo provides a very flexible window organization tools, including
window splitting and separating the workspace with frames. A huge set of supported encodings allows you to interpret
(and edit) document's data in different ways.

Data encryption and decryption is provided, utilizing any installed block or stream cipher.

Large set of data operations allow you to modify data in large blocks.

Hex Editor Neo fully supports NTFS alternate data streams. Several special tools are provided that simplify working with
streams and even locating them on your computer.

The unique multiple selection concept is used throughout the Hex Editor Neo. A multiple selection is a collection of
contiguous ranges. Such selection may arise as a result of user's action or as a result of executing a command. All Hex
Editor Neo's commands and modules fully support multiple selections and work with them in a very efficient way.

A full “basic” editing command set is supported by the editor: you can modify data, insert data, delete data and change file's
size. In addition, advanced editing commands, such as Fill and Insert File are provided.

Hex Editor Neo provides the most powerful and flexible solution when it comes to searching and replacing data in files: the
Find command is used to search for a pattern and Replace command is used to search for a pattern and then replace it with
another pattern. The size of the search and replace pattern may differ and the replace pattern may even be empty.

Even more powerful Find All command is capable of locating all pattern occurrences and returning them as a selection. It's
needless to say that selection is fully browseable and can be saved to a file.

Yet more powerful Replace All command does it all in one step: locates all occurrences of the pattern in a file (or a selection
- all Hex Editor Neo commands support multiple selections) and replaces all of them with another pattern. Again, pattern
sizes may differ and replace pattern may be empty. The latter case is equivalent to using the Find All command and then
the Delete command with only difference that Replace All command operates much faster!

Find in Files and Replace in Files commands do the same for a group of files. These commands are extremely powerful and
provide a flexible setup. They are also capable of utilizing the full power provided by the multi-core and multi-processor
computers.

Other advanced Hex Editor Neo features are Pattern Coloring, Structure Viewer, Bookmarks, Operation History, Statistics,
Attributes, Data Inspector and Base Converter, Patch Creation, standard Clipboard support and advanced Copy & Export
feature. Checksum Calculation feature provides a lot of checksum calculation algorithms.

Usage Comfort and Environment Customization

A number of user interface features, such as toolbars and tool windows are all called to simplify most everyday's tasks and
make editing faster and simpler.

Every aspect of the user interface is customizable. More detail is provided in corresponding documentation sections.

Main Window Details

Hex Editor Neo Documentation Getting Started

17

Below is a screenshot of the main Hex Editor Neo window:

All important elements are numbered and are described below:

Main Menu
Hex Editor Neo's main menu contains all supported commands. See the main menu section for the detailed
information on using the main menu.

Main Toolbar

Main toolbar provides a quick access to a subset of Hex Editor Neo's commands. The toolbar is fully customizable. You
can also create additional toolbars.

See the toolbars section for the detailed information on using and customizing toolbars.

Tool Windows

Hex Editor Neo provides most of its powerful features by means of Tool Windows. These features include Pattern
Coloring, Structure Viewer, Bookmarks, Operation History and much more.

See the Tool Windows section for the detailed information about tool windows.

Editor Windows

Editor windows display the documents, loaded into the Hex Editor Neo. They allow you to view and edit the document's
content.

Detailed information on editor windows, their features, usage and customization is provided in the Editor Windows
section.

Status Bar
A status bar displays the current cursor's offset, current file's size, a view type of a current editor window and a number
of indicators. When a command is selected in a main menu, the command's description is also displayed on the status
bar. Status bar is described in more detail throughout the documentation.

Data Processing Engine
Hex Editor Neo implements the unique data processing engine which endows it with a number of interesting and powerful
features.

The main characteristics of the data engine include:

Operation History

Hex Editor Neo implements an unlimited operation history with branches and immediate switching between operations.
Every command that modifies the state of the document (overwrites existing data, inserts new data, deletes document's
data or changes the size of the document) creates a new operation and adds it to the operation history.

Hex Editor Neo Documentation Getting Started

18

The amount of RAM required to store operation's data is minimal and is much less than corresponding memory amounts
required by most competitive products. In addition, operation's data is automatically compressed and moved to disc when
not required. It then loaded and decompressed on-demand.

Branches feature allows you to create several operation sequences that “grow” from a common "root" operation and
represent different variants of the document. All such sequences are “equal in rights”: you can switch between them at any
time, copy data from one branch to the Clipboard in order to paste it into another branch and so on.

Switching between operations is performed immediately.

The entire operation history can be saved to a file and later loaded for the same document. Imagine you begin working with
a file. You open it in the Hex Editor Neo, perform several operations on it, create branches and so on… Then you save the
operation history to a file and close the edited file without saving changes. Now you have an option of opening the same
file and loading saved operation history to continue your work from the same point.

The Operation History section in this documentation provides you with a detailed description.

Multiple Selection

All Hex Editor Neo commands are capable working with a multiple selection. A multiple selection is a collection of
contiguous ranges. A multiple selection may arise as a result of user actions, or as a result of the Find All command. It can
also be saved to a file and later loaded from it.

Algorithms, implemented in the Hex Editor Neo, provide an extremely efficient way to store and process multiple selections.
This makes, for example, executing the Find All command for a several gigabytes-long file quite an ordinary operation that
will not “eat up” all available virtual memory and disk space, as it happens in most competitive binary file editors.

The “native” support of multiple selections by every Hex Editor Neo's command, starting from Fill and Clipboard to
Statistics makes this instrument a valuable and helpful editing tool in everyday's work.

The Multiple Selection section provides in-depth description of this feature.

Operation Efficiency

Due to unique characteristics of the Hex Editor Neo's data processing engine, most Hex Editor Neo commands finish in
constant-time. In other words, they have a constant-time complexity. Constant-time complexity means that a command
operates in approximately constant time and this time does not depend on latent or obvious command's complexity. For
example, Insert File command has a constant-time complexity. This means, that inserting a 1 KB file takes exactly the same
time as inserting a 1 GB file.

Other Hex Editor Neo commands finish in linear-time. In other words, they have a linear-time complexity. The time required
to process such command usually linearly depends on the file's size, selection's complexity or some other factor. None of
Hex Editor Neo commands has worse than linear-time complexity.

Most linear-time commands depend on the selection's complexity, that is, number of ranges in a selection. That is, for
single-range selections these commands have a constant-time complexity. For example, the Fill command has a linear-time
complexity, depending on selection's complexity. That is, if the command is used to fill a single-range selection, it operates
in constant-time: filling 1 KB file takes exactly the same time as filling a 1 GB file. Filling a selection that has 20 million
ranges will take 20 times longer than filling a selection that has 1 million ranges.

This documentation always states the command's complexity when it describes a given command. When linear-time
complexity is mentioned, a dependent factor is given.

Multi-Document & Multi-Editor Environment

Multiple documents (files) may be opened for editing in the Hex Editor Neo. They all have their own operation history,
which are not related with each other. Multiple editor windows may be opened for each document, each of which also has
its own state: view type, cursor position, selection and encoding.

Encodings Support

Each editor window has two panes: code pane and text pane (the panes are configurable). Text pane is displayed when the
editor is in BYTE or WORD grouping mode. For the latter, text pane automatically displays UNICODE (UTF-16-encoded)
characters. For the first mode, you can select one of over 130 supported encodings, including UTF-8.

After that, you get a full support for the selected encoding - the editor will correctly parse and display encoded characters
and automatically encode characters pressed on the keyboard or pasted from the Clipboard.

Hex Editor Neo Documentation Getting Started

19

Native Support of x64 Platform

Hex Editor Neo's data processing engine natively supports the x64 platform and utilizes all features provided by it, including
extended register list, larger address space, new processor commands and full support for SSE2 commands.

Hex Editor Neo's installer automatically installs correct binaries (installation package contains compiled binaries for x86 and
x64 platforms).

Parallel Operation

Starting from version 5.01, Hex Editor Neo utilizes multiple processors or cores when it performs complex lengthy
operations. It also allows running multiple lengthy operations on several opened documents in parallel.

Programming Access

Hex Editor Neo has a documented programming interface that can be used by external code to access all powerful features
of the Hex Editor Neo. This interface is implemented by an ActiveX component. When an external code uses functions
provided by the component, the Hex Editor Neo's user interface is not required and not displayed.

The Scripting section contains in-depth description of the programming interface. Interface overview and detailed reference
with a lot of sample codes in different programming languages, including C++ , JavaScript and C# , are provided.

Features
This section contains a comprehensive list of Hex Editor Neo features. It also contains links to other parts of this
documentation that describe a given feature in more detail.

Instantly opening files of any size
Hex Editor Neo does not force any limit on file's size. Any file supported by the underlying file system (FAT, FAT32 or
NTFS) is supported.

Working with shared file
Hex Editor Neo may share edited files with other applications. Should another application make a change to a shared
file, Hex Editor Neo detects it and allows you to either discard a change or to merge it with changes in the editor.
Automatic file compare may be used to find differences between the current and previous version. As an option, all
previous versions of a file may be kept by the editor and used in your work.

Opening volumes (logical disks)
Hex Editor Neo supports opening volumes (logical disks) for viewing and editing.

Opening physical disks
Hex Editor Neo supports opening physical disks for viewing and editing.

Opening process memory
Hex Editor Neo allows you to open virtual memory of any running process for read-only or read-write access.

Opening computer physical memory (RAM)
Hex Editor Neo provides a read-only view into the computer physical memory (RAM) - only on supported operating
systems.

Full support for NTFS alternate data streams
Hex Editor Neo fully supports NTFS alternate data streams. A special NTFS Streams Tool Window displays all streams
for the currently active file, allows you to delete or rename them, open them for editing or create new streams. In
addition, the powerful Find Stream feature allows you to locate all streams on your computer.

Multiple Selection
Hex Editor Neo widely uses the concept of multiple selection. All Hex Editor Neo commands are fully compatible with
multiple selection.

Selection Saving, Loading and Exporting
Selection object of any complexity can be compressed and saved to the file. Later, you may load this selection and/or
merge it with an existing selection using different algorithms. In addition, all ranges in a selection may be copied to the
Clipboard or saved to a text file. See the Working with Selection topic for more information.

Basic File Editing (write, fill, insert, delete, put/insert file, Clipboard operations, change file size, modify bits)
All these commands are described in detail in the Editor Commands documentation section.

Hex Editor Neo Documentation Getting Started

20

Document Printing
Hex Editor Neo provides full support for printing documents with configurable margins, coloring, page headers and
footers.

Data encryption and decryption
A whole document or a part of it may be encrypted and decrypted, using any installed block or stream cipher.

Data Operations
A large set of data operation (bitwise, arithmetic, shifts, case change and bit/byte reversing) are provided.

Text Clipboard Operations
In addition to basic Clipboard operations (moving data blocks between the same or different documents or exchanging
file data with Windows Explorer); Hex Editor Neo is capable of pasting text from the Clipboard. Text may be pasted “as
is” or parsed as a sequence of numbers (decimal, hexadecimal, octal or binary). Parsed numbers are then put into the
document.

Different encodings
Hex Editor Neo supports more than 130 different encodings, configurable separately for each editor window. They are
used to interpret and edit document's data in different formats. Starting from version 4.95, UTF-8 encoding is
supported as well.

Find and Find All
Hex Editor Neo provides an extremely efficient implementation of Find and Find All commands. Full support for
ECMAScript-compatible regular expressions is provided. The result of a Find All command is a multiple selection - a
browseable and easily editable object.

Replace and Replace All
Hex Editor Neo provides an extremely efficient implementation of Replace and Replace All commands. Full support for
ECMAScript-compatible regular expressions is provided. Replace pattern may also be a regular expression.

Find in Files & Replace in Files
Hex Editor Neo provides you with a simple and effective mechanism of pattern searching and replacing in files residing
in different folders. This feature is described in more detail in the Find in Files and Replace in Files sections. Include
streams option may be used to add alternate data streams to a search list. Full support for ECMAScript-compatible
regular expressions is provided.

Unlimited Undo & Redo steps
In fact, a more advanced Operation History management is provided by the Hex Editor Neo.

Operation history browsing
Hex Editor Neo allows you to instantly switch to any history operation.

History Save & Load
An entire document's operation history may be compressed and saved to a file and later loaded from it, effectively
restoring all operations performed on the document.

File comparison
Hex Editor Neo provides two file comparison algorithms, which are fast and accurate and can be used to compare text
and binary data files.

Disassembler
Hex Editor Neo includes a disassembler module. The current implementation is capable of disassembling 32-bit x86
code, including support for FPO, MMX, SSE, SSE2 and 3DNow! instruction sets. It also supports disassembling of x64
images and .NET assemblies. Disassembler automatically searches for symbol files and uses the information from them
to increase the assembly output readability. The Disassembler View may be connected to ordinary editor window
which provides you with another handy data viewing and manipulation tool. The disassembler module works with files
and processes' memory and is even automatically updated when you modify the document.

Patch creation
Hex Editor Neo supports creation of a patch, which represents the changes made to a document. The patch is saved to
the file in a compressed format. A patch may then be freely distributed and applied on the same or another computer.
A patch may be packaged inside the executable file. A Patch API is also provided to allow programmatic patch
installation.

Editor Window customization

All aspects of an editor window are fully customizable. Several predefined schemes are shipped with a product.

Hex Editor Neo Documentation Getting Started

21

Displayed data may be grouped as bytes, words, double or quad words and represented as hexadecimal, decimal, octal,
binary integer numbers as well as single or double precision floating-point numbers.

Document's data may be represented in one of the listed view types.

Fully customizable user interface
Hex Editor Neo's interface is fully customizable. You can customize toolbars, tool windows, keyboard shortcuts and
editor windows. You even have an option of choosing one of three window switching mechanisms.

Connecting Editor Windows
You can connect two editor windows with each other. This synchronizes cursor movement in both windows, which is
an extremely useful editing technique in some scenarios.

Two Built-In Explorer Windows
Hex Editor Neo hosts two Explorer windows. Use them to browse your file system and network neighborhood. All
standard operations are supported, including Clipboard operations and Drag&Drop. Explorer windows are tightly
integrated with an editor and Find in Files feature.

File attributes
The Attributes Tool Window displays current file's attributes and allows you to modify them. It also displays the total
number of streams in a file, size of all streams and total size of the file, including its unnamed and named streams.

Pattern Coloring
Hex Editor Neo can be configured to automatically highlight given patterns in its editor windows. See the Pattern
Coloring section for more information. Full support for ECMAScript-compatible regular expressions is provided.

Data Inspector
Data Inspector Tool Window interprets data under the cursor in several formats. In addition, it supports highlighting
data boundaries and allows data modification.

Base Converter
Base Converter Tool Window provides tools to convert data from one format or encoding into another.

Bookmarks
Hex Editor Neo's bookmarks provide you with an extremely flexible way of document navigation. You can define any
number of bookmarks groups, exchange data between a bookmarks group and selection, save and load bookmarks
and so on. See the Bookmarks section for more information.

Structure Viewer
The powerful Structure Viewer feature allows you to define data structures and bind them to specific locations in edited
files. See the Structure Viewer section for more information.

Statistics
Hex Editor Neo contains tools that can be used to quickly compute several file statistics. See the Statistics section for
more information.

Advanced Copy & Export
Hex Editor Neo provides an advanced data conversion tool. Selected binary data from the editor may be processed in a
number of formats to produce a text output to be placed into the Clipboard or written to text file. Data may be
converted into character string (more than 150 different encodings are supported); packaged as a sequence of
numbers (to be put into spreadsheet application, for example) or as programming language array declaration (7
popular programming languages supported). In addition, data may be encoded in Base64, UUencode, Quoted-
Printable, Intel HEX or Motorola S-Records formats.

Checksum Calculation
Hex Editor Neo supports more than twenty checksum calculation algorithms, including MD5, SHA-1, CRC-16, CRC-32
and others. Custom CRC algorithm is also provided.

Automatic updates
Hex Editor Neo can be configured to automatically check for released updates, display a list of changes, download and
install updates (by your request).

File Document Scripting
Hex Editor Neo exposes its root functionality for external programs through automation-compatible ActiveX library.
See the Scripting section for more information.

Native x64 platform support

Hex Editor Neo Documentation Getting Started

22

Hex Editor Neo natively supports an x64 platform. A number of basic algorithms have been revised and optimized to
use the powerful features available on this platform, including larger virtual address space, native wider registers and
new processor commands.

Native support for high-DPI displays
Hex Editor Neo fully supports high-DPI displays. All Hex Editor Neo's user interface elements, including texts and icons,
are properly scaled. As long as all graphics elements are rendered using vector technology, there are no artifacts on
high-DPI displays. In addition, Hex Editor Neo allows you to change the size of icons on the main toolbar in a wide
range. Hex Editor Neo supports both Windows XP and Windows Vista high-DPI implementations.

Native support of Windows Vista and its Aero interface
Hex Editor Neo fully supports the latest Microsoft operating system, Windows Vista (both 32-bit and 64-bit editions). It
also takes a full power of its Aero user interface.

Support of Windows 7
Hex Editor Neo completely supports Windows 7 and also supports its new taskbar, with configurable task list, recent
document list and progress indication.

Support for Intel HEX and Motorola S files
File » Open » Open Hex… and Edit » Insert Hex… commands allow the user to convert Intel HEX and Motorola S
files to binary form and insert them into the Hex Editor Neo.

Volume Navigator
Built-in support for parsing NTFS volume structure, opening file and directory records and data locations. Ability to
copy files, directories or entire volumes.

What's New
Version 6.25

This version adds a few new directives and attributes to the Structure Viewer language, adding look-ahead support to
structure binding.

Version 6.20

Version 6.20 introduces the Settings Manager which centralizes application settings management.

Version 6.12

This version adds support for creating volume snapshots and opening files or entire volumes from these snapshots.

Version 6.01

This is a major release. This version introduces the following new modules, technologies and updates to current features:

Updated Data Inspector
This releases updates Data Inspector, adding support for custom types.

Updated Structure Library
Structure Viewer has been updated significantly, featuring separate library tool window, language and stability
improvements.

Built-in Structure Editor
This version adds a built-in Structure Editor.

Volume Navigator
Volume Navigator, with support for NTFS volumes is capable of parsing NTFS volume structure on disk.

Version 5.14

This is a bug fix release. Fixed bugs:

Possible crash on startup on 64-bit systems
Hex Editor Neo could crash if launched on some 64-bit systems. Fixed.

Invalid editor window scrolling with mouse wheel
Editor window was scrolled incorrectly using high-resolution mouse wheel. Fixed.

Hex Editor Neo Documentation Getting Started

23

Structure Viewer incorrectly compiled and bound some structures
Structure Viewer could incorrectly compile and bind some structure definitions, namely, the ones that contained huge
arrays of static types. It could start allocating more and more memory and binding could take too long. Fixed.

Incorrect file opened after double clicking on error in Structure Errors window
Fixed.

Incorrect handling of multi-byte encodings
The editor incorrectly rendered Text Pane when multi-byte encoding was selected. This bug has been fixed.

Several reported bugs fixed
Several reported bugs, including application crashes, have been fixed.

Updated functionality:

Selection is now retained when number of columns change
Multiple selection is not dropped when you change the number of columns in the editor window.

Installer now keeps user settings on upgrade
Hex Editor Neo's installer now tries to keep user settings during upgrade from previous version.

Version 5.13

Due to significantly better compression of included images (mostly in documentation), this version greatly reduces the
installation size and installed disk footprint. In addition, this version fixes following important bugs:

Several bugs in Structure Viewer fixed
Structure Viewer now respects the “Byte order change affects floating-point types” setting.
Floating-point numbers in scientific format are now displayed correctly.
Error saving changes to logical and physical disks Hex Editor Neo hung during saving of changes to logical and
physical disks if the application was launched non-elevated on Windows Vista or later operating systems. Fixed.
Rare crash on exit fixed Application could crash on exit. Fixed.

Version 5.12

This release introduces significant improvements to the Structure Viewer. See the What's New in Structure Viewer (version
5.12) topic for more information.

In addition, the following bugs have been fixed:

Crash in disassembler
Hex Editor Neo could crash when you invoked Disassembler in some situations. Fixed.

Updated and new functionality:

Language Pack storage location changed
This release changes the default language pack's storage location, allows user to change it and better supports
language packs in portable mode: in addition to user-configurable storage location, language packs are also searched
in <program launch folder>\Localization folder.

Some dialogs re-designed
Some dialogs were re-designed to better fit German localization.

Version 5.11

Fixed bugs:

[noindex] and [noautohide] attributes ignored
Structure Viewer ignored [noindex] and [noautohide] attributes. This resulted in incorrect behavior and increased
memory usage. Fixed.

Proxy tab was missing from Settings
One of the recent updates incorrectly removed the Proxy settings tab. Fixed.

Crash after pressing Copy in Keyboard Map dialog
Program crashed after you pressed the Copy button in Keyboard Map dialog. Fixed.

Hex Editor Neo Documentation Getting Started

24

Program crashed after saving downloaded update in non-default location
Program crashed when you tried to save to or execute the downloaded update from non-default location.

Structure Viewer's scheme loading bug
Hex Editor Neo could hang if you loaded Structure Viewer's scheme with multiple bound structures. Fixed.

New and updated features:

“All opened documents” mode for Find in Files feature
Find in Files/Replace in Files function now provides “All opened documents” pseudo-location, allowing you to perform
an operation on all currently opened documents.

Automatic detection of Language Pack availability
Hex Editor Neo now automatically detects if on-line language pack for user's default language is available and offers to
download it.

Improved Structure Viewer performance
Structure Viewer's compilation and binding time reduced by about 10%.

Version 5.10

This release adds support for localization. Language packs are created as part of open source project and will be available
through built-in updater once they are finished.

The first available language pack is Russian.

Besides, this release fixes a number of reported bugs. Please consult the View Changes page for detailed information.

Version 5.01

Major update to Structure Viewer
This version has completely new Structure Viewer, with a lot of new functionality and improvements. See the What's
New in Structure Viewer (version 5.01) topic for more information.

Parallel operations
Several operations, like Find All and Replace All, now utilize several cores or processors (if they are available). It does
not give linear speed-up, but sometimes up to 30% performance gain is obtained. Performance gain is more noticeable
in Replace All commands, especially in regular expression mode.

True parallel execution of all lengthy operations
Previous versions allowed you to execute multiple operations in parallel, but user interface was rather limited: for
example, it did not allow you to finish the first operation before the second finishes. Now, all started operations are
equal and are executed truly in parallel. Application user interface is not blocked. Only windows of the current
document are disabled until the operation execution is completed.

Support for Intel HEX and Motorola S files
Advanced Copy & Export now allows exporting selection into Intel HEX and Motorola S formats. In addition, new
commands, File » Open » Open Hex… and Edit » Insert Hex… allow the user to convert Intel HEX and Motorola S files to
binary form and insert them into the Hex Editor Neo.

Additional information is displayed for several lengthy operations
For Find All, Replace All and other operations, the number of occurrences found so far is displayed on the progress
dialog.

Completely rewritten Checksum module

Checksum module has undergone complete rewrite, featuring new algorithms, greatly improved performance and
parallel execution. That is, when several algorithms are selected at once, Hex Editor Neo utilizes multiple cores or
processors (if they are available) to execute them in parallel.

More hash algorithms are offered (the actual list depends on algorithms available through Cryptography API). More
different ways to sum all values in a document or selection are offered, including signed and unsigned sums.

User interface for a Checksum module has also been improved.

Ability to copy/export the current selection
Hex Editor Neo now allows you to get the list of selected ranges into the Clipboard or directly to text file.

Hex Editor Neo Documentation Getting Started

25

Improved experience when opening volumes and disks
Hex Editor Neo is now capable of opening volumes and disks in the same running instance, even if it runs under non-
privileged user account.

Goto Navigation panel
Each editor window has its own navigation panel with individual location history.

Improved setup speed
Speed of Hex Editor Neo setup application has been greatly improved. Installer now needs to update less files and
system settings and operates much quicker.

Improved application start-up time
We have improved the application start-up time by reducing time required by various components to initialize and
allowing several components to initialize in parallel.

Improved Find in Files/Replace in Files commands.
New version provides better utilization of multiple cores as well as proper operation on single-core computers;
smoother operation on SSDs.

Improved support for eastern languages
Hex Editor Neo now provides better visual output of eastern languages characters in text pane.

Version 4.97

Support for Using Regular Expressions in Replace Pattern
Replace and Replace All commands now support regular expressions as replace patterns, allowing you to refer to parts
of matched expression when performing a replace.

Support for Encodings in all Commands that Work with Regular Expressions
Find, Find All, Replace, Replace All, Find in Files, Replace in Files, Pattern Statistics - all these commands now fully
support currently selected encoding when they work in regular expressions mode.

New scripting methods

The following new methods are available in IFileDocument:

IFileDocument.FindAllRegExp2
IFileDocument.FindRegExp2
IFileDocument.ReplaceAllRegExp2
IFileDocument.ReplaceAllRegExpWithRegExp
IFileDocument.ReplaceAllRegExp2S
IFileDocument.PatternStatisticsRegExp2

Version 4.96

Integration with Windows Error Reporting
Hex Editor Neo now fully integrates with Windows Error Reporting. We will be able to receive each submitted crash or
hang report, analyze it and provide a solution to the customer.

New Data Operations – Reverse Bits and Byte Swap
New Reverse Operations commands were implemented in this release. Use the first command to reverse the order of
bits in each value in a selection and use the second command to reverse the order of bytes.

New Arithmetic Operations – Set Minimum and Set Maximum
Two new arithmetic operations allow you to limit each value in a selection.

Regular Expression Scheme Association
Structure Viewer now uses regular expressions to match a scheme with a the document.

Improvements in the editor

Various small bug fixes and minor improvements in the editor:

Application now remembers the state of the Details Selection tab between launches.
Keyboard focus is now moved into the opened document.
Shift+Home and Ctrl+Shift+Home keyboard combinations now correctly update selection.
Insert Mode can now be switched during editing.

Hex Editor Neo Documentation Getting Started

26

Several Bug Fixes
Several reported bugs were fixed in Structure Viewer (see What's New in Structure Viewer (version 4.96) for more
information) and Disassembler. In addition, reported errors in exporting selected data as Delphi array were fixed.

Version 4.95

UTF-8 Support

This release finally adds the UTF-8 to a list of supported encodings. Now it is not only supported in the Advanced Copy
& Export module, but also in editor windows, Structure Viewer and everywhere else.

Hex Editor Neo supports single-byte, two-byte, three-byte and four-byte UTF-8 characters. Please note, however, that
Hex Editor Neo has limited support for UTF-16 surrogate pairs. See more information on UTF-8 support in the
Encodings section.

Encodings in Structure Viewer
This release covers the last “hole” in encoding support in Hex Editor Neo - now Structure Viewer also uses the code
page of the current editor window when it displays single-byte character arrays or strings.

Pasting Encoded Text
In this release, Hex Editor Neo also uses the current encoding when pasting text into the Text Pane of the current editor
window.

Bug fixes
Several bugs were fixed in the Structure Viewer.

Version 4.94

This release introduces several bug fixes and a few improvements to various product functions:

Ability to specify the proxy server to use. Configured proxy server will be automatically used by such features as Check
for Updates, Downloader and Crash Dump Uploader.
An additional column is added to the Open Disk dialog. It displays the physical drive information in a form of
\\.\PHYSICALDRIVEN , where N is a disk ordinal number assigned by operating system. This allows you to distinguish
between the same disks from the same manufacturer.
All operations (bitwise, arithmetic and shift) dialogs now include the option “Whole File”. You can use it to target an
operation to a whole file without the need to select it first.
Current bookmarks are now displayed in the Go to Offset dialog.
Added an ability to manipulate the current selection directly from Go to Offset dialog. You can replace, add, remove or
invert the current selection while changing the cursor offset in the document.

Portable Installations Improvements

Before this version, when you use the Hex Editor Neo in portable installation, it still uses the target system's registry and file
system to store configuration data as well as temporary files.

Version 4.94 of the editor has been modified the following way:

1. On startup, Hex Editor Neo creates a key in the registry and imports the configuration data from portable.config file
(located in the product startup folder).

2. On exit, Hex Editor Neo saves the configuration data back to this file and removes the registry key.

In addition, Hex Editor Neo stores vector image cache (used to decrease start-up time) in the user's profile temporary folder.
You can switch off this behavior in the Tools » Settings…, General Tab.

Version 4.93

This release fixes a number of Structure Viewer bugs and further improves structure binding performance.

Here is a list of all changes in this release:

New tool window layout “Structure Analysis” provides maximum working space for analyzing the document's
structure.
TGA file structure is updated to support run-length encoded images.
Changed the displayed type name for bit fields. It now shows the number of bits a field occupies (for example: int: 4).
More accurate structure binding progress update. In addition, a progress window may switch to the marquee mode

Hex Editor Neo Documentation Getting Started

27

when binding complex structure with forward and backward pointers.
A bug that prevented bit fields from being indexed is fixed. Now when you click on the cell which contains a bit field in
the editor, the field is properly highlighted in Structure Viewer.
The execution of the assignment statement (variable = expr;) is greatly optimized. Such complex iterative structures as
AVI, TGA and others will benefit from this optimization.
Structure Viewer now displays a single common progress when binding a structure that executes delayed binds (like
PE header, for example).
Structure Viewer tool window's main operations, like navigation, expanding/collapsing, scrolling and so on were
optimized.

Version 4.92

General Bug Fixes

Sometimes when Compare Files command was launched as Windows 7 task from the pinned application icon, it
crashed after you pressed the OK button.
Hex Editor Neo's patch files were incorrectly registered by setup.

General

Hex Editor Neo now prevents the computer from going to sleep (unattended) when performing lengthy operation. This
of course does not prevent the user to manually sleep the computer.
Now there is an option to move the cursor to the end of the pasted data after the Paste operation (turned on by
default).
Now it is much more easier to select data with mouse. The behavior is more consistent with other Windows
applications.
All Hex Editor Neo commands (such as Edit » Fill…, Edit » Find…, Edit » Replace… etc) now respect the current window's
encoding, when single-byte string type is chosen. The current encoding is also displayed in the command's dialog.
Note: when using regular expressions, default system encoding is always used.
Current editor window's encoding is also respected by Pattern Coloring module.
Mouse wheel scrolling now correctly works with high-definition mice.

Structure Viewer

Bug Fixes

Incorrect scope resolution for complex array indices.
Empty structures incorrectly had zero alignment, breaking any structure that referenced them.
Hex Editor Neo could crash when expanding string or wstring values.
When a script file referenced by a structure definition file was modified, Hex Editor Neo did not refreshed it properly,
although notified the user of the change.
Enumeration visualization could produce incorrect results, if you used signed values in an unsigned enum.
Structure Viewer tool window could incorrectly display vertical lines.

New features

New statements: while, for and do…while.
$print directive now does not automatically convert its argument to string; instead it uses Structure Viewer's data
visualization engine. This allows it, for example, to respect the “Display Hex Values” setting when displaying integer
values.
For pointed types, not only the pointer value, but the snapshot of pointed type contents is visualized on a line (as it is
for arrays and structures). In addition, a computed address is also displayed.
JavaScript code now may be specified inline with a new javascript keyword. Note that VBScript code must still be
referenced with #pragma script directive.
Structure Viewer now uses the current editor window's encoding when displaying non-Unicode strings.
PE header sample has been greatly enhanced. Now it parses more PE file structures, including import and export
directory, resource directory, base relocation table, debug directory and others. It also illustrates how to use Javascript
to extend the power of Structure Viewer's declaration syntax.

Checksum

Click-and-calculate feature implemented: non-computed checksum value is automatically computed when you double-
click it (no need to click checkbox and then Refresh)

File Compare

Hex Editor Neo Documentation Getting Started

28

File Compare tool window’s commands are now application-wide commands. You can put them on the toolbar or
assign keyboard shortcuts to them.

Clipboard

Now Edit » Copy and Edit » Cut commands automatically put selected data in text format into the Clipboard. Copy &
Export tool window is still used to fine-tune the format used.
“Formatted Values” copy&export mode now allows exporting data without separators (as text stream).
“Raw Text” copy&export mode also lists "Current Encoding" as encoding type. When selected (default), encoding from
the current editor window is used.

Version 4.91

This version features a completely rewritten setup for Hex Editor Neo.

Transactional Installation

Setup now performs installation of the product as a single transaction (on supported operating systems and configurations,
see below). If anything goes wrong during installation, including software or hardware errors, computer configuration is not
modified. All setup activities are part of the transaction, including modifications done to the file system and system registry.

Setup always tries to use transactions on supported operating system. If installation fails due to the transaction error, it
retries the operation without using transactions. It also does not use transactions on legacy operating systems.

Restart Manager Support

Now, when setup needs to replace or remove a locked file, it uses the system restart manager (Windows Vista or later) to
find the application that has a file open. It also offers a way to gracefully restart the application in order to update the file.
This new feature greatly reduces the need for system restart during setup.

On legacy operating systems setup emulates the restart manager's behavior, still trying to minimize the need to restart a
computer.

Per-User Installation

In addition to the previous, “per-machine” installation mode, a new installation mode is offered. It allows the user to install
the application only for himself. In this mode, setup does not modify any per-machine settings. In addition, a user does not
have to have administrative rights to install the Hex Editor Neo. After the product is installed in per-user mode, it is not
visible to other users of the computer, but may also be installed by them in per-user mode.

Limitations

Take the following limitations into account when installing Hex Editor Neo in per-user mode:

On Windows Vista and later operating systems, standard user (and even computer administrator without elevation) does
not have enough privileges to create System Restore points. This does not apply to administrator user on Windows XP
computer. Setup always tries to create a system restore point, but will silently ignore this step if it does not have enough
privileges.

Portable Installation

Another new installation mode is used to make a portable copy of Hex Editor Neo. Once installed, the copy of the product
may be transferred to other locations, or to other computers where it can be used without installation. In this mode setup
allows the user to install the product on the removable media and network shares.

Limitations

Take the following limitations into account when installing Hex Editor Neo in portable mode:

Setup does not create shortcuts, does not update system registry and does not publish installed application (it will not
appear in Add/Remove Programs Control Panel applet (Programs and Features starting with Windows Vista).
You will need to manually delete product installation folder in order to remove the product from your computer.
Setup does not register Hex Editor Neo's type libraries, preventing you from using the product in scripting
environment.
Setup does not register Windows shell extension, making “Edit with Hex Editor Neo” and "Edit with Hex Editor Neo
(shared)" context menu options unavailable.

Hex Editor Neo Documentation Getting Started

29

Command-line Parameters

New Hex Editor Neo's setup allows you to specify several parameters on the command line:

Parameter Description
-silent Suppress any user interface dialogs during setup
-uninstall or -u Turn on uninstall mode
-portable Turn on portable mode
-prop INSTALLDIR=[path] Specify the installation folder location. Must end with a backslash.
-user Turn on per-user mode
-machine Turn on per-machine mode

Examples:

This will install Hex Editor Neo in per-user mode into the “c:\Programs\Hex Editor Neo” folder:

PowerShell
hex-editor-neo.exe -user -prop "INSTALLDIR=c:\Programs\Hex Editor Neo\" -silent

This will uninstall the Hex Editor Neo:

PowerShell
hex-editor-neo.exe -u -silent

Version 4.85

Below is a list of changes in Hex Editor Neo 4.85:

Shared Files Support

Hex Editor Neo is now capable of working with files shared with other applications. Using the File » Open » Open
Shared File… command you can open a file in the editor, at the same time allowing other applications to make changes
to the file.

This feature is supported on all operating systems Hex Editor Neo natively supports. A shared file may be located on a
local, removeable or remote media formatted with any supported file system (FAT, FAT32, NTFS, ExtFS…)

After you open a shared file, Hex Editor Neo starts watching for file's modifications. If another application makes
changes to a file, Hex Editor Neo displays a Shared File Conflict Dialog, which gives you options to ignore a change,
update editor's copy, and/or merge changes with local changes.

In addition, for all “update”-kind options you may instruct the editor to compare the new version with a previous one.
Two file comparison algorithms provided by File Compare module are supported. Hex Editor Neo also allows you to
retain older versions of a file in the editor. You may edit these old versions as any other kind of document in the editor,
save your changes and so on.

Hex Editor Neo also detects file deletion. In this case it gives you an option to close a file or continue working with it,
retaining all the changes you made to a file.

A configurable option exists which governs how Hex Editor Neo reacts on file renames. If enabled, renaming a file in
another application (like Windows Explorer, for example) automatically changes the file's name in Hex Editor Neo's
interface (without any prompts).

Single selection mode option
“Single selection mode” option, which was previously only available in General Settings page (under name "Auto drop
selection"), is now also available from the Select menu and on Selection Tool Window's toolbar.

In addition, a number of reported bugs have been fixed in this release.

Version 4.83

This version fixes a potential crash on application exit and introduces new formatted text output format: Assembler array.

In addition, MBR format (for Structure Viewer) definition is fixed (see mbr.h).

Hex Editor Neo Documentation Getting Started

30

Version 4.82

Below is a list of changes in Hex Editor Neo 4.82:

Restore original file attributes
File Attributes tool window now offers a way to restore original file attributes, even after you modify them and apply
your changes.

Auto completion in Explorer
Address bar in Explorer tool window now offers autocompletion.

NTFS streams support in File Compare
When compared files are identical, they are also checked for one or more alternate streams. A user is warned if two
identical files contain NTFS streams.

2D graph in Statistics.
Statistics Tool Window now provides you with two graphical data representations, instead of one.

Extended goto in Disassembler
Goto command in Disassembler Window now allows you to go to a named function or method. Autocompletion is
supported.

In addition, the following reported or known bugs were fixed:

Elevation bugs
When Hex Editor Neo elevates itself (on Windows Vista or later operating systems), elevate.exe process is not
terminated and remains running forever. Fixed.

Invalid progress bar
Invalid progress bar is displayed for some operations. Fixed.

Crash in operations
Bitwise, arithmetic, shift and case change operations may crash when used in some configurations. Fixed.

Version 4.81

Below is a list of changes in Hex Editor Neo 4.81:

Full history tree window
You can now view the entire document change history in a special window. History is represented as a tree with a node
for each document change. You can quickly switch between states, get more information about each state or execute
one of the purge commands. Comfortable zooming and panning features are provided by the window.

Complete rewrite of command routing and toolbar customization system
This release brings completely new version of the command routing and toolbar customization subsystem. We have
greatly optimized Hex Editor Neo's startup and runtime performance and brought greater flexibility to user interface
customization. Built-in and user-created layouts now not only affect tool windows, but also change commands on
default toolbars and size of their buttons.

Checksums and Statistics now store per-document information
Checksums module and Statistics module now store per-document information. For example, you calculate statistics
for a document, switch to another one and calculate statistics for it as well. Now, if you switch back to the first
document, Statistics tool window will immediately display information it previously calculated for the first document.

Changes in the Free Edition End User License Agreement
Free version's EULA now grants commercial usage of the free edition of the Hex Editor Neo.

Improved Explorer integration
“Edit with Hex Editor Neo” shortcut menu option is now added to drives as well.

Improved Windows dialog
Windows dialog (it displays a list of all opened editor windows) now automatically activates a window under the
cursor. There is no need to click the Activate button anymore.

In addition, the following reported or known bugs were fixed:

Several bugs in Structure Viewer

Hex Editor Neo Documentation Getting Started

31

A number of non-critical bugs were found and fixed in Structure Viewer.

32-bit integer types (both signed and unsigned) were incorrectly handled in big-endian mode. Note that this did not
affect 32-bit signed and unsigned long types. This bug is fixed as well.

Decrypt function is not working

On some computers it was unable to run a Edit » Decrypt… command. This has been fixed.

A lot of small glitches that were in our “suggestion queue” have finally found their time to be fixed in this release.

Version 4.76

This release focuses on major performance improvement in one of the core Hex Editor Neo components, responsible for
working with large files. (Hex Editor Neo considers files bigger than 64 MB on 32-bit systems and bigger than 128 MB on
64-bit systems as large files).

Careful optimizations and wiser use of system resources allowed us to greatly optimize this core component. As
performance of most editor functions depends on it, we have managed to improve the speed of various functions from 2x
to 8x!

The most boost is displayed in “cheap” operations, like General Statistics and Pattern Statistics, moderate boost in heavier
functions as Replace All and less boost in "heavy" functions like Find All, for example.

In addition, document saving performance has also been greatly improved. On some of our test platforms, file copying (File
» Open command followed by File » Save As… command) works faster than in Windows Explorer!

In addition, several reported bugs have been fixed.

Version 4.75

New and updated features in this release:

Revised Operation History
User interface for document operation history has been completely revised. Now it is much more comfortable to use
one of the most powerful and unique Hex Editor Neo's features - history branches.

Application load-time improvement
A lot of attention in this release has been paid to reduce the time Hex Editor Neo needs to launch.

Offset display type
An offset (or address) may now be displayed as hexadecimal, decimal or octal numbers.

New view types
In addition to hexadecimal, decimal, float and double, data in editor windows may now be displayed as octal and binary
values. All Hex Editor Neo's commands and modules are also compatible with new view types, including Copy & Export
module.

New range rule type in Pattern Coloring
Pattern Coloring introduces a special rule type: range rule. For range rule, you define a range which is then hilighted in
a document.

Advanced support for Editor Window settings
You can now configure the default editor window settings on special settings page (Tools » Settings » Editor). These
settings include offset display type, data display type and grouping, byte ordering, a number of columns, character
encoding and visibility of code pane and text pane. In addition, there is a special option to associate a different set of
window settings for each opened document and restore them next time the document is opened.

In addition, several known and reported bugs have been fixed.

Version 4.73

New and updated features in this release:

Windows 7 Beta support
This release introduces support for new cool features of the Windows 7 Beta taskbar. Progress indication and jump lists
are fully supported and utilized by the Hex Editor Neo, and in addition, user is in control of customizing the tasks

Hex Editor Neo Documentation Getting Started

32

presented on the taskbar.
Structure Viewer

New structure formats: RAR, ICC, VHD, ZIP, TIFF, WAV, TGA, PSD, PIC, PCX, PAL, EMF, EPS, CAB, MBR, CDA.
New column: Size (to see the size of the field).

See also below for a list of fixed bugs.
File Compare

Recompare Files command added.
Color picker dialogs

A color may now be selected with a double-click.

Bugs fixed in this release:

Structure Viewer

The following bugs are fixed:

Nested pointers are not supported.
Array size is parsed incorrectly if multiplication is used in size expression.
Invalid script file causes a crash.
Several parser bugs fixed.

Find in Files
Deadlocks and possible crashes were fixed. In addition, performance for the feature has been increased.

Explorer
Several bugs are fixed in Explorer and it is now compatible with Windows 7 Beta.

Version 4.72

New and updated features in this release:

Disassembler
Version 4.72 brings support for x64 executable files.

In addition, a bug that sometimes lead to program crash has been fixed.

Version 4.71

New and updated features in this release:

Disassembler

Version 4.71 brings support for .NET assemblies. It also features an updated disassembler view window, with support
for fast navigation, selection of assembly text, column configuration and much more. It also allows you to display an
assembly listing in AT&T format.

Disassembler has an improved quality of the assembly listing. Module imports are now also analyzed and displayed, in
addition to symbols.

Structure Viewer

The most of the new functionality is within the Structure Viewer module again. It now understands new built-in types,
statements and directives. It also supports variables, constant and variable arrays and expression evaluation with
dynamic type inferring.

This release eliminates most of previously imposed limits on structure size, array size etc. The Structure Viewer Tool
Window has been updated to easily handle billions of items with very fast and clean navigation. Commands like
Expand All and Collapse All will take less than a second expanding/collapsing a structure with a billion of items. If you
bind a complex structure to a huge file (for example, AVI), you can estimate the editor to easily carry the job without
running out of memory.

A number of handy features, such as Synchronize Position (which works “both sides” - from structure to document and
from document to structure), Mouse over field tracking (which highlights a field under the mouse cursor) greatly
simplify the file structure analysis.

Hex Editor Neo Documentation Getting Started

33

Structure definitions may extend their functionality by referring to functions written in JavaScript or VBScript. These
functions have access to the underlying parser and document, thanks to the IFileDocument and IParser interfaces,
exposed to them by the Hex Editor Neo.

The overall compilation and binding performance has been greatly improved.

There is a special topic in this documentation that describes the changes in the Structure Viewer module.

Copy&Export

The Advanced Copy & Export module now follows the model offered by the editor window. It now allows you to
execute the Copy and Export commands with no selection present. In this case, a cell under the cursor is
copied/exported.

The current byte order is now taken into account when performing copy or export functions.

It also offers an option to configure the number of digits to be exported for floating-point and double precision
floating-point types.

Refresh View Command
When working with logical or physical disks, process or physical memory, this command allows you to refresh the
editor window to display any possible changes to the underlying data, performed by some other application or
operating system.

/s Command-Line Parameter
When launched with “/s” command-line parameter, Hex Editor Neo forwards the list of files to open to an already
running instance, if there is one.

“Display cursor address on the left” Option
Several customers complained about the address of the cursor location being displayed at the start of the line. Now
this functionality can be switched off. See the General Settings topic for more information.

Reverse Sorting on Statistics Columns
Statistics window now allows you to sort columns in both ascending and descending order in its table mode.

New IFileDocument Methods to Be Called from Scripts

A previously introduced ISequence object was called to make it possible to call methods of the IFileDocument interface
from scripting languages (such as JavaScript and VBScript). Although, our tests has shown, that in some cases it is still
impossible for a script to call one or another method due to the limitations in the Automation model and the way
scripting engines are implemented.

This release finally resolves the problem by providing a special variant of each affected method. Every such variant may
be easily called from the scripting languages.

Go to in Process
Go to in Process command now interactively updates the cursor position when you click on the image sections or
modules (without closing the Go to window).

UI Sugar

You can now make any tool window appear as a tabbed document. That means that the tool window will not be
dockable to one of the four sides of the main window anymore, nor it will float over the main window, but instead will
be placed where all editor windows reside. You may then take advantage of the Editor Window Placement feature to
position a tool window.

Each tool window now also memorizes its floating position separately of its parent frame.

Ctrl+Mouse Wheel now quickly changes the font size in an editor window. This is a quick way to change a font size
without using the Layouts dialog.

The following is a fixed bug list:

Purge All History and Load History Commands
These commands did not work properly in Free Edition mode.

Copy&Paste Bugs
Several bugs with copying and pasting document data have been found and fixed. This may include several application

Hex Editor Neo Documentation Getting Started

34

crashes.
A Lot of Minor Bugs

Quite a few of minor bugs or inconsistencies were found and fixed throughout the product.

Version 4.64

New and updated features in this release:

Structure Viewer

Structure Viewer has been completely redesigned and rewritten. It now supports a sophisticated structure definition
language with expression evaluation, pointers and bit fields, case unions and assertions, constants and enumerations
and much much more.

In addition, C99-compliant preprocessor is run before a source file is compiled, a preprocessor with full support for
macros and conditional compilation.

Source files are optimized and saved into precompiled files, which are then quickly loaded by Hex Editor Neo on
demand. Structure binding performance has also been greatly increased.

In addition to the ability to bind a structure to an absolute or relative address or to a cursor position, a structure may
now be bound to an expression. This expression may reference constants and enumerations declared on the global
source file scope or even reference previously bound structures.

Scripting
New Sequence Object provides scripting languages (such as JavaScript and VBScript) a way to build a pattern and pass
it to File Document Object methods that require a pattern.

Version 4.51

A number of reported bugs are fixed in this release. Hex Editor Neo version 4.51 introduces a major performance boost.

Thanks to a new internal data structure and handling algorithms, a major performance boost is found in the following
functions:

Fill, Delete, Cut and Paste - when they operate over a multiple selection - have up to 3x performance boost.
Find All, File Compare, Selection Loading - up to 10% performance boost.
Replace All - from 1.5x to 2x performance boost.

Similar numbers refer to Find in Files and Replace in Files functions.

New features in this release:

Disassembler
Hex Editor Neo now includes a disassembler module. The current implementation is capable of disassembling 32-bit
x86 code, including support for FPO, MMX, SSE, SSE2 and 3DNow! instruction sets. Disassembler automatically
searches for symbol files and uses the information from them to increase the assembly output readability. The
Disassembler View may be connected to ordinary editor window which provides you with another handy data viewing
and manipulation tool. The disassembler module works with files and processes' memory and is even automatically
updated when you modify the document.

Regular Expressions
Find, Find All, Replace, Replace All, Find in Files, Replace in Files, Pattern Coloring and Pattern Statistics commands and
modules now fully support regular expressions. ECMAScript-compatible implementation of regular expressions
provides you with extreme power ever found in binary editors. Very efficient implementation of “bulk” commands
(Find All, Replace All, Find in Files and Replace in Files) combined with unique features of Hex Editor Neo's multiple
selection feature, together form an invaluable editing tool. A concept of named regular expression classes even allows
you to define recursive grammars.

Window Switching
Hex Editor Neo now provides fast and convenient tool that can be used to instantly activate any visible tool window or
editor window. When you press Ctrl + Tab or Ctrl + Shift + Tab (user configurable), a navigation window is displayed. It
provides the list of visible tool windows and all opened editor windows for you to activate. See the Window Switching
section for more information.

Code Pane

Hex Editor Neo Documentation Getting Started

35

Hex Editor Neo now provides you with a method to completely hide a code pane, leaving only the text pane visible.
Combined with the auto columns mode, it is a powerful tool to edit text or binary-text data.

Default Layouts (Three Different Ones)
When you run the Hex Editor Neo for the first time, you are provided with a choice of default working layout. You can
choose between a “Novice User Layout”, "Advanced User Layout" and “Expert User Layout”. You can later change the
chosen layout or make your own. See the Default Layout section for more information.

Version 4.41

Version 4.41 fixes a number of reported bugs and introduces some performance optimizations. New features in this release:

Case Change Operations
Hex Editor Neo now offers three new Data Operations: Lower Case, Upper Case and Invert Case. Case change
operations take into account current encoding and are capable to work with Unicode data.

Application-Wide Byte Order Support
Hex Editor Neo now fully supports both little-endian and big-endian byte orders. Different byte order can be set
separately for each editor window and there is an option that controls whether floating-point types are affected by byte
order change. Byte order change commands have been removed from Data Inspector and Structure Viewer modules,
as they now respect the byte order configured for a window.

Modify Bits Command
New Modify Bits command allows you to see a visual binary representation of the number and modify individual bits.

Printing Support
Full printing support is now available in Hex Editor Neo.

Copy and Cut Work Without Selection
Copy and Cut commands can now be used when there is no selection in the current editor window. In this case, only
the cell under the cursor is copied/cut into the Clipboard.

Version 4.33

Hex Editor Neo version 4.33 fixes a number of reported bugs. Affected modules: Data Inspector, Structure Viewer, NTFS
Streams, File Compare.

It also adds the “Hide All Tool Windows” command on the toolbar so you can quickly maximize the workspace and then
return to the previous configuration at one mouse click.

Version 4.32

Hex Editor Neo version 4.32 fixes a number of reported bugs and introduces a lot of new cool features. New features in this
release:

New Document Types
Hex Editor Neo is now capable of opening volumes, physical disks, process virtual memory and computer physical
memory (on supported operating systems).

New Editor Commands

Encrypt and Decrypt commands may now be used to encrypt and decrypt a document (or part of it), using one of the
installed block or stream ciphers.

A large set of new data operations: bitwise (NOT, OR, AND, XOR), arithmetic (Negation, Addition, Subtraction,
Multiplication, Division and Remainder) and shift (Logical Left and Right, Arithmetic Left and Right and Rotation), are
provided. They operate in linear time (depending on selection's complexity), that is, for single-range selection they
execute immediately, regardless of data size.

File Comparison
Hex Editor Neo provides two methods, simple comparison algorithm and difference algorithm to locate changes
between two files.

Little-endian/Big-endian in Structure Viewer
Structure Viewer may now be switched between little-endian and big-endian data representation.

Version 4.21

Hex Editor Neo Documentation Getting Started

36

Hex Editor Neo version 4.21 fixes a number of reported bugs, provides a number of optimizations as well as introduces new
cool features. New features in this release:

Performance Optimizations

This release has undergone several performance optimizations resulted in significant speed-ups in the following
commands and features:

A special image cache speeds up application loading time. This special cache stores pre-rendered vector images
(which are used throughout the Hex Editor Neo) to significantly reduce the application startup time, which was
very small even before this cache was implemented!
A number of algorithm improvements allowed several editing functions to operate much faster and consume
much less RAM. This include typing, inserting and deleting (with complex multiple selection).
Several improvements were made to the Find in Files feature, leading to much less memory consumption by this
function.
File saving algorithms undergone several optimizations leading to smoother and faster saving.

NTFS Streams Support

Hex Editor Neo now fully supports NTFS alternate data streams. A special NTFS Streams Tool Window displays all
streams for the currently active file, allows you to delete or rename them, open them for editing or create new streams.

In addition, the powerful Find Stream feature allows you to locate all streams on your computer.

File Attributes has also been updated to display more information related to streams: the total number of streams, size
of all file's streams and the total size occupied by a file (including all its alternate streams).

Find in Files now has an option “Include streams” that you may use to include alternate data streams in Search or
Search and Replace operations.

Version 4.11

Hex Editor Neo version 4.11 fixes a number of reported bugs as well as introduces new cool features. New features in this
release:

Built-In Explorer
Hex Editor Neo now has two Windows Explorer-like windows as part of its user interface. They can be used to perform
usual file and folder operations and also tightly coupled with Hex Editor Neo. For example, you can open files in the
editor by double-clicking them in the Explorer window simply dragging them to the editor's window.

Encodings
Hex Editor Neo is now capable of displaying text in the text pane according to a selected encoding. More than 130
different encodings are supported (subject to installed code page files and fonts). When the cursor is in the text pane,
typed characters are also converted using the selected encoding. Encoding can be set separately for each editor
window. Different ANSI, UNICODE, ISO, OEM, MAC, EBCDIC and country-specific encodings are supported.

Checksum Calculation
Hex Editor Neo supports 16 checksum calculation algorithms, including MD5, SHA-1, CRC-16, CRC-32 and others.
Custom CRC algorithm is also provided. You can compute the checksum for the whole file or for the current (multiple)
selection. Several checksums may be computed at the same time. Results are easily exportable and copyable to the
Clipboard.

Advanced Copy & Export
Selected document data may now be converted into a number of supported text formats and placed into the Clipboard
or exported to a file. Space-separated or comma-separated numbers, raw text with selected encoding, programming
language array declaration, Base64, UUencode and Quoted-Printable are among supported formats.

Pasting Text
Text may now be pasted into the editor. Depending on the active pane, the text is either pasted “as is” (if the text pane is
active), or parsed as a sequence of hexadecimal or decimal integers (if the code pane is active).

Version 4.01

Version 4.01 is an absolutely new release, designed and developed from scratch. It does not contain any code from the
previous product version.

On the other hand, Hex Editor Neo shares some code base with our Serial Monitor and USB Monitor products, which are

Hex Editor Neo Documentation Getting Started

37

https://www.hhdsoftware.com/serial-monitor
https://www.hhdsoftware.com/usb-monitor

part of the Hex Editor Neo product.

Hex Editor Neo retains all interesting and useful features of its predecessor, such as multiple selection, multiple editor
windows, vector icons and bookmarks, but implements all these features in a new way, significantly lowering memory
requirements and increasing performance and stability.

The performance of all functions has been significantly increased. Several functions that previously executed in several
steps now execute in one step (this includes Replace All command, for example).

Hex Editor Neo does not longer support Windows 98 and Windows ME operating systems. But the list of supported
operating systems has actually increased:

Windows Vista (x86)
Windows Vista (x64)
Windows XP (x86)
Windows XP (x64)
Windows Server 2003 (x86)
Windows Server 2003 (x64)
Windows 2000

Pentium III or newer processor is now required by the Hex Editor Neo.

A lot of new features have been implemented in this release. The full list is provided in the Hex Editor Neo's Features
section.

Hex Editor Neo Documentation Getting Started

38

https://www.hhdsoftware.com/device-monitoring-studio

Definitive Guide
User Interface Elements
Commands

All functions of the Hex Editor Neo are invoked through commands. For convenience, almost every command is accessible
using several user interface tools:

Each command is accessible through the main menu. Several commands used to execute local actions of specific tool
windows are accessible through context, or shortcut menu. Shortcut menu is invoked by clicking the right mouse
button, or by pressing “Context Menu” keyboard button (usually located next to the right Ctrl key).
Most commands are also displayed on toolbars. Two kinds of toolbars are used in the Hex Editor Neo. Main toolbar is
located right under the menu bar and is fully customizable. You can also create new toolbars and place them near the
menu bar. Other toolbars, which are not customizable, are located in tool windows and contain the most used
commands that are specific for those tool windows.
Several most used commands have associated keyboard shortcuts or hot keys. Pressing such associated key or key
combination invokes the command. You can change assigned key combinations as well as assign new key
combinations to other commands.

All commands described in this documentation are mentioned by their location in the main menu. For example, the Open…
command, located under the File main menu item is referenced as File » Open…. Other examples are File » Close for a
Close command under File menu and Tools » Settings… for a Settings… command under Tools menu.

By convention, if ellipsis symbol (…) terminates menu item's name, it means that user is required to provide additional
information to execute this command. This may include displaying a dialog box, asking for confirmation etc. For example,
the File » New command does not require any additional action from you, while the File » Open… command opens a File
Open dialog, therefore requiring you to provide additional information.

Main Menu

Main menu bar is located at the top of application window, right under the title bar.

Main menu contains almost all commands implemented by the Hex Editor Neo. It is structurally divided into the following
groups:

File
Contains commands related to creating, opening, saving and closing of documents.

Edit
Contains all editing commands, Clipboard commands, Edit » Undo and Edit » Redo commands.

View
Contains the list of tool windows, commands to export/import tool window configuration or load a predefined
configuration. It also contains commands that can be used to switch the layout of editor window.

Select
Contains commands that manage a current selection.

Operations
Contains commands that perform bitwise, arithmetic and shift operations on an opened document.

Bookmarks
Contains commands that control the Bookmarks Tool Window.

NTFS Streams
Contains commands that are used to manage file's alternate data streams.

History
Contains commands related to operation history management.

Hex Editor Neo Documentation Definitive Guide

39

Tools
Contains commands that control different tool windows, including Pattern Coloring, Structure Viewer, Attributes,
Statistics and Data Inspector. The Tools » Settings… command is an entrance to the central place where you fine tune
the Hex Editor Neo by changing different options.

Window
Contains commands that manage the number and location of editor windows.

Help
Contains commands that can be used to access this documentation file, check for program updates, display keyboard
map (a table of associated shortcuts) as well as display information about the Hex Editor Neo.

Select and Window menu are hidden when there are no documents open in the editor.

Toolbars

Toolbars present a subset of Hex Editor Neo commands to the user by means of displaying commands' images. Main
toolbar and user created toolbars are located under the menu bar:

To execute a command located on the toolbar left-click its image. If you hold a mouse pointer over an image for a while,
command's name is displayed in a tooltip window, along with assigned keyboard shortcuts. More detailed command
description is displayed on the status bar at the same time.

Main toolbar, as well as user defined toolbars, are fully customizable. You can quickly change the order of commands on
the toolbar using the following procedure:

1. Press and hold an Alt key.
2. Locate the mouse cursor over the command you want to move to another location.
3. Press the left mouse button.
4. Drag mouse to another location and see how the command moves within the toolbar.
5. Release a left mouse button to “drop” a command on its new location. Release an Alt key as well. If you moved mouse

away from the toolbar, the command is removed from the toolbar.

You can also create toolbar separators using this procedure.

Advanced toolbar customization is described in the Toolbar Customization topic. For example, in addition to command
arrangement you can smoothly change the size of toolbar images.

Toolbars located in tool windows are not customizable and contain commands related to the tool window where they are
located.

Keyboard Shortcuts

Hex Editor Neo associates a number of its commands with keyboard shortcuts. You can always see the list of all currently
assigned shortcuts using the Help » Keyboard Map command. The list of assigned shortcuts may also be printed for
reference or copied to the Clipboard to be used in another application.

Most commands that are present in other applications, like File » Open…, File » New, File » Save, Edit » Find… and others are
assigned standard Windows shortcuts (Ctrl+O , Ctrl+N , Ctrl+S and Ctrl+F for listed commands) by default. For those
commands for which several standard shortcuts exist (like the Edit » Replace… command, for which both Ctrl+H and
Ctrl+R are widely used), several shortcuts are assigned by default.

We also refer you to Keyboard Customization section where it is illustrated how you can change default keyboard shortcuts
or create your own.

Tool Windows

Tool windows are a special-purpose windows that are always visible to the user (unless they are hidden) and always ready
to perform a task. The following Hex Editor Neo features and functions are implemented as tool windows:

Operation History
Selection
Pattern Coloring

Hex Editor Neo Documentation Definitive Guide

40

Structure Viewer
Statistics
File Attributes
Find in Files
Downloader
Data Inspector
Base Converter
Structure Library

Location

A tool window may either be floating or docked to the application frame. A docked tool window may also be auto-hidden.
All these terms are described later in this section.

Floating Tool Window

Floating tool window is convenient when you want to maximize the working space used by editor windows. It may be
positioned outside of the main application window, and may even be located on another monitor if you have it connected
to your computer. This is contrary to the docked tool window, which may only be located within application window.

The position of the floating tool window may be changed by dragging it by its title with a mouse. You can also use mouse to
change the size of the floating tool window by dragging either its frame or one of four corners.

The important thing to have in mind while working with floating tool windows is the keyboard focus. Operating system
directs all keyboard input to the window owning keyboard focus. Usually an active title is used to indicate the window that
has keyboard focus. Blinking caret may also be used to indicate the focused window. Activating floating tool window by a
mouse click always brings a keyboard focus to this window, allowing you to provide input to the window. Clicking outside
of the floating tool window usually takes a keyboard focus away from it. To continue sending keyboard input to the tool
window, you may need to activate it again.

Docked Tool Window

A tool window may also be docked. When docked, it is attached to a tool window frame. A frame may be attached next to
another frame or directly to the top, left, right or bottom side of application window. Frames may be located next to each
other, inserted one into another and merged. Each frame contains at least one docked tool window and may also contain
several. Below is a screenshot of a frame with a single tool window docked to the right side of application window:

Hex Editor Neo Documentation Definitive Guide

41

Here's another example, where frame contains several docked tool windows. Several docked windows are tabbed within a
single docked frame:

You can dock any tool window by dragging it by its title bar or tab. During dragging, special placeholders appear on the
screen. When you move the mouse pointer over the placeholder, semi-transparent rectangle appears on the screen,
indicating an approximate position of the docked window. Releasing the mouse button docks a window in the indicated
position.

Side placeholders always appear, allowing you to dock a tool window into a new frame and attach it to the top, left, right or
bottom side of the application window.

When you drag a window over a docked frame or over the editor windows area, another placeholder appears. It is
composed of five boxes: top, left, middle, right and bottom. Dragging a window over the side box docks the window into a
new frame, which is attached to the top, left, right or bottom of the frame currently under mouse pointer.

If you drop a window to the middle box, you will dock it into the frame currently under mouse pointer. Dropping a window
to the docked window's title also docks it to target window's frame.

You can use mouse to change position of docked windows within a docked frame, as well as drag the window “out of the
frame” to make it floating or to dock it into another frame or new frame.

Double-clicking on the docked frame's title makes a frame floating. Double-clicking on the docked window's tab makes
only that window floating. Double-clicking on the floating frame's title docks it back to the same location it previously
occupied.

All docked frames are separated with each other by splitters. When you position a mouse pointer over such splitter, it
changes its shape, telling you that you can drag the splitter to change size of adjoining frames. Splitter position is

Hex Editor Neo Documentation Definitive Guide

42

proportional to the application window size; frames are resized automatically and proportionally when you resize
application window.

Auto-Hidden Tool Windows

Any docked tool window frame may be auto-hidden. To auto hide a frame, click the Auto Hide button:

Four auto-hide bars are located on four application window sides. They are hidden when empty and appear as soon as you
add at least one frame to it. When you auto-hide a docked frame, it chooses one of four auto-hide bars, depending on the
docked position. That is, if the frame was docked closer to the right side of application window, right auto-hide bar is
chosen and so on.

Each docked window's tab in the auto-hidden frame is displayed on the auto-hide bar. Two auto-hidden frames are
separated from each other with a slightly larger gap. Dragging mouse over the tab opens corresponding tool window. The
tool window smoothly drives out of the auto-hide bar. Click in the tool window to switch keyboard focus to it if you need to
provide any keyboard input to the window. The window is automatically closed (quickly drives back into the auto-hide bar)
when keyboard focus is lost by the window and mouse cursor is not over it.

Auto hiding tool windows allow you to save the screen space, while still having quick access to functionality provided by the
tool windows.

Pressing Auto Hide button again “unhides” the docked frame and returns it to its original docked position.

Tool Window Visibility

Any tool window is always in one of two states: visible and hidden. Visible means the tool window is floating or docked to
any of the docked frames or auto-hidden and appears on one of four auto-hide bars. Hidden tool window does not appear
anywhere on the screen. Note that a tool window, which is not directly visible by the user, but which tab is visible in one of
the docked frame, considered visible by this definition.

Pressing the Close button hides the tool window or entire frame, depending on the “Close affects the current tool window
only” setting on the General settings page. To make a previously hidden window visible, select its name in the View menu.
This restores the previous position, docked and auto-hidden state of the window and activates it. It also activates the tool
window even if it is in visible state, therefore, allows you to quickly move keyboard focus to the tool window, without using
mouse.

Tool Window Configuration

The current location of all tool windows, their state and visibility, comprise the tool window configuration. Hex Editor Neo
allows you to export and import this configuration to the file for sharing, exchanging or archiving purposes. There are also a
number of predefined tool window configurations shipped with a product. You can quickly switch between them using the
View Predefined Layouts menu group.

View Predefined Layouts function scans the “Tool Window Layouts” folder (located in the product installation folder) at
application startup. Placing your own tool window configuration files in this folder enables fast switching for them too.

First three options (Novice User Layout, Advanced User Layout and Expert User Layout) correspond to three options
described in the Default Layout section. Selecting one of those options not only switches to a given layout, but also sets it as
a default one.

Window Switching

Hex Editor Neo interface presents you with a large number of tool windows, as well as an unlimited number of editor

Hex Editor Neo Documentation Definitive Guide

43

windows. Starting with version 4.51, a convenient window switching mechanism is provided for you. This mechanism is
called a navigation window.

Navigation window is opened when you press the Ctrl + Tab or Ctrl + Shift + Tab key combination (see also
Keyboard Customization). It lists all visible (possibly auto-hidden) tool windows as well as all opened editor windows. Using
the arrow keys, Tab , Shift + Tab or mouse, you may select the window you want to activate. As soon as you release a
Ctrl key, the navigation window is closed and selected window becomes active.

Navigation window provides a quick window activation mechanism.

Other Window-Switching methods

The General Settings page contains a “Window switching style” setting, using which you may set how Hex Editor Neo
switches windows.

Legacy
Window switching operates exactly the same as in previous (prior to 4.51) versions of Hex Editor Neo.

Last recently used
Navigation window is not used. Ctrl + Tab and Ctrl + Shift + Tab work on the list of editor windows using the
last recently used algorithm. You cannot activate tool windows using this method.

Using navigation window
The navigation window is displayed and allows you to select any visible (or auto-hidden) tool window as well as any
opened editor window.

Default Layout

The first time you start the Hex Editor Neo, you are asked to choose a default tool window layout.

You are offered a choice of three options: Novice user, Advanced user and Expert user.

After you click an option, Hex Editor Neo's user interface immediately switches to the selected layout. Once you have
chosen your layout, press the Continue button.

Choosing Another Default Layout

Hex Editor Neo Documentation Definitive Guide

44

Although the “Choose Default User Interface Layout” window is presented only once, you can easily change a layout at a
later time. To do this, go to the View » Predefined Layouts menu, and select a layout from the list.

Documents
Supported Document Types

Hex Editor Neo supports several documents to be viewed and edited in its environment. All supported document types are
listed below.

Files and Streams

The first and most commonly used document type is a file. Hex Editor Neo allows you to edit any file for which you have
Modify access and allows you to view the contents of any file for which you have a Read access. In addition, full support for
NTFS alternate data streams is provided.

Starting from version 6.12, Hex Editor Neo provides a way to open files for which you normally receive “Sharing Violation”
error.

Working with Files in Shared Mode

Hex Editor Neo normally locks opened files, granting only Read access to other processes. The lock is held until a file is
closed, preventing other applications from making modifications to a file. In addition, if the file is already opened by another
application, Hex Editor Neo may fail to open a file if it fails to obtain a lock.

While this scheme allows an editor to work with files of virtually any size in a very effective way, it sometimes may be
convenient to work with a file in a shared mode.

Starting from version 4.85 Hex Editor Neo supports opening files in shared mode.

Volumes

Hex Editor Neo allows you to view or edit contents of any mounted volume, or logical disk. Hex Editor Neo is also able to
open volumes that do not have associated drive letters, that is volumes, only mounted to directory on another volume.
Starting from version 6.12, Hex Editor Neo allows you to create and open volume snapshots.

Disks

In addition to volume editing, direct access to physical disk is provided by the Hex Editor Neo. Thus, you can get access to
disk's partition table, boot sector and so on.

Process Memory

With Hex Editor Neo you can view and modify the virtual memory of any running process, provided you are granted
required rights. The editor gives you detailed representation of the edited process memory space.

Computer Physical Memory (RAM)

On supported operating systems (Windows 2000 and Windows XP), Hex Editor Neo gives you a read-only view into the
system RAM, allowing you to investigate and copy its contents, if required.

Opening Documents

Document represents a file, shared files, disk, volume, process memory or physical memory, opened in the Hex Editor Neo
for viewing and editing. Each opened document has at least one editor window associated with it. You can also have
multiple editor windows for an opened document.

Hex Editor Neo does not allow you to have multiple documents for a single file, but you can open as many windows for
each document as you need.

Any file opened in the Hex Editor Neo is accessed with Read Only access. Sharing access is set to allow Read operation only.
Starting from version 6.12, if Hex Editor Neo is unable to get a Read access to a file due to sharing violation, it asks the user
if he wants to create a volume snapshot and open the file from a snapshot.

When you open a disk, volume or a process memory, they are also always opened with Read Only access, but no sharing
restrictions are applied. That is, if some other application changes the contents of the edited documents, you will need to

Hex Editor Neo Documentation Definitive Guide

45

scroll document's editor window to view changes or use the View » Refresh… command.

Errors Opening Files

If there are any errors the editor encounters during opening files it displays the list of failed files with corresponding error
messages. The following window is displayed regardless of the way you chose to open files, in case editor encounters any
errors trying to open them.

Opening Files

There are several ways a file may be opened by the Hex Editor Neo.

File Open Command

Use the File » Open » Open File… command to open the standard File Open dialog. Select a file or multiple files and click
the Open button. The “Open as read-only” flag may be used to have the editor open file(s) in read-only mode, preventing
the modification of original file(s).

Files you select may be located either on the local computer, or on the remote computer. Make sure your connection to the
remote host is fast enough before opening the remote file in the editor. Usually, 10 Mbit connection will be enough for
most editing tasks.

If a “Sharing Violation” error is received, which means other process(es) have the file opened and do not allow Read access,
Hex Editor Neo asks if you still want to open a file using volume snapshot. This allows you to access file data even if another
process has the file locked. Note that operating system may cache file data in memory. In this case those data may not be
available in the snapshot. A snapshot is automatically discarded as soon as file is closed. Support for opening locked files is
available starting from version 6.12.

Using the Right-click Menu in the Windows Explorer

If you chose an option to integrate with Windows Explorer during Hex Editor Neo installation, the “Edit with HHD Hex Editor
Neo” command appears when you right click on the selected file(s) in the Windows Explorer. Select this option to open all
selected files in the Hex Editor Neo.

This will launch the Hex Editor Neo (if it is not already running) and instruct it to open all the files you selected in the folder.

Note: Windows Explorer references the extension DLL that is used to implement the right-click menu command. If you try to
uninstall the product right after using the command, it will fail to delete all installed files and will have to schedule a reboot
to finish installation.

Hex Editor Neo Documentation Definitive Guide

46

Drag&Drop

You may select a file or a number of files in Windows Explorer (or any other compatible application) and drag them to the
running instance of the Hex Editor Neo. This will instruct the editor to open all dragged files.

Specify Files to Open in Command Line

Launching the Hex Editor Neo with a list of files in its command line instructs the editor to open all of them.

Remember that all file names that contain spaces must be enclosed in the double quotation marks. There is a limit enforced
by the operating system to the maximum length of the command line. Generally, it should be less than 256 characters.

Example:

PowerShell
.\HexFrame.exe c:\temp\rom.dat c:\windows\system32\calc.exe "c:\Program Files\Windows NT\dialer.exe"

Running this command will load the Hex Editor Neo and open all specified files.

Specifying the command line option /s tells the Hex Editor Neo to reuse the running Hex Editor Neo instance. If omitted, a
new Hex Editor Neo instance will be launched.

The following command line switches are supported by Hex Editor Neo:

/shared

Open the next file specified in the command line in shared mode.
/readonly

Open the next file specified in the command line in read only mode.

Opening Files in Shared Mode

There are several ways a file may be opened by the Hex Editor Neo in shared mode.

File Open Shared Command

Use the File » Open » Open Shared File… command to open the standard File Open dialog. Select a file or multiple files
and click the Open button.

Files you select may be located either on the local computer, or on the remote computer. Make sure your connection to the
remote host is fast enough before opening the remote file in the editor. Usually, 10 Mbit connection will be enough for
most editing tasks.

Using the Right-click Menu in the Windows Explorer

If you chose an option to integrate with Windows Explorer during Hex Editor Neo installation, the “Edit with HHD Hex Editor
Neo (Shared Mode)” command appears when you right click on the selected file(s) in the Windows Explorer. Select this
option to open all selected files in the Hex Editor Neo.

Note that this option may be available only when you hold Shift key when bringing up the context menu.

This will launch the Hex Editor Neo (if it is not already running) and instruct it to open all the files you selected in the folder.

Note: Windows Explorer references the extension DLL that is used to implement the right-click menu command. If you try to
uninstall the product right after using the command, it will fail to delete all installed files and will have to schedule a reboot
to finish installation.

Specify Files to Open in Command Line

Launching the Hex Editor Neo with a list of files in its command line instructs the editor to open all of them. Remember that
all file names that contain spaces must be enclosed in the double quotation marks. There is a limit enforced by the
operating system to the maximum length of the command line. Generally, it should be less than 256 characters. Remember
to prepend each file you want to be opened in shared mode with a /shared switch.

Example:

Hex Editor Neo Documentation Definitive Guide

47

PowerShell
.\HexFrame.exe /shared c:\temp\rom.dat /shared c:\windows\system32\calc.exe /shared "c:\Program Files\Windows NT\dialer.exe"

Running this command will load the Hex Editor Neo and open all specified files in shared mode.

Specifying the command line option /s tells the Hex Editor Neo to reuse the running Hex Editor Neo instance. If omitted, a
new Hex Editor Neo instance will be launched.

Opening Encoded Hex Files

Hex Editor Neo supports decoding Intel HEX and Motorola S-Records files. You may decode and put them into any opened
document using the Edit » Insert Hex… command or open as new documents using the File » Open » Open Hex…
command.

See the Edit » Insert Hex… topic for the window description.

After you execute this command, Hex Editor Neo creates new document and decodes the specified hex file.

Opening Volumes

To open a volume, execute the File » Open » Open Volume… command. Open Volume window appears:

For each detected volume, its mounting point (drive letter and/or mounting directory), label, volume type, volume's file
system (if any), volume's serial number and volume's unique ID are provided. You can sort the list in ascending or
descending order on any of the list's columns.

Hex Editor Neo Documentation Definitive Guide

48

In addition, detailed information about the current volume's file system and free space is provided in the dialog.

Select a volume from the list of all volumes and click the OK button to open it. “Open as Read-Only” option may be used to
have the editor open a volume in read-only mode (default). Some volumes can only be opened in read-only mode.

Starting from version 6.12, Hex Editor Neo allows you to create a volume snapshot and open its snapshot in read-only
mode. This allows you to “freeze” volume contents at a specific time point. Snapshot is automatically discarded as soon as
volume is closed.

Volume Navigator Support

If NTFS-formatted volume is opened, Volume Navigator automatically starts parsing its structure.

Opening Disks

To open a physical disk, execute the File » Open » Open Physical Disk… command. The Open Disk dialog appears:

For each detected disk, its name (model name), size, mounted volumes, disk type and disk capabilities are displayed. You
can sort the list in ascending or descending order on any of the list's columns.

Select a disk from the list of all disks and click the OK button to open it. “Open as Read-Only” option may be used to have
the editor open a disk in read-only mode (default). In addition, detailed disk information (disk geometry and partition table)
is displayed for a selected physical disk.

Opening Processes

To open a process memory, execute the File » Open » Open Process… command. The Open Process window appears:

Hex Editor Neo Documentation Definitive Guide

49

This resizable window lists all running processes on the left. It is recommended to run the Hex Editor Neo as an elevated
user with Administrative rights to be able to view and edit process memory. In some operating system, there are always
several processes that cannot be edited even by a most privileged user. This limitation is dictated by the operating system
and is not related to Hex Editor Neo.

To open the whole process virtual memory, double click the process in the list.

If you need only a subset of process' virtual memory, select it in the list. Hex Editor Neo will analyze the process' allocated
and free memory blocks and provide you with a detailed list in the middle part of the Open Process window.

Process' memory blocks may be viewed as is (Blocks tab) or as a list of loaded modules (Modules tab). For each block, its
starting address, size, type, state and access are provided. In addition, for blocks that are mapped to file system files, the full
name of the file is provided.

The list may be sorted in ascending or descending order on every list's column.

Hex Editor Neo uses coloring to display the access state of every memory block. You can change colors used by the editor if
you like by pressing the Set Colors… button.

All integers in this dialog may be displayed in decimal or hexadecimal, depending on the state of the “Display decimal
values” switch.

The “Open as Read-Only” switch will prevent you from modifying the opened region.

Support for 32-Bit Processes on 64-Bit Operating System

If you run Hex Editor Neo on 64-bit operating system, you will see both 64-bit and 32-bit processes in the list. Hex Editor
Neo is fully compatible with both process types and allows you to view and edit both process type's memory space.

Memory Map

There is a colored map on the right of the dialog. It displays essentially the same information as the memory block list in the
middle, but draws each memory block in correct scale and also displays its location in process address space.

“Logarithmic scale” option switches the display mode for the memory map between the normal and logarithmic. In
logarithmic scale you do not see proper block sizes anymore, but individual blocks are represented better. This switch is ON
on 64-bit operating systems by default, as it is virtually impossible to see anything in normal scale with huge virtual
memory space.

Opening Blocks

Hex Editor Neo Documentation Definitive Guide

50

To open one or several memory blocks, select it (them) in the list and press the OK button. Double-clicking on the block
opens this block (or module) only.

Note that you will not be able to select multiple blocks if you change the default list sorting order.

Opening Physical Memory

On supported operating systems (Windows 2000 and Windows XP) Hex Editor Neo allows you to open computer physical
memory for read-only access only. You must be a member of Administrators local or domain group in order to get proper
access to the physical memory.

Limitations

Microsoft has discontinued access to computer physical memory starting from Windows Server 2003 SP1. That is, this OS
and all subsequent OSes (including Windows Vista, Windows 7, Windows 8 and Windows 10) do not provide access to
RAM to user-mode applications. There is no way around this.

For older operating systems, Windows 2000 and Windows XP, users with corresponding access rights have full access to
RAM. Hex Editor Neo limits this access to read-only in order to maintain system stability.

RAM is always rapidly modified, so contents of every range of this “document” may change at any time.

Creating New Documents

The Hex Editor Neo allows you to quickly create an empty document with a use of the File » New command. Created
document is virtual and is not backed up by any real file until you save it for the first time.

Empty document always has zero size. You can use the wide range of editing commands to insert data to the file.

Closing Documents

Closing document in a Hex Editor Neo releases all references to the opened file, optionally saves all changed made to the
file, frees all memory and disk space used to maintain this file. The effect of closing a document will also be that the sharing
restrictions set on the file at the time it was opened are cancelled, making it possible for other processes to open the file for
writing.

Hex Editor Neo provides you with several ways of closing documents:

1. The document is automatically closed when all editor windows, associated with it, are closed. See the topic for editor
windows to find out the ways to close a window.

2. The File » Close menu command can be used to immediately close the document, regardless of the number of editor
windows you have opened for it.

3. The File » Close All command is used to close all opened documents.
4. All opened documents are automatically closed when you exit the Hex Editor Neo.

Right before closing the document, the editor checks if it is in modified state. In this case, you are asked whether you want
to save the changes, cancel them, or abort the close operation.

The same prompt is displayed when you shut down your operating system, perform restart or log off. If you have any
unsaved changes to any of the opened documents, you will be prompted whether you want to save them. This may delay
the system shutdown process or even cancel it.

More information on saving changes made to documents can be found in Saving Documents section.

Saving Documents

All changes made to a document always reside in memory. In order to apply them, you have to save a document.

When the document has any modifications, the “*” symbol appears next to the document's name in each of its editor
windows. Two of Hex Editor Neo commands, File » Save and File » Save As… are used to save documents. The first
command applies changes to the document file itself, while the second one allows you to save a copy of the current version
of the file, which is the version that includes all changes, to another file.

The File » Save command is not available for documents opened with Open as Read Only flag set on as well as for
documents created with a File » New command. Being executed, this command behaves exactly as File » Save As…
command.

Hex Editor Neo Documentation Definitive Guide

51

Save All Command

Use the File » Save All command to save all modified documents.

Always Create Backups Option

There is an option on the General Settings tab, called “Always create backups” that governs the behavior of the File Save
command. When it is on, the save operation does the following:

Creates a temporary file in the same folder where the original file is located.
Saves the entire copy of the current version of the file to the temporary file.
Renames the original file, adding the .bak to its filename and renames the temporary file to the filename of the
original file. Both these renames are performed as an atomic operation. If there already exists a file with a .bak
extension, it is silently deleted.

When the “Always create backups” option is turned off (the default state), the editor determines if it is more efficient to
write only the changes made to a file than to write an entire file. For example, you may open a 4GB file in the editor, modify
several bytes in the middle of it and save the changes. It is obvious, that writing only a small number of changed bytes will
be much faster than writing the full copy of the original file - that's why the editor prefers to have this option off by default.

If any error occurs during “optimized” file save operation, the file will be left in undefined state. It is recommended to switch
this option ON if you have any vital information in the edited file.

This option also governs the behavior of Replace in Files function. If you execute the function in Replace all occurrences and
save mode, the editor warns you to switch this option on, otherwise, you may lose some valuable information. With this
option on, on the other hand, each modified file is backed up before overwriting.

This option does not affect streams. Hex Editor Neo never creates a backup for a modified stream. This behavior is by
design and governed by the operating system.

Requirements

Usually, Hex Editor Neo creates a temporary file in the original file's folder, so it is required to have enough free space on
the volume. Otherwise, Hex Editor Neo will not be able to save changes made to a file. Disk quota settings may also prevent
the editor from saving changes.

When the “Always Create Backups” option is turned off and Hex Editor Neo determines that it is possible to do an effective
save, it does not create a temporary file, and lowers its requirements on free volume space.

If you get a “not enough space” error message when trying to save a file, all your modifications are retained - you can free
up the required space on the volume, or use the Save As… command to save the file on another volume.

Working with Shared Files

Opening file in shared mode will allow other applications to continue working with a file, and moreover, to continue making
changes to it.

After you open a file in a shared mode, you may update it in Hex Editor Neo and in any other application.

Working with a file opened in shared mode in Hex Editor Neo is exactly the same as working with any other type of
document. The only difference is that Hex Editor Neo displays an overlay warning icon on top of file's icon in its user
interface, reminding you that the file has actually been opened in shared mode.

When the file is updated in another application, Hex Editor Neo automatically detects the change and displays a Shared File
Conflict Dialog. It gives you options to discard or apply your changes, to discard and apply other application's changes, or
both at the same time. It also allows you to close the file if you do not need it anymore.

This dialog is displayed only if Hex Editor Neo is a foreground application. If it is not, it flashes its icon on the task bar and its
application window frame until you bring it to the front.

Supporting Scenarios

Hex Editor Neo supports opening files in shared mode on any Windows operating system it supports (Windows 2000 or
later), any file system (FAT, FAT32, NTFS, ExtFS), and any kind of storage media (local hard disks, network shares,
removeable devices).

Limitations

Hex Editor Neo Documentation Definitive Guide

52

As opening a file in a shared mode is almost equivalent to copying a file, Hex Editor Neo warns you if you instruct it to open
a file which is too large. On Windows Vista or later it uses the disk system rating to guess the maximum supported size, on
previous systems it limits the size to nearly 15 MB.

If the size of a file opened in shared mode exceeds the limit, a warning is displayed. You may still continue opening in
shared mode if you agree to wait or instead open a file in normal, locked mode.

Solving File Conflicts

Hex Editor Neo watches for changes in each file opened in shared mode. It is able to detect the following change types:
deletion, modification and renaming. By default, rename change detection is switched off, as it may interfere with a way
several applications modify files. Imagine the following scenario:

You open a file A in Hex Editor Neo and some application B. You then make a change to a file in application B and save it.
Application B follows this algorithm:

1. It creates a temporary file T and writes the full copy of A (with changes made) into it from its memory.
2. It renames the original file A into file C.
3. It renames the temporary file T into file A.
4. It deletes the file C.

If rename change detection is ON, Hex Editor Neo catches it on the step 2, renames the document and then catches the
delete notification on step 4, thus effectively missing actual file modification made on step 3. That is why this option is
turned OFF by default. You may turn in on in the General Settings page using the option “Ignore renames of shared opened
files”.

Rename Change Notification

When a shared file is renamed and “Ignore renames of shared opened files” option is ON, Hex Editor Neo automatically
renames all opened editor windows for the file. No notifications are presented to the user.

Delete Change Notification

When a shared file is deleted, Hex Editor Neo presents a dialog with two options:

Discard all changes and close the file.
Automatically discard all changes you made to a file (if there are any) and close a file. Use this option if you
intentionally deleted a file and are not going to work with it anymore.

Continue working with a file.
Continue working with a file. Note that Hex Editor Neo stops watching for file modifications if you select this option. So,
if another application creates a file with a same name in a same folder, Hex Editor Neo will not detect it.

Modify Change Notification

When a shared file is modified, Hex Editor Neo presents one of two dialogs, depending on whether you have made
modifications in the editor or not. Your further actions are described in the following table:

Change type There are no
modifications in
Hex Editor Neo

There are modifications in Hex Editor Neo

File's size is
unchanged

Ignore changes
Close the file
Update the file

Retain all changes and do not update the file
Discard all changes and close the file
Discard all changes and update the file
Retain all changes and update the file (changes
are merged into the new version)

File's size is changed Ignore changes
Close the file
Update the file

Retain all changes and do not update the file
Discard all changes and close the file
Discard all changes and update the file
Retain all changes and update the file (requires
“Highlight changes in the file” option also be set
to ON; changes are retained in old version)

The following table briefly describes each option:

Hex Editor Neo Documentation Definitive Guide

53

Ignore changes
Hex Editor Neo ignores any changes made by another application.

Retain all changes and do not update the file
Hex Editor Neo ignores any changes made by another application. All changes made in Hex Editor Neo are retained.

Close the file
Immediately close the file in Hex Editor Neo.

Discard all changes and close the file
Discard any changes and close the file in Hex Editor Neo.

Update the file
Update the file in Hex Editor Neo to reflect changes made by another application.

Discard all changes and update the file
Discard all changes made in Hex Editor Neo and load changes made by another application.

Retain all changes and update the file
Load changes made by another application but also retain local changes.

Note that if another application changes the shared file's size and you select the “Retain all changes and update the file”
option, the "Highlight changes in the file" option must also be selected (it is done automatically).

Highlighting Changes in the File

If you select one of the “update” options, an option to highlight changes in a file becomes available. It automatically
performs a file comparison between the old and new versions of the shared file. Both algorithms, Simple Compare
Algorithm and Diff Compare Algorithm are provided.

When you check this option, Hex Editor Neo renames the current document and opens a new version of the file. It then
instructs the File Compare module to compare them and highlight their differences. An option “Close older versions of the
file” will instruct Hex Editor Neo to close older versions used in previous comparisons.

Note that older versions are not backed up by an actual file, but nevertheless are normal documents which can be edited,
saved and so on.

Notes

Please note that Hex Editor Neo may be unable to detect a file change if too many files in the file's folder are modified at the
same time.

Editor Windows
Editor window is the main Hex Editor Neo element provided for file viewing and editing. These windows are used to display
and edit the contents of opened files. This section describes the editor windows in detail.

The new window is opened each time you open or create a new document. Additional windows for a document may also be
opened using the Window New Window command. Another way for opening additional editor windows for a document,
window splitting is described later in this section.

Basic Elements

Here's a typical editor window:

Hex Editor Neo Documentation Definitive Guide

54

There are the following elements in each editor window:

Title Bar

Title bar displays the full file name and a close button. Holding a mouse over the title bar displays a tooltip with a full
path to the file. Clicking on a close button closes the current editor window. If this is a last window for a given
document, the document is closed. In the latter case, you are asked if you want to save any changes made to the
document, if there are any.

The Window Close Window command may also be used to close an editor window.

Clicking on a title bar and dragging starts editor window placement customization.

Split Anchor

Split anchor is used to split an editor window into two windows horizontally. Click and drag with a left mouse button to
split a window. As a result of your operation, a new editor window is created. It is another view of original window's
opened document. Each editor window has its own cursor position, number of columns and view type and its own
selection.

After the window has been split, the split anchor disappears, but you can use the splitter bar between two windows to
change their relative sizes. As soon as you move the splitter bar to window's top border, the top window is hidden and
the split anchor appears again. Note, that the hidden window is not destroyed and all its properties are restored as
soon as you split window again.

Hex Editor Neo command Window » Split is used to split the window without using a mouse. If the window has
already been split, use this command to hide the top view.

Scroll Bars

As most opened documents are large enough not to fit into their editor windows, scroll bars are used to scroll the file
content's through the view, provided by the window. Horizontal scrolling is used to scroll the window's content
horizontally, if the current window's size and layout does not allow all the information to be visible. Vertical scrolling is
a fast and convenient way to navigate to any portion of the file.

Right-clicking on the scroll bar displays a shortcut menu with following commands (vertical/horizontal):

Scroll Here - scrolls to the mouse position
Top/Left Edge - scrolls to the beginning of the file/first column
Bottom/Right Edge - scrolls to the end of the file/last column
Page Up/Page Left - scrolls a few rows/columns backwards/to the left
Page Down/Page Right - scrolls a few rows/columns forward/to the right
Scroll Up/Scroll Left - scrolls one row/column backwards/to the left
Scroll Down/Scroll Right - scrolls one row/column forward/to the right

The vertical scrollbar is disabled if the whole file is visible on the screen. Horizontal scrollbar is disabled if the window
fits horizontally and all columns are visible.

Hex Editor Neo Documentation Definitive Guide

55

Columns' Numbers

To make a file contents more readable, editor windows display the number of each column on the first row. Columns
are numbered in hexadecimal, decimal or octal numbers (depending on the way Address Area is displayed) with first
column having number zero. The cursor's current column is highlighted if it is visible on a screen.

Each view can be configured to display any number of columns in a row. By default, 16 columns are displayed. The
View » Columns command group can be used to change the number of columns. You can choose between standard 4,
8, 16 or 32 columns, specify your own number or select “Auto”. In the latter case, the number of columns is determined
automatically depending on the window's width.

When actual number of columns is a power of 2, smart indentation may be applied to a window. In this case, editor
window inserts small gaps between columns in a way to greatly increase data readability.

Address Area

For convenience, the address of the first cell in a row is displayed at the beginning of each row. You can configure the
address to be displayed as a hexadecimal, decimal or octal number.

The cursor's current row is highlighted and address of the first cell in a cursor row is temporary replaced by the
cursor's address. You may switch this behavior off in the Tools » Settings… » General Tab

Data or Code Pane

This pane displays the document's content. Data is displayed in a number of cells, where the cell is a byte, word, double
word, quad word, float or double. Cell type is individually configured for each editor window through the View »
Display As command group.

More information on data pane is provided in further in the documentation.

Text Pane

This optional pane provides a textual representation of document's content. In editing binary files, it is sometimes
convenient to display data in both binary and textual form. This pane is allowed only for Bytes and Words grouping
modes.

In word view types, document's data is displayed as an UNICODE (UTF-16) text while in byte view types the window's
current encoding type is used to display document's data. You can change the window's encodings through the
shortcut menu, or through the View » Encodings menu.

You can turn text pane on or off at any time using the View » Text Pane command.

Cursor

Cursor is a position where subsequent editing commands will take place. This includes typing, inserting or deleting
data. The cursor is also used as an anchor point for keyboard selection.

More information on cursor movement and keyboard selection are provided in corresponding sections.

Encodings

There are a lot of different character encodings that describe how characters of some specific alphabet are encoded in
single or multi-byte codes. The editor window text pane is used to display the textual representation of the document. The
text it displays may of course be interpreted according to one or another encoding.

Hex Editor Neo allows you to choose the editor window's encoding from a wide set of supported encodings. As long as an
encoding is a property of individual editor window, you can set different encoding for each editor window, even if they
represent the same document.

Below is a full list of supported encodings.

NOTE: Support for a specific encoding depends on installed Windows code pages and fonts. If required components cannot
be found for a selected encoding, the “Encoding not supported” text is displayed instead of document's data. Typing in text
pane is also disabled until you select another, supported encoding.

Encoding Encoding Encoding
Default ANSI Default OEM UTF-8
ANSI - Arabic ANSI - Baltic ANSI - Central European

Hex Editor Neo Documentation Definitive Guide

56

ANSI - Cyrillic ANSI - Greek ANSI - Hebrew
ANSI - Latin I ANSI - Turkish Arabic - ASMO 449+, BCON V4
Arabic - ASMO 708 Arabic - Transparent Arabic Arabic - Transparent ASMO
ISO 2022 Japanese JIS X 0201-
1989

ISO 2022 Japanese with
halfwidth Katakana

ISO 2022 Japanese with no
halfwidth Katakana

ISO 2022 Korean ISO 2022 Simplified Chinese ISO 2022 Traditional Chinese
ISO 6937 Non-Spacing Accent ISO 8859-1 Latin I ISO 8859-15 Latin 9
ISO 8859-2 Central Europe ISO 8859-3 Latin 3 ISO 8859-4 Baltic
ISO 8859-5 Cyrillic ISO 8859-6 Arabic ISO 8859-7 Greek
ISO 8859-8 Hebrew ISO 8859-8 Hebrew ISO 8859-9 Latin 5
IBM EBCDIC - Arabic IBM EBCDIC - Cyrillic (Russian) IBM EBCDIC - Cyrillic (Serbian,

Bulgarian)
IBM EBCDIC - Denmark/Norway IBM EBCDIC -

Denmark/Norway (20277 +
Euro symbol)

IBM EBCDIC - Finland/Sweden

IBM EBCDIC - Finland/Sweden
(20278 + Euro symbol)

IBM EBCDIC - France IBM EBCDIC - France (20297 +
Euro symbol)

IBM EBCDIC - Germany IBM EBCDIC - Germany (20273
+ Euro symbol)

IBM EBCDIC - Greek

IBM EBCDIC - Hebrew IBM EBCDIC - Icelandic IBM EBCDIC - Icelandic (20871
+ Euro symbol)

IBM EBCDIC - International IBM EBCDIC - International
(500 + Euro symbol)

IBM EBCDIC - Italy

IBM EBCDIC - Italy (20280 +
Euro symbol)

IBM EBCDIC - Japanese
Katakana Extended

IBM EBCDIC - Korean Extended

IBM EBCDIC - Latin 1/Open
System

IBM EBCDIC - Latin
America/Spain

IBM EBCDIC - Latin
America/Spain (20284 + Euro
symbol)

IBM EBCDIC - Latin-1/Open
System (1047 + Euro symbol)

IBM EBCDIC - Modern Greek IBM EBCDIC -
Multilingual/ROECE (Latin-2)

IBM EBCDIC - Thai IBM EBCDIC - Turkish IBM EBCDIC - Turkish (Latin-5)
IBM EBCDIC - U.S./Canada IBM EBCDIC - U.S./Canada

(037 + Euro symbol)
IBM EBCDIC - United Kingdom

IBM EBCDIC - United Kingdom
(20285 + Euro symbol)

ISCII Assamese ISCII Bengali

ISCII Devanagari ISCII Gujarati ISCII Kannada
ISCII Malayalam ISCII Oriya ISCII Punjabi
ISCII Tamil ISCII Telugu MAC - Arabic
MAC - Croatia MAC - Cyrillic MAC - Greek I
MAC - Hebrew MAC - Icelandic MAC - Japanese
MAC - Korean MAC - Latin II MAC - Roman
MAC - Romania MAC - Simplified Chinese (GB

2312)
MAC - Thai

MAC - Traditional Chinese
(Big5)

MAC - Turkish MAC - Ukraine

OEM - Arabic OEM - Baltic OEM - Canadian-French
OEM - Cyrillic (primarily
Russian)

OEM - Greek (formerly 437G) OEM - Hebrew

OEM - Icelandic OEM - Latin II OEM - Modern Greek
OEM - Multilingual Latin I OEM - Multilingual Latin I +

Euro symbol
OEM - Nordic

OEM - Portuguese OEM - Russian OEM - Turkish
OEM - United States Japanese (Katakana) Extended Japanese (Latin) Extended and

Encoding Encoding Encoding

Hex Editor Neo Documentation Definitive Guide

57

JapaneseJIS X 0208-1990 & 0121-1990 Korean (Johab) Korean Extended and Korean
Simplified Chinese Simplified Chinese (GB2312) Simplified Chinese Extended

and Simplified Chinese
Russian - KOI8-R T.61 TCA - Taiwan
TeleText - Taiwan Ukrainian (KOI8-U) US/Canada and Japanese
US/Canada and Traditional
Chinese

US-ASCII (7-bit) Wang - Taiwan

CNS - Taiwan Eten - Taiwan EUC - Japanese
EUC - Korean EUC - Simplified Chinese EUC - Traditional Chinese
Europa 3 HZ-GB2312 Simplified Chinese IA5 German (7-bit)
IA5 IRV International Alphabet
No. 5 (7-bit)

IA5 Norwegian (7-bit) IA5 Swedish (7-bit)

IBM5550 - Taiwan

Encoding Encoding Encoding

Working with Encodings

The current editor window's encoding is displayed on the status bar:

Text pane displays text data according to selected encoding. When you type new data on the keyboard (with text pane
active), typed characters are processed according to selected encoding.

When the editor window is displaying data in Hex Words or Decimal Words view type, the UNICODE (UTF-16) encoding is
automatically selected (as the text pane displays UNICODE data in these modes).

To change the current window's encoding, open the shortcut menu, select “Encoding” item and choose an encoding from
the list. The list consists of "Default ANSI", “Default OEM”, 5 recently used encodings and the "Other" item. Selecting the
Other item opens a full list of supported encodings.

UTF-8 Support

UTF-8 is the first (any only, for now) multi-byte encoding supported by the editor.

The editor provides the full support for UTF-8 encoding. It not only displays the text encoded in UTF-8, but also allows you
to type new data in this encoding. When you type, entered characters are converted on-the-fly and a single entered
character may occupy up to 4 bytes.

When a character occupies several bytes, a space character is displayed in all but the last cell (in Text View). The last cell
displays the character itself.

UTF-8 encoding defines strict rules for encoding UNICODE characters into single, two, three or four bytes. If these rules are
broken and Hex Editor Neo cannot decode the character, it displays the ‘?’ character for each cell that contains invalid data.

All editor features, such as Find, Fill and so on are compatible with current editor window's encoding, and, therefore, are
capable of working with UTF-8 as well.

Byte Order

In computing, two basic number representation schemes are used: Little-Endian and Big-Endian. In little-endian scheme,
multi-byte values are stored starting from least significant byte to most, and vice-versa in big-endian scheme.

For example, the double word value 0x12345678 will be stored by little-endian computer as:

78 56 34 12

And by big-endian computer as:

12 34 56 78

x86 and x64 processors use little-endian encoding, while some other processors from Motorolla® and IBM® use big-
endian encoding.

Hex Editor Neo Documentation Definitive Guide

58

Hex Editor Neo allows you to change the byte order for each editor window individually. Please note that any changes will
be visible only in words, double words and quad words view types.

The “Default byte order” option on the General Settings page is used to set the default byte order for newly opened editor
windows.

To change a byte order for the opened window, use the commands available in the View » Byte Order menu. By default,
the Ctrl+E key combination is bound to the View » Byte Order » Little-Endian command, while the Ctrl+Shift+E key
combination is bound to the View » Byte Order » Big-Endian command.

Effect on Floating-Point Types

Floating-point standard (IEEE 754) does not define exact encoding of floating-point data types on little-endian and big-
endian computers. According to the standard, encoding should not be affected by the change of byte order, although,
floating-point type's bytes are actually swapped on several big-endian platforms.

Hex Editor Neo supports scenarios, where floating-point types are not affected by big-endian byte order, and where
floating-point types are affected by the byte order change. The “Byte order change affects floating-point types” option on
the General Settings page controls this. This option is ON by default.

Data Inspector and Structure Viewer

Data Inspector and Structure Viewer modules also take the current window's byte order into account when they display and
process data.

Simple Editing

Cursor Movement and Navigation

Cursor is an important concept in any editor. It displays the position where the next editing command will take place.

Hex Editor Neo distinguishes between the navigation cursor and editing cursor. The cursor can be in any of these two types
at any given time. Most of the time it is in navigation mode which is described in this section. See data modification section
for more information on editing cursor.

As any editor window may have data pane and text pane, which essentially display the same data, cursor position applies to
both panes simultaneously. To distinguish between the active and inactive pane, the cursor image in active pane is outlined,
while in inactive pane it is not outlined. You can switch between data and text pane either by pressing the TAB key, or using
your mouse.

When the window does not have keyboard focus, the cursor image is not outlined in both panes.

“Unlimited” Editing Space

Hex Editor Neo utilizes the unique feature called “unlimited editing space”. This means that you are not limited by the
current file's size during editing. After the file data ends, the special "empty" data character is displayed. It consists of “.”
symbols and is usually painted with different color (see Color Schemes for more information). Cursor movement is
therefore is not limited by the file size. You are allowed to move cursor at any position beyond the end of file and then start
typing data or apply any editor command.

If new data inserted or any editor command applied after the end of the file, the corresponding number of zeroed cells is
inserted to extend the size of the file. This operation has constant time complexity. It also does not consume memory or disk
space so it can be considered a “cheap” operation.

For convenience, the vertical scroll bar is scaled to display the real current size of the edited document. This allows you to
quickly position a cursor to a real position within the document. Several keyboard navigation keys also respect the real
current document size as described below.

Keyboard Movement

The cursor may be driven by keyboard keys and key combinations. These key combinations repeat those found in almost
every text/binary editor and cannot be customized:

Left Arrow

Moves the cursor one cell to the left. If the current cell is first in a row, the cursor goes to the last cell in a previous row.
If the current cell is the very first cell in a file, the cursor position is not changed.

Hex Editor Neo Documentation Definitive Guide

59

Right Arrow

Moves the cursor one cell to the right. If the current cell is last in a row, the cursor goes to the first cell in a next row.
According to the “unlimited editing space” rule, the cursor movement is not restricted.

Up Arrow

Move the cursor one row up. If the current row is a very first row in a file, the cursor position is not changed.
Down Arrow

Move the cursor one row down. According to the “unlimited editing space” rule, the cursor movement is not restricted.
Home

Moves the cursor to the first cell in a current row.
End

Moves the cursor to the last cell in a current row.
PgUp

Moves the cursor several rows up. Number of rows to move is selected in such a way that the first visible row becomes
last. If the resulting cursor position lies before the beginning of the file, the cursor is moved to the beginning (zero
offset).

PgDn

Moves the cursor several rows down. Number of rows to move is selected in such a way that the last visible row
becomes first. According to the “unlimited editing space” rule, the cursor movement is not restricted.

Ctrl+Home

Moves the cursor to the beginning of the file.
Ctrl+End

Moves the cursor to the (real) end of the file.
TAB

Activates the text pane if data pane is active and data pane if text pane is active.

If the cursor moves out of the window as a result of keyboard action, the window is automatically scrolled so the cursor is
visible again.

Navigation with Mouse

To scroll the contents of the window with a mouse, use the scroll bars or mouse wheel. Rotating the mouse wheel scrolls
the contents of the window up or down by several rows at a time. Scrolling before the beginning of the document is not
allowed, scrolling down is always allowed according to the “unlimited editing space” rule.

Using mouse navigation it is possible to scroll the window so the cursor position becomes invisible. To quickly scroll back to
the cursor, press one of the keyboard navigation keys or start modifying data. Alternatively, left-click any visible cell to
move the cursor to it.

Cursor Movement with Mouse

Mouse can also take part in cursor movement.

Left clicking any cell (in any visible pane) moves the cursor to that cell. Left-clicking on the cursor cell again enters the edit
mode. In hexadecimal view types the actual position of this second click is used to move the caret to specific digit within the
cell. In decimal or floating-point view types, the entire cell is always selected for editing.

Insert Mode

Editor windows operate in two modes: overwrite mode and insert mode. The mode is a property of individual editor
window. That means that each opened window may be in different mode.

To switch between modes use the Edit » Insert Mode command. The state of the command item denotes the current mode
- pressed (or checked) means insert mode and unpressed (unchecked) means overwrite mode. Insert mode for the current
editor window is also displayed on the status bar.

Hex Editor Neo Documentation Definitive Guide

60

By default, each opened editor window is in overwrite mode.

Influence on Editor Commands

Insert mode changes the behavior of several editor commands. Below is a list of commands whose behavior changes when
insert mode is enabled:

Typing - when insert mode is on, new data does not overwrite existing. Instead, the file size is increased, part of the file
lying beyond the cursor position is moved and typed data is inserted at the cursor position.
Insert File - in overwrite mode the file's content overwrites current file's content (possibly increasing file's size). In
insert mode a file is inserted at the cursor position, moving remaining part forward. The file's size is always increased.
Paste - in overwrite mode the Clipboard's content overwrites current file's content (possibly increasing file's size). In
insert mode Clipboard's content is inserted at the cursor position, moving remaining part forward. The file's size is
always increased.

Other editor commands are not influenced by the insert mode.

Data Modification

Direct data modification is a simplest editing action provided by the Hex Editor Neo.

First, we'll describe all supported view types in more detail.

View Types

Hex Editor Neo supports a number of different view types. A view type is a property of individual editor window, therefore,
you can have several editor windows (for the same or different documents) with different view types. Hex Editor Neo
supports hexadecimal, decimal, octal and binary data representation. In addition, two floating-point formats are also
supported. For some of these representations, it allows you to select data grouping, according to the following table:

Representation Bytes Words Double Words Quad Words
Hexadecimal 0 to FF16 0 to FFFF16 0 to FFFF,FFFF16 0 to FFFF,FFFF,FFFF,FFFF16
Decimal1 0 to

25510 (0
to 28-1)

0 to
65,53510
(0 to 216-1)

0 to 4,294,967,29510
(0 to 232-1)

0 to
18,446,744,073,709,551,61510
(0 to 264-1)

Octal 0 to 3778 0 to
177,7778

0 to 37,777,777,7778 0 to
1,777,777,777,777,777,777,7778

Binary 0 to 28-1
(binary)

0 to 216-1
(binary)

0 to 232-1 (binary) 0 to 264-1 (binary)

Float2 N/A N/A Single-precision
floating-point number
(IEEE 754)

N/A

Double2 N/A N/A N/A Double-precision floating-point
number (IEEE 754)

You can change the editor window display type using the View » Display As command, and change grouping using View
» Group By command, both of which are available through the popup menu.

Modifying File Data

When you move the cursor in an editor window, you are working with navigation cursor. In order to be able to modify the
document's data you need to switch to editing cursor. This can be achieved using one of the following ways:

Execute the Edit » Edit Cell command. This will switch the cursor mode. For hexadecimal and octal view types, the
caret is placed at the first cell's digit. For other view types, the entire cell is selected, like in standard edit control.
Double-click on a cell to start editing it. For hexadecimal view types, the caret is placed at the first cell's digit. For other
view types, the entire cell is selected, like in standard edit control.
For hexadecimal and octal view types, click on a specific digit in the current cell. This switches into the edit mode and
moves the caret to a digit you clicked.
Press a ‘0’ - '9' key, ‘A’ - 'F' key (for hexadecimal view types) to start editing the current cell when data pane is active.
Press any alpha-numeric key to change the current cell's value when text pane is active.

Once in an edit mode, only the ‘0’ - '9' keys and ‘A’ - 'F' keys (for hexadecimal view types) may be pressed if data pane is

Hex Editor Neo Documentation Definitive Guide

61

active and any alpha-numeric keys may be pressed if text pane is active. Navigation keys cancel the edit mode, except for
the right and left keys, which moves the caret within the current or neighbor cells.

For hexadecimal view types, when last digit in a cell is modified, the cursor automatically moves to the next cell, continuing
to stay in edit mode. The caret is moved to the next cell's first digit. Pressing Esc key cancels any modification made to the
current cell. Pressing Enter key commits any modifications made to the current cell, moves the cursor to the next cell and
cancels edit mode.

For decimal and floating-point view types, press Enter key to accept changes and move to the next cell or press Esc key to
cancel any changes made to the cell. Arrow keys work only within the current cell.

For floating-point view types, you may use the sign symbol ('-'), floating-point symbol ('.') as well as exponent symbol (‘e’)
to enter floating-point values. For example, the following floating-point values are correct:

1.2
-105.45
2.34e-23
``
The last "scientific" form represents the 2.34·10^-23^ number.

1. When “Digit Grouping” option is enabled (default), regional settings govern the formatting of the decimal numbers. For
example, 1351680 decimal number will be displayed as 1,351,680 for standard U.S. regional settings.↩

2. Float is a single-precision floating-point number, encoded according to the IEEE Standard for Binary Floating-Point
Arithmetic (IEEE 754). Double is a double-precision floating-point number, defined in the same IEEE standard. These
types correspond to the float and double C/C++ fundamental language types as well as floating-point types in most
other programming languages.↩↩

Editor Windows List

Use the Window » Windows… command to access the window list.

Use the commands provided by this dialog to view the list of all opened editor windows, save changes made to documents,
close one or more editor windows or activate specific editor window.

Customization

Editor Windows Placement

Hex Editor Neo provides an extremely convenient way of organizing the work space when working with more than one
document or with more than one editor window.

The workspace is divided into one or more frames. Each frame contains one or more editor window.

Hex Editor Neo Documentation Definitive Guide

62

Each editor window is represented by a tab in a frame. The document's file name is displayed on each tab. Click on a tab to
switch to the window. If there are too much tabs in a frame that they cannot fit in it, the Scroll Left and Scroll Right (arrows)
buttons are enabled. Use them to scroll the tabs to the left or right correspondingly.

When you create new editor window, it is placed in the first visible frame. To create a new frame, click on a tab and drag it
away from other tabs. Releasing a mouse button brings up the menu with two options: New Horizontal Frame and New
Vertical Frame. Selecting either of these options creates a new frame and transfers the dragged window into it.

Windows may be freely moved between frames, and inter-frame splitter bars may be used to change frames' relative sizes.
When you close or move away the last frame's window, the frame is closed.

Layout and Color Schemes

An editor window provides you with a large set of customizable properties, including display layout and coloring scheme.
The Layout tab in the Tools » Settings is used to set up these properties.

Configurable Options

Hex Editor Neo Documentation Definitive Guide

63

Font and Font Size
You can select the font and font size to be used by an editor window. Only monospace fonts can be selected. Hex Editor
Neo automatically scans your system for all compatible fonts and presents them in a Font combo box.

Interlacing

It is well known that humans better understand the screen table full of numbers if each odd table's row or column has
different background color than even row or color.

Hex Editor Neo supports both row and column interlacing. In addition, it allows you to specify odd and even
row/column color separately.

Interlacing provides you with a choice from three options: “Do not interlace background”, "Interlace columns" (the
default one) and “Interlace rows”.

Additional Options

A “Draw edit cursor frame” configures whether the editor draws a frame outside the cell being currently edited. This
option is ON by default. "Smart indentation" option enables the special feature of Hex Editor Neo, where additional
small gaps are inserted between columns to improve readability.

Smart indentation is applied only when the number of columns in a window is a power of 2.

“Antialiased quality” option greatly improves the quality of text on LCD monitors. It also decreases the rendering
performance. It is recommended to turn on this option only if you have fast computer and/or graphics card.

Hex Editor Neo Documentation Definitive Guide

64

Cell Coloring

Cell coloring is widely used in Hex Editor Neo. Such features as cursor, selection, Pattern Coloring, Structure Viewer and
Data Inspector all use coloring to highlight important places in a document.

Hex Editor Neo provides the unique color mixing engine, letting all these components to apply coloring to cells without
misleading the user. As finally you are the one who specifies all colors for all components, some care must be taken to
maintain usability of all these features.

Most components allow you not only to specify the color to be used by some feature/component, but also to apply alpha
(or transparency) to it. As long as you have two colors with transparency less than 1 (opaque), these colors mix well. In
general, only the “downmost” colors may be (and usually are) opaque. Such things like selection and cursor usually have
alpha much less than 1 to provide good mixing.

Color Schemes

Hex Editor Neo allows you to set colors of almost every editor window's element. Select an element in a list and then select
a color using color picker control. You can also set the color to “automatic”. The sample window layout below immediately
reflects changes you make. Pressing Apply button also immediately applies your current coloring scheme to all opened
editor windows. The color of the following elements may be customized:

Text
the color of text in data and text panes.

Background
the color of window background. If interlacing is used, rows or columns use “Even column/row” and "Odd
column/row" colors instead. Background color is still used for the rest of the window.

Address
address area text color.

Address background
address area background color.

ASCII/UNICODE text
color of the text in text pane.

ASCII/UNICODE background
text pane background color.

Even column/row (for interlaced modes)
background color for even columns or rows. Used in interlaced modes.

Odd column/row (for interlaced modes)
background color for odd columns or rows. Used in interlaced modes.

“No data” text
text color for the “empty” file data.

Cursor fill
cursor fill color.

Cursor outline
cursor outline color.

Active row & column highlight text
row/column text highlight color.

Active row & column highlight background
row/column background highlight color.

Changed text
text color for changed cells.

Changed background
background color for changed cells.

Changed outline

Hex Editor Neo Documentation Definitive Guide

65

outline color for changed cells.
Selection

color of selection. Selection color's alpha must allow proper color mixing, so selected data is clearly visible.

Default Editor Windows Settings

Hex Editor Neo offers a wide variety of settings for each editor window. By default, when the new editor window is created,
it gets the following settings:

Setting Value
Offset (address) display mode Hex
Data display mode Hex
Grouping Byte
Columns 16
Byte order Little-Endian
Encoding Default ANSI
Code pane ON
Text pane ON

To change these defaults, open the Editor settings page (Tools » Settings… » Editor).

You can manually change any setting, or press the “Take from current window” button to get all settings from an active
editor window. Press the "Reset to Default" button to return back to defaults.

Associating Editor Window Settings with Documents

Another feature, offered by Hex Editor Neo is the ability to associate specific editor settings for each opened document.
When this feature is ON, each time you close an editor window, its settings are automatically stored and applied next time
you open the same document in the editor.

You can clear stored settings at any time by pressing the Clear Cache button.

Hex Editor Neo Documentation Definitive Guide

66

Selection
Multiple Selection

Hex Editor Neo offers the unique feature called multiple selection. Unlike in most other editors, where you are only allowed
to select a contiguous text or data, Hex Editor Neo allows you to have several contiguous ranges (or blocks) in a selection. In
addition, you are not limited in a number of such contiguous blocks, there can be as many blocks as you need.

By default, the multiple selection feature is enabled. When you start selecting data, all previously selected data remains
selected.

Most Hex Editor Neo commands work with a current selection. Among those commands are:

Delete
Deletes the current selection. All selected ranges are removed from the document. Remaining data is shifted to
“eliminate” gaps. File size is decreased.

Fill
Fill may be instructed to fill the current selection. All selected blocks are filled with a repeating pattern. In normal mode,
filling of each block starts from the beginning of the pattern, while in “transparent” mode, filling of the next block
continues from the end of the previous one.

Cut, Copy, Merge and Cut, Merge and Copy
Clipboard operations always work with a current selection.

Find, Find All, Replace, Replace All
Find and replace operations may be instructed to operate within a current selection.

Single Selection Mode Option

This option, being enabled, makes Hex Editor Neo always drop current selection before selecting new block. You can still
take advantage of the multiple selection using mouse.

Selecting with Keyboard

When the Shift key is pressed, all cursor movement results in a current selection being modified. The range between the
original cursor position and resulting cursor position is added to, subtracted from or laid upon the current selection,
depending on its original configuration.

When “Single Selection mode” option is on, you can only make a single selection with keyboard. See also Selecting with
Mouse section for information how to make a multiple selection with enabled "Auto drop selection" option

Selecting with Mouse

To select a data with a mouse, position the mouse cursor over the starting cell, press the left mouse button and drag the
mouse to the target cell. See the table below to see the result of such operation. Pressing Ctrl or Alt key modifies the
behavior of an operation. In the table, the range is data between the starting and target cell.

Pressed
Keys

“Single Selection mode” option
is OFF

"Single Selection mode" option is ON

No keys
pressed

The range is inverted Current selection is dropped, range is added
to selection

Ctrl is
pressed

The range is added to current
selection

The range is added to current selection

Alt is
pressed

The range is removed from current
selection

The range is removed from current selection

Selection Tool Window

Hex Editor Neo Documentation Definitive Guide

67

Selection tool window is used to view and control the properties of the current selection. It consists of two parts,
Information and Details.

Information

This pane displays generic information about the current selection. The total number of bytes selected and total number of
selection blocks are shown.

Details

Selection details lists all selection blocks. For each block its ordinal number, block address and length are displayed. You can
sort the list by any column (sorting is disabled if a list contains more than 500 thousands items), navigate to any block
using mouse or keyboard. You can also use the list to select and delete individual block from the selection. All these
commands are accessible via the shortcut menu.

Working with Selection

The following commands are used to work with a selection:

Select All

Selects the whole document.

Complexity: constant-time.

Select None

Drops the current selection.

Complexity: constant-time.

Invert Selection

Inverts the current selection. Selected blocks become unselected, and vice versa.

Complexity: constant-time.

Select Range…

Use this command to add, subtract or overlap the given range with a current selection.

Complexity: from constant-time to linear-time, depending on the current selection.

Select Modified

Drops the current selection and adds all modified document data to the current selection.

Complexity: linear-time, depending on number of document modifications.

Save Selection…

Hex Editor Neo Documentation Definitive Guide

68

Compresses and saves the current selection to a disk file.

Complexity: linear-time, depending on the number of blocks in a current selection.

Load Selection…

Loads and optionally merges the selection from disk file with a current one.

Complexity: linear-time, depending on loaded selection complexity and current selection complexity (for merge
operations).

Performance Considerations

Hex Editor Neo uses unique time- and space- efficient algorithm to work with a selection. Nevertheless, as a number of
blocks in a selection grows, more disk space and processor time required to work with it. This does not apply to “constant-
time” selection commands, which always work in approximately constant time and do not depend on the number of blocks
in a selection.

Most Hex Editor Neo commands, when instructed to work on the current selection, reveal linear-time complexity. The
processing time then depends on the selection complexity, that is, the number of blocks in a selection.

Hex Editor Neo automatically starts utilizing disk space to back up complex selections. As a result, Hex Editor Neo consumes
very little RAM when working with even most complex ones. Internal compression is used to minimize disk space usage.

Care must be taken while using keyboard selection with complex selections, as most keyboard selection commands operate
in linear time. For example, if you have a selection with 20 million blocks and press Ctrl+Shift+End with a cursor
positioned at offset 0, then the time required to fulfill the operation will be proportional to a number of blocks in a selection.
Select » Invert Selection command, on the other hand, will do the same in constant time, that is, immediately.

Editor Commands
Pattern Window

The pattern dialog is used throughout the Hex Editor Neo to specify patterns to fill, insert, find, replace and so on.

The Type selector with Size selector let you specify the type of pattern you are going to enter:

Hex Editor Neo Documentation Definitive Guide

69

Size/Type BYTE WORD DWORD QWORD
String
(Current
Encoding)

A pattern is
specified as a
single-byte text
string. Current
window's
encoding is used.

N/A N/A N/A

UNICODE
String

N/A A pattern is
specified as a
single-byte text
string. Current
window's
encoding is used.

N/A N/A

Hex 8-bit hexadecimal
values

16-bit
hexadecimal
values

32-bit hexadecimal
values

64-bit hexadecimal
values

Decimal 8-bit decimal
values

16-bit decimal
values

32-bit decimal values 64-bit decimal values

Octal 8-bit octal values 16-bit octal values 32-bit octal values 64-bit octal values
Binary 8-bit binary values 16-bit binary

values
32-bit binary values 64-bit binary values

Float N/A N/A A pattern consists of
single-precision
floating-point values
(encoded according to
IEEE 754 standard).

N/A

Double N/A N/A N/A A pattern consists of
double-precision
floating-point values
(encoded according to
IEEE 754 standard).

All pattern types except for String and UNICODE strings are entered using standard editor window, which is part of the
pattern window. Keyboard navigation, selection and data modification operate exactly the same. A shorter version of
shortcut menu is also provided for the window.

When in String or UNICODE string mode, you can select one of the previous strings by pressing the down-arrow combo-
box button. For other types, “Recent Patterns…” button is used to access recent patterns or clear the current pattern.

Every window that contains a pattern dialog is resizable. You can change its size and it will be restored next time you open
the same window. Each window also stores its own list of recent patterns and strings.

Byte Order

Byte order in the pattern dialog automatically matches the one in the current editor window. Commands in the shortcut
menu let you change the byte order.

Regular Expressions

Several editor commands allow the regular expressions to be entered in “ASCII string” and "UNICODE string" modes. In this
case, the “Regular Expression” checkbox and "Sub-match" field appear. Sub-match field allows you to specify whether you
want to match the entire expression (sub-match = 0), or sub-expression (sub-match > 0).

When regular expressions are used in single byte string mode, system default encoding is used.

Fill

The Fill command is used to fill the whole file or the current selection with a specified pattern.

Complexity: from constant-time to linear-time (depends on the number of blocks in a current selection).

Hex Editor Neo Documentation Definitive Guide

70

Pattern Window is used to specify the pattern to fill. Other options are listed below:

Fill whole file
The whole file will be filled with a pattern.

Fill selection
Only the current selection will be filled with a pattern.

Transparent fill
Each selection block will continue filling from the end of the previous block. If this option is off (default), each block is
filled starting from the beginning of the pattern.

Reverse pattern
The pattern is reversed before filling. Reversing is always performed on the byte level, regardless of the pattern type.

Note, that Find All command followed by Fill may be replaced with Replace All command, which will operate faster than
these two commands.

Insert

The Insert command is used to insert the specified pattern at a current location in the document. You specify the pattern
and the total insert size. The pattern is then repeated until the block of given size is inserted into the document. The data
beyond the cursor is shifted, effectively extending file size.

The Pattern Window is used to specify the pattern to insert.

Complexity: constant-time

Delete

Deletes the current selection. If there is no selection in an editor window, the cell under the cursor is deleted.

Complexity: constant-time to linear-time (depends on the number of blocks in a current selection).

After deleting data, remaining data is shifted to fill all gaps. The size of the file is then reduced to compensate for removed
data.

Insert File

Hex Editor Neo Documentation Definitive Guide

71

Inserts the contents of specified file at the current cursor position. The behavior of this command differs depending on the
current Insert Mode.

If Insert Mode is off, the file's content overwrites the current document's content, possibly increasing file's size.

I f Insert Mode is on, file is inserted at the current position. Current file's content is shifted to prepare space for the file
being inserted. File size is always increased.

This command has a constant-time complexity.

Insert Hex

Inserts the decoded contents of specified encoded file file at the current cursor position.

Insert from
Select whether you are inserting Intel HEX or Motorola S-Records encoded data from Clipboard or from a text file. Click
the Browse button to browse for the file or enter the path manually.

Format
Select the format of your Intel HEX / Motorola S-Records encoded file (or Clipboard contents). Hex Editor Neo can
sometime automatically discover the format.

Put the data at
Select where you want to put decoded data and whether the editor should overwrite any existing data or make space
for new Intel HEX or Motorola S-Records data. You may also use the Ignore data offset option to ignore original data
offset specified in hex file.

Go to Offset

This command is used to move the cursor to the given position.

You can change the way entered offset is interpreted, according to the following table:

Hex Editor Neo Documentation Definitive Guide

72

Number
Type

Absolute offset Relative offset

Hexadecimal Absolute offset in
hexadecimal format. Only
nonnegative values are
allowed.

Relative offset in hexadecimal format. May either be
positive or negative number. The resulting offset is then
calculated by adding the given offset to the current one.

Decimal Absolute offset in decimal
format. Only nonnegative
values are allowed.

Relative offset in decimal format. May either be positive
or negative number. The resulting offset is then
calculated by adding the given offset to the current one.

Octal Absolute offset in octal
format. Only nonnegative
values are allowed.

Relative offset in octal format. May either be positive or
negative number. The resulting offset is then calculated
by adding the given offset to the current one.

Percent Absolute offset in decimal
format as a percent of the
current file's size.

In addition, you may select one of the bookmarks in the Bookmark list to jump to.

The resulting offset is displayed at the bottom of the window in hexadecimal and decimal formats.

Selection

You may instruct the Hex Editor Neo to change the current selection when jumping to the specified address. You may select
one of the following options:

No change
The current selection is not changed by the operation.

Replace selection
The current selection is discarded and new one is created. It includes all bytes from the current cursor position to the
resulting position.

Add to selection
The range from the current cursor position to the resulting position is added to the current selection.

Remove from selection
The range from the current cursor position to the resulting position is subtracted from the current selection.

Invert selection
The range from the current cursor position to the resulting position is inverted.

Go to Offset (Process)

This command is used to jump to a given memory block within a currently edited process.

Hex Editor Neo Documentation Definitive Guide

73

Select a memory block in the list or on the map and press the OK button.

Change File Size

This command allows you to quickly change the size of the current document.

Complexity: constant-time.

Entered number is interpreted according to the following table:

Type Interpretation
Hexadecimal Size of the file in bytes in hexadecimal format.
Decimal Size of the file in bytes in decimal format.
KB Size of the file in kilobytes in decimal floating-point format.
MB Size of the file in megabytes in decimal floating-point format.
GB Size of the file in gigabytes in decimal floating-point format.

The resulting file size among with a free space on the drive from which you opened a file is displayed at the bottom of the

Hex Editor Neo Documentation Definitive Guide

74

window.

Memory or disk space is not consumed regardless of the resulting file size. Although, make sure you have enough free disk
space if you are going to save the document.

When the size of the file is increased as a result of this operation, a newly inserted area is filled with byte 00 .

Encrypt

Encrypt command encrypts the current document or the current selection.

Complexity: linear-time.

Algorithm
Provides you with a list of installed encryption algorithms. Cryptography API block and stream ciphers are supported
by the Hex Editor Neo.

Key length (bits)
Allows you to change the key length in bits for some algorithms. For others, this field is read-only.

Password and Re-type password
Enter the encryption password here. You have to enter the same password into both fields. The password will then be
required to decrypt the encrypted data.

Do not hide password
Select to make password visible.

Whole file/Selection
Select whether encryption takes place on the whole document or only its part.

Decrypt

Decrypt command decrypts the current document or the current selection.

Complexity: linear-time.

Hex Editor Neo Documentation Definitive Guide

75

Algorithm
Provides you with a list of installed encryption algorithms. Cryptography API block and stream ciphers are supported
by the Hex Editor Neo.

Key length (bits)
Allows you to change the key length in bits for some algorithms. For others, this field is read-only.

Password and Re-type password
Enter the encryption password here. You have to enter the same password into both fields. The password must match
the one used during encryption.

Do not hide password
Select to make password visible.

Whole file/Selection
Select whether decryption takes place on the whole document or only its part.

Modify Bits

Modify Bits command allows you to modify individual bits of the cell under the cursor.

There are several checkboxes at the top of the dialog for each bit in the cell. Click on the check box to change its state. In
addition, use Set All to Zero, Set All to One, Invert and Revert buttons to edit cell's bits.

“Binary representation” field allows you to edit bits directly. Position the cursor to the bit you want to modify and press '0'
or ‘1’ keyboard button.

Printing Documents
Hex Editor Neo contains a powerful printing tool, which supports printing headers, footers, and has configurable margins.
Page Setup section contains documentation on how to setup a page. Once the document is configured properly, use the

Hex Editor Neo Documentation Definitive Guide

76

File » Print… command to open the Print Window.

Printing Options

There are three options related to printing documents, all available on the General Settings page.

Page Setup

Page setup dialog allows you to specify a page layout and select a printer.

Use the controls in this dialog to select a paper size, paper source, paper orientation and margins. By default, Hex Editor Neo
sets margins to 5 mm each. You can press the Printer… button to change the default printer.

When you press the OK button, all changes are stored and used for subsequent prints.

Printing

Use the File » Print… command to open the Print Dialog and start printing.

Hex Editor Neo Documentation Definitive Guide

77

In this dialog you can select a printer (if you are going to print to non-default one) and click the Preferences button to
configure it.

Use the controls in Page Range group to specify the range to print. Select the “All” option to print the whole document,
"Current Page" option to print only the page containing the cursor. You can also enter the list of page ranges into the
“Pages” box, as described in the dialog to print only the given pages.

Printing Selection

If the current editor window contains a selection, “Selection” option becomes active. Select it to print only the selected data.
Take the following into consideration when printing selection, however:

Multiple Selection is treated as a single selection, that is, all data between the first selected byte and the last selected
byte will be printed.
Printing always starts from the beginning of the page.

Find and Replace
Find & Find All

Find Window

The Find Window contains a Pattern Window where you specify the search pattern.

Find Dialog options are described below:

Search whole file
Search for a pattern in a whole document.

Search selection
Limit the search to the current selection. This option is disabled if no selection is currently active.

Search up
Search backward

Search down
Search forward

Ignore case
Ignore case during searching.

See the Find and Find All sections for more information on pattern searching.

Find

The Find command is used to locate specific pattern in a file. The Find Window is used to specify the pattern to search for, as
well as a number of additional options. Complexity: linear-time.

Find Operations

When the pattern is found, the cursor is moved to the beginning of located pattern. To continue searching, execute the Find
» Find Next or Find » Find Previous commands. The direction of find depends on whether the “Search up” or "Search down"

Hex Editor Neo Documentation Definitive Guide

78

option is selected in a Find Dialog:

Operation Search down Search up
Find Next Forward Backwards
Find Previous Backwards Forward

If pattern is not found in the remaining part of the document, the message box is displayed and find is terminated.

Regular Expressions

The Find command fully supports regular expressions. To search using regular expressions, select either “ASCII string
(char[])” or "UNICODE string (wchar_t[])" pattern type, enter the regular expression, make sure the “Regular expression”
checkbox is checked and enter the sub-expression number you want to search for. Sub-expression "0" represents the
expression itself.

If the match is found, the cursor is moved to the beginning of the matched expression or sub-expression. When you use the
Find Next command to find the next match, the search is started from the next cell, not the end of the matched expression.

Take the following limitations into account:

Searching with regular expressions backwards is not supported.
Searching with regular expressions within a selection (either single-range, or multiple) is not supported.

Find All

This extremely powerful command locates all occurrences of specified pattern. The Find Window is used to specify the
pattern to search for, as well as a number of additional options.

Complexity: linear time (depends on the file's size and resulting number of noncontiguous matches).

Find All Results

The result of the Find All operation is a selection, which describes all pattern occurrences. Selection Details window may be
used to browse results. In addition, message box with a total number of occurrences found is displayed when searching
finishes.

If the pattern has not been found in a file, the message box is displayed.

Regular Expressions

The Find All command fully supports regular expressions. To search using regular expressions, select either “ASCII string
(char[])” or "UNICODE string (wchar_t[])" pattern type, enter the regular expression, make sure the “Regular expression”
checkbox is checked and enter the sub-expression number you want to search for. Sub-expression "0" represents the
expression itself.

Take the following limitation into account:

Searching with regular expressions within a selection (either single-range, or multiple) is not supported.

Replace & Replace All

Find & Replace Window

The Find & Replace Window contains two Pattern Windows where you specify the pattern to search and the pattern to
replace.

Hex Editor Neo Documentation Definitive Guide

79

Find Dialog options are described below:

Search whole file
Search for a pattern in a whole document.

Search selection
Limit the search to the current selection. This option is disabled if no selection is currently active.

Search up
Search backwards

Search down
Search forward

Ignore case
Ignore case during searching.

See the Replace and Replace All sections for more information on pattern searching and replacing.

Replace

The Replace command is used to locate a specific pattern in a file and replace it with another pattern. The Find & Replace
Window is used to specify both patterns, as well as a number of additional options. It is not required that the size of the
search and replace patterns match, in addition, the replace pattern may be empty. In the latter case, found pattern
occurrences are removed from the document.

Complexity: linear-time.

Find & Replace Operations

When you press the Replace button for the first time, Hex Editor Neo starts searching for a pattern. When pattern is located,
the cursor is moved to the beginning of the pattern and a Find & Replace Dialog is displayed again. Now you have a choice
of pressing Find Next button to skip this match and search for another, or Replace button to replace this match and
continue searching.

The direction of the next search is governed by the “Search up” or "Search down" option.

When there are no more matches, the message box is displayed.

Regular Expressions

The Replace command fully supports regular expressions. To search using regular expressions, select either “ANSI string” or
"UNICODE String" pattern type, enter the regular expression, make sure the “Regular expression” checkbox is checked and
enter the sub-expression number you want to search for. Sub-expression "0" represents the expression itself.

If the match is found, the cursor is moved to the beginning of the matched expression or sub-expression. When you use the
Find Next command to find the next match, the search is started from the next cell, not the end of the matched expression. If
you press the Replace button, the matched expression or sub-expression is replaced with a replace pattern.

Hex Editor Neo Documentation Definitive Guide

80

A replace pattern may contain special characters. To tell Hex Editor Neo to treat a replace pattern specially, make sure its
“Regular expression” checkbox is checked. If it is, the following restrictions apply:

1. The type of the replace pattern automatically matches the type of the search pattern (encoded or UNICODE string).
2. You are restricted to use sub-expression 0 for a search pattern (that is, the whole expression).

If you enable a regular expression mode for a replace pattern, but do not use any of the special characters, Hex Editor Neo
will automatically turn this mode off when performing replace in order to achieve greater performance.

See the Replace Pattern Syntax topic for further information on supported syntax.

Take the following limitations into account:

Searching with regular expressions backwards is not supported.
Searching with regular expressions within a selection (either single-range, or multiple) is not supported.

Replace All

This extremely powerful command can be used to locate all occurrences of one pattern and replace them to another
pattern. The Find & Replace Window is used to specify both patterns, as well as a number of additional options. It is not
required that the size of the search and replace patterns equals, in addition, the replace pattern may be empty. In the latter
case, found pattern occurrences are removed from the document.

Complexity: linear-time (depends on the file's size and resulting number of noncontiguous matches).

Replace All Results

After all occurrences of the search pattern are found and replaced, the message box with a total number of occurrences is
displayed. If there were no matches, the message box with “No matches” text is displayed.

The Replace All command is always faster than a series of commands, such as Find All and Fill, or Find All and Delete. The
latter command sequence is easily replaced with a Replace All command with empty replace pattern.

Replace All command, as most other commands, creates an operation in the operation history.

Regular Expressions

The Replace All command fully supports regular expressions. To search using regular expressions, select either “ASCII
string (char[])” or "UNICODE string (wchar_t[])" pattern type, enter the regular expression, make sure the “Regular
expression” checkbox is checked and enter the sub-expression number you want to search for. Sub-expression "0"
represents the expression itself.

A replace pattern may contain special characters. To tell Hex Editor Neo to treat a replace pattern specially, make sure its
“Regular expression” checkbox is checked. If it is, the following restrictions apply:

1. The type of the replace pattern automatically matches the type of the search pattern (encoded or UNICODE string).
2. You are restricted to use sub-expression 0 for a search pattern (that is, the whole expression).

If you enable a regular expression mode for a replace pattern, but do not use any of the special characters, Hex Editor Neo
will automatically turn this mode off when performing replace in order to achieve greater performance.

See the Replace Pattern Syntax topic for further information on supported syntax.

Take the following limitations into account:

Searching with regular expressions within a selection (either single-range, or multiple) is not supported.

Find in Files & Replace in Files

Find in Files and Replace in Files are the two powerful Hex Editor Neo commands that allow you to perform batch find and
replace operations. They can be instructed to operate on all files in a folder or the whole folder tree.

The Find in Files Window is used to enter the find and/or replace patterns and specify the list of folders to search in. You can
also narrow the search by entering the mask (for example, “*.txt”) to search only in files that match the mask. Several masks
may be specified (separate them with a semicolon). Below is an example that can be used to search within C/C++ source
files:

Hex Editor Neo Documentation Definitive Guide

81

.c;.cpp;*.cxx;*.cc;*.h;*.hpp;*.hxx;*.idl

All matched documents are displayed in the Find in Files Tool Window. In several operation modes, matched files are
immediately opened in the editor, in others, you may open them by double-clicking on the file's item in a result list.

Scalability

The implementation of Find in Files and Replace in Files commands scales well, that is, it works faster on multi-core or
multi-processor computers. Several dedicated threads of execution are launched on such computers and perform searching
and replacing in parallel.

Note that the real performance boost is achieved only if you have a fast disk system or access files over a fast network
connection.

Safety

Replace in Files function, operating in Replace all occurrences and save mode may potentially be harmful to your data. Hex
Editor Neo automatically detects if you are trying to execute this operation and have Always create backups Option turned
off. It then warns you about the possible data loses and offers several actions to continue:

Hex Editor Neo offers you to enable the Always create backups Option and continue the operation.
It also offers you to switch to safer Replace all occurrences and open mode, in which all modifications are stored in
memory and you decide when and whether to save them.
It then offers you to continue the operation, if you understand its consequences.
And finally, it offers you to cancel operation.

If you have Always create backup Option turned on, then each modified file is first backed up before modification.

Regular Expressions

Both Find in Files and Replace in Files functions fully support regular expressions.

Find in Files Window

Find in Files Window is used to specify the search pattern, replace pattern (optional) and other options required by Find in
Files and Replace in Files commands.

Dialog options are described below:

Find and replace mode
Check to enable the Replace in Files mode, uncheck to enable Find in Files mode.

Hex Editor Neo Documentation Definitive Guide

82

Search in
Enter the list of folders (separated with semicolon) to search in or press the browse (...) button to display the Folder List
Dialog, where you can manage the list.

File types
The list of file masks to search for. Each mask is separated with a semicolon.

Include sub-folders
Sub-folders of each folder in a folder list are automatically included into the folder list.

Ignore case
Case is ignored during pattern searching.

Display errors
File opening or saving errors are displayed in the output.

Include streams
NTFS alternate data streams are included in the searching/replacing. Please note that this option includes all streams of
any matched file in a search, there is no way to filter streams, only files.

Mode

Operation mode. Two operation modes are available for Find in Files command and two operation modes are available
for Replace in Files command:

Command Mode Description
Find in
Files

Find at least
one occurrence

Each file that matches specified mask(s) is searched for a pattern.
Once the pattern is found, its offset is recorded and file is
included in the result list. Find is aborted for this file.

Find all
occurrences

Each file that matches the mask(s) is searched for a pattern. The
file that contains at least one pattern occurrence is opened in the
Hex Editor Neo and all pattern occurrences are added to a
multiple selection.

Replace in
Files

Replace all
occurrences
and save

Each file that matches specified mask(s) is searched for a pattern.
Each pattern occurrence is replaced by the replace pattern. The
file is then saved and closed.

Replace all
occurrences
and open

Each file that matches specified mask(s) is searched for a pattern.
Each pattern occurrence is replaced by the replace pattern. The
file is then opened in the editor. You can then review the changes
and either cancel them or commit (by saving the document).

Folder List Window

Folder List Window is used to manage the folder list for Find in Files and Replace in Files functions.

Hex Editor Neo Documentation Definitive Guide

83

To remove a folder or folders from a list, select them with mouse or keyboard and press the Remove button. To add new
folder, enter its full path or press the Browse (...) button. Then press the Add button.

To clear the folder list, press the Remove All button.

To change folders order, select one folder and press Move Up or Move Down button.

Find in Files Tool Window

This tool window is used to display the Find in Files and Replace in Files function results. During the function execution, all
matched files are listed in the window.

Depending on the operation mode, slightly different information is displayed.

Find at least one occurrence
Each matched file's full path is displayed. To open a file and navigate to located pattern, double click it or select it and
press the Open File button on the toolbar.

Find all occurrences
Each matched file's full path and number of pattern occurrences are displayed. A file is opened in the editor. Open File
command is disabled (as the file is already opened).

Replace all occurrences and save
Each file where any replacements are made is added to the result list. The full file's path along with a number of
replacements is displayed. Double-clicking on the file opens it in the editor.

Replace all occurrences and open
Each file where any replacements are made is added to the result list and opened in the editor. The full file's path along
with a number of replacements is displayed. The Tools » Find in Files » Open File command is disabled.

During operation, the last item in a list displays an operation progress. The following information is displayed:

p % completed. N of T files in F folders have been checked. M matched file(s) found. S of TS processed.

Where

p

A percentage of the operation completed. It is always zero until the total number of files that match criteria (folder list
and mask) is determined.

N

A number of files processed so far.
T

A total number of files to process. This is an amount of all files that match the mask and folder list filters. If Hex Editor
Neo is still scanning folders, the “(…)” is added after the current total number of files. The percentage p is always zero in
this case. Folder scanning and pattern searching/replacing are always performed concurrently.

F

Hex Editor Neo Documentation Definitive Guide

84

A total number of folders to process.
M

A total number of matched files.
S

A number of bytes processed.
TS

A total number of bytes to process.

To clear all items in a list, execute the Tools » Find in Files » Clear All command.

To cancel the current operation, execute the Tools » Find in Files » Stop Searching command.

Find in Files

The Find in Files command is used to search a list of files for a specified pattern. You specify the list of folders and file mask
that determine the list of files and you enter a pattern to search. The Find in Files Window is used to provide all this
information.

Find in Files function operates in one of two modes: Find at least one occurrence and Find all occurrences.

Find at Least One Occurrence

In this mode, all candidate files are searched for a first pattern occurrence. If it is found, the file is added to a result list and
searching continues with a next file.

Double-clicking the file in a result list opens the file and navigates to the located position.

Find All Occurrences

In this mode, all occurrences of the pattern are located. If there are any, the file is opened in the editor and selection displays
all matched locations. The file's path is also added to the result list.

Regular Expressions

The Find in Files command fully supports regular expressions. To search using regular expressions, select either “ASCII
string (char[])” or "UNICODE string (wchar_t[])" pattern type, enter the regular expression, make sure the “Regular
expression” checkbox is checked and enter the sub-expression number you want to search for. Sub-expression "0"
represents the expression itself.

Replace in Files

Hex Editor Neo Documentation Definitive Guide

85

The Replace in Files command is used to search a list of files for a specified pattern and replace it with another pattern. You
specify the list of folders and file mask that determine the list of files and you enter both patterns to search in a Find in Files
Window. The “Find and replace mode” switch must be enabled for this command.

Replace in Files function operates in one of two modes: Replace all occurrences and save and Replace all occurrences and
open.

Replace All Occurrences and Save

In this mode, all candidate files are searched for a search pattern. All occurrences are replaced with a replace pattern. If the
replace pattern is empty, all matches are removed from the file. Any matched file is added to the results list. All
modifications made to a file are immediately saved. The Always create backups Option is used to determine whether to
make backup copies of modified files.

Double-clicking the file in a result list opens the file.

Replace All Occurrences and Open

In this mode, all candidate files are searched for a search pattern. All found occurrences are replaced with a replace pattern.
Files then are opened in the editor. Operation history for an opened file contains a Replace All command. You can then
continue editing the document, save changes, or close the document without saving changes.

Regular Expressions

The Replace in Files command fully supports regular expressions. To search using regular expressions, select either “ASCII
string (char[])” or "UNICODE string (wchar_t[])" pattern type, enter the regular expression, make sure the “Regular
expression” checkbox is checked and enter the sub-expression number you want to search for. Sub-expression "0"
represents the expression itself. Replace pattern cannot be a regular expression.

Regular Expressions
Regular expressions provide a concise and flexible means for identifying strings of text of interest, such as particular
characters, words, or patterns of characters. Regular expressions are written in a formal language. The syntax used by the
Hex Editor Neo is essentially the syntax standardized by ECMAScript, with minor changes in support of internationalization.
The following section briefly describes the syntax.

Regular expressions are supported by the following Hex Editor Neo commands and modules:

Find
Find All
Replace
Replace All
Find in Files
Replace in Files

Hex Editor Neo Documentation Definitive Guide

86

https://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Pattern Coloring
Pattern Statistics

Capturing Sub-expressions

Every Hex Editor Neo function that works with regular expressions allows you to specify what sub-expression you want to
capture. Sub-expression zero represents the entire expression, sub-expression 1 and greater represent corresponding sub-
expressions.

If you specify the sub-expression that is greater than the total number of sub-expressions, the error message is displayed.

Usage Tips and Performance Considerations

Using regular expressions affect performance and memory usage. Always prefer using normal pattern searching functions
whenever possible. Replace All command with regular expressions may need as much as 3 times more memory compared
to a simple (pattern based) Replace All command.

The following limitations are present in the current version of the Hex Editor Neo:

Searching for a regular expression backwards is not supported.
Searching within selection (either single or multiple) is not supported.
Pattern Coloring will sometimes fail to highlight a complex match if it starts long before the visible area and/or ends
long after the visible area.
Zero-matching regular expressions are forbidden.

Future versions of the Hex Editor Neo will eliminate some of these limitations, while others are by design and cannot be
eliminated.

Regular Expressions Syntax

A regular expression is a pattern of text that consists of ordinary characters (for example, letters a through z) and special
characters, known as metacharacters. The pattern describes one or more strings to match when searching text. The
following table contains the complete list of metacharacters and their behavior in the context of regular expressions
(regular expressions syntax):

Metacharacter Description
\ Marks the next character as a special character, a literal, a backreference, or an

octal escape. For example, n matches the character n . \n matches a newline
character. The sequence \\ matches \ and \(matches (.

^ Matches the position at the beginning of the input string. Also matches the
position following \n or \r .

$ Matches the position at the end of the input string. Also matches the position
preceding \n or \r .

* Matches the preceding character or sub-expression zero or more times. For
example, zo* matches z and zoo . * is equivalent to {0,} .

+ Matches the preceding character or sub-expression one or more times. For
example, zo+ matches zo and zoo , but not z . + is equivalent to {1,} .

? Matches the preceding character or sub-expression zero or one time. For
example, do(es)? matches the do in do or does . ? is equivalent to {0,1} .

{n} n is a non-negative integer. Matches exactly n times. For example, o{2} does
not match the o in Bob , but matches the two o's in food .

{n,} n is a non-negative integer. Matches at least n times. For example, o{2,} does
not match the o in Bob and matches all the o's in foooood . o{1,} is equivalent
to o+ . o{0,} is equivalent to o* .

{n,m} m and n are non-negative integers, where n <= m . Matches at least n and at
most m times. For example, o{1,3} matches the first three o's in fooooood .
o{0,1} is equivalent to o? . Note that you cannot put a space between the
comma and the numbers.

? When this character immediately follows any of the other quantifiers (* , + , ? ,
{n} , {n,} , {n,m}), the matching pattern is non-greedy. A non-greedy pattern
matches as little of the searched string as possible, whereas the default greedy
pattern matches as much of the searched string as possible. For example, in the

Hex Editor Neo Documentation Definitive Guide

87

string oooo , o+? matches a single o , while o+ matches all o s.
. Matches any single character.
(pattern) A sub-expression that matches pattern and captures the match. To match

parentheses characters (), use \(or \) .
(?:pattern) A sub-expression that matches pattern but does not capture the match, that is, it

is a non-capturing match that is not stored for possible later use. This is useful
for combining parts of a pattern with the “or” character | . For example,
industr(?:y|ies) is a more economical expression than
industry|industries .

(?=pattern) A sub-expression that performs a positive lookahead search, which matches the
string at any point where a string matching pattern begins. This is a non-
capturing match, that is, the match is not captured for possible later use. For
example Windows (?=95|98|NT|2000) matches Windows in Windows 2000 but
not Windows in Windows 3.1 . Look-aheads do not consume characters, that is,
after a match occurs, the search for the next match begins immediately following
the last match, not after the characters that comprised the lookahead.

(?!pattern) A sub-expression that performs a negative lookahead search, which matches the
search string at any point where a string not matching pattern begins. This is a
non-capturing match, that is, the match is not captured for possible later use. For
example Windows (?!95|98|NT|2000) matches Windows in Windows 3.1 but
does not match Windows in Windows 2000 . Look-aheads do not consume
characters, that is, after a match occurs, the search for the next match begins
immediately following the last match, not after the characters that comprised the
lookahead.

(?>pattern) Independent sub-expression, match pattern and turn off backtracking.
(?<=pattern) Positive look-behind assertion, match if after pattern but don't include pattern in

the match. (pattern must be constant-width).
(?<!pattern) Negative look-behind assertion, match if not after pattern. (pattern must be

constant-width).
(?i:pattern) Match pattern disregarding case. Allows to temporary turn off case sensitiveness

during pattern matching.
(?$name) Reference a named regular expression class. A class must be defined in the

Regular Expressions Settings, otherwise, the error will be generated.
x|y Matches either x or y . For example, z|food matches z or food . (z|f)ood

matches zood or food .
[xyz] A character set. Matches any one of the enclosed characters. For example, [abc]

matches the a in plain .
[^xyz] A negative character set. Matches any character not enclosed. For example,

[^abc] matches the p in plain .
[a-z] A range of characters. Matches any character in the specified range. For example,

[a-z] matches any lowercase alphabetic character in the range a through z .
[^a-z] A negative range characters. Matches any character not in the specified range.

For example, [^a-z] matches any character not in the range a through z .
\b Matches a word boundary, that is, the position between a word and a space. For

example, er\b matches the er in never but not the er in verb .
\B Matches a non-word boundary. er\B matches the er in verb but not the er in

never .
\cx Matches the control character indicated by x . For example, \cM matches a

Control-M or carriage return character. The value of x must be in the range of
A-Z or a-z . If not, c is assumed to be a literal c character.

\d Matches a digit character. Equivalent to [0-9] .
\D Matches a non-digit character. Equivalent to [^0-9] .
\f Matches a form-feed character. Equivalent to \x0c and \cL .
\n Matches a newline character. Equivalent to \x0a and \cJ .
\r Matches a carriage return character. Equivalent to \x0d and \cM .
\s Matches any white space character including space, tab, form-feed, and so on.

Equivalent to [\f\n\r\t\v] .

Metacharacter Description

Hex Editor Neo Documentation Definitive Guide

88

\S Matches any non-white space character. Equivalent to [^ \f\n\r\t\v] .
\t Matches a tab character. Equivalent to \x09 and \cI .
\v Matches a vertical tab character. Equivalent to \x0b and \cK .
\w Matches any word character including underscore. Equivalent to [A-Za-z0-9_] .
\W Matches any non-word character. Equivalent to [^A-Za-z0-9_] .
\xn Matches n , where n is a hexadecimal escape value. Hexadecimal escape values

must be exactly two digits long. For example, \x41 matches A . \x041 is
equivalent to \x04 & 1 . Allows ASCII codes to be used in regular expressions.

\num Matches num , where num is a positive integer. A reference back to captured
matches. For example, (.)\1 matches two consecutive identical characters.

\n Identifies either an octal escape value or a back-reference. If \n is preceded by at
least n captured sub-expressions, n is a back-reference. Otherwise, n is an octal
escape value if n is an octal digit (0-7).

\nm Identifies either an octal escape value or a back-reference. If \nm is preceded by
at least nm captured sub-expressions, nm is a back-reference. If \nm is preceded
by at least n captures, n is a back-reference followed by literal m . If neither of
the preceding conditions exists, \nm matches octal escape value nm when n and
m are octal digits (0-7).

\nml Matches octal escape value nml when n is an octal digit (0-3) and m and l are
octal digits (0-7).

\un Matches n , where n is a Unicode character expressed as four hexadecimal digits.
For example, \u00A9 matches the copyright symbol (©).

Metacharacter Description

Replace Pattern Syntax

Hex Editor Neo allows you to use special characters in replace pattern when performing commands Replace and Replace All
with regular expressions.

The main advantage of using regular expressions during pattern matching operations is the ability to match different
patterns with a single expression. This function natively is cooperated with an ability to refer to matched pattern in replace
pattern. Hex Editor Neo allows you to perform such referrals.

All characters in a replace pattern are treated “as is”, except for the following character combinations:

Combination Description
$& Refers to the whole matched expression.
$n Where n is [1..9]: Refers to numbered sub-expression of matched expression.
$$ Means a single $ character.
\xnn Where n is [0..9 or a..f or A..F]: A single hexadecimal code byte. Can be used only if

performing search/replace in single-byte string mode (ASCII or encoded).
\xnnnn Where n is [0..9 or a..f or A..F]: A single hexadecimal code word. Can be used only if

performing search/replace in UNICODE mode.

Examples

This section lists a few regular expressions examples. The description section describes the results of the Find All command
used with a given regular expression.

\w+

Match all identifiers in a programming language source file.
(.)\1+

Match any sequence of repeated characters, which length is at least two characters.
[\x00\x01\x02]

Match 00, 01 or 02 bytes in the document.
\w+(?=\s**)

Match all C++ class names in the document which are followed by a * character. * character and any optional space
characters before it are not matched.

Hex Editor Neo Documentation Definitive Guide

89

(?<=http://)[\w\.]+?\.(com|net|org)

Match all domain name portions of URLs.
\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\

Match all IPv4 addresses.
^{

Match “{” characters at the beginning of the line.

Named Classes

Hex Editor Neo allows you to define any number of named regular expression classes. Each class is a regular expression
with a name assigned to it. A defined class may later be referenced in the regular expression (and in another named class)
using the following syntax:

(?$name)

Recursive Grammars

The concept of named classes is so powerful, that it even allows you to define complex recursive grammars. This
documentation provides one example of how this feature may be used. See the Expression Demo section for more
information.

Creating and Managing Classes

The Regular Expressions Settings is used to create new named classes and edit existing ones.

Add Button
Press the button to create a new named class. A class must have the unique name.

Edit Button
Press the button to edit a currently selected class. You can change a class name and a regular expression. If you change
a class name, a new name must be unique.

Delete Button
Press the button to delete a currently selected class.

Delete All Button

Hex Editor Neo Documentation Definitive Guide

90

Press the button to delete all classes.

If you accidentally made a mistake, you may press the Cancel button to cancel all changes. The Cancel button cancels the
changes even if the Apply button has been pressed.

Regular Expression Syntax Errors

Syntax errors in entered regular expressions are not checked until the expression is actually used in one of the find/replace
operations.

Example

This section shows you how the named regular expression classes may be used, for example, to match standard
mathematical expressions, like 2 + 3 * (7 - 9) or 2 + 3 * 8 - 11 . First, we need to define a number of regular
expression classes:

group
\((?$expr)\)

factor
\d+|(?$group)

term
(?$factor)(* (?$factor)| / (?$factor))*

expr
(?$term)(\+ (?$term)| - (?$term))*

Now, if you execute the Find All command in regular expression mode and enter the

(?$expr)

as regular expression to search for, all mathematical expressions in the document get selected.

Clipboard
Supported Formats

Hex Editor Neo supports two clipboard formats: internal format and Windows Explorer format.

Hex Editor Neo uses the internal format to exchange data between its documents and uses the Windows Explorer format to
exchange files and data with Windows Explorer.

When you put a selection into the Clipboard, it is automatically placed in both supported formats.

Internal Format

This format allows you to exchange data between two documents in the Hex Editor Neo as well as between several
locations within the same document. Data placed to Clipboard in one running Hex Editor Neo instance cannot be pasted
into another. To exchange data between two documents, open them both in a single Hex Editor Neo instance.

Internal format fully supports multiple selection.

Windows Explorer Format

Hex Editor Neo supports exchanging data with Windows Explorer.

Hex Editor Neo's Document Data to File

You can paste the copied document's data into the file in Windows Explorer. Select the data you want to copy (multiple
selection is fully supported) and put it into the Clipboard (for example, execute the Edit » Copy command). Open a folder in
Windows Explorer where you want the data to be pasted. Execute the Paste command. Copied data will be pasted into the
new file, named “HHD Hex Editor Neo 4 Copied Data”.

File Data to Hex Editor Neo's Document

You can also paste a file copied to the Clipboard from Windows Explorer (or any other compatible application) into the

Hex Editor Neo Documentation Definitive Guide

91

current cursor position in a document.

Text

You can paste a text copied from some other application into the Hex Editor Neo. See the Pasting Text section for detailed
feature description. Copy & Export Tool Window, on the other hand, provides a number of tools to encode binary document
data and place it into the Clipboard in textual form.

Copying, Cutting and Merge Modifier

Several commands exist in the Hex Editor Neo that can be used to put data into the Clipboard. They always operate on the
current selection unless it is empty. In the latter case, all Clipboard operations work on the cell under the cursor. Hex Editor
Neo's Clipboard operations fully support multiple selection.

The behavior of Clipboard commands differ:

Copy Command

The selected data is placed into the Clipboard.

Complexity: from constant-time to linear-time (depends on the number of selection blocks).

Cut Command

The selected data is placed into the Clipboard and then removed from the document, as if you executed the Delete
command.

Complexity: from constant-time to linear-time (depends on the number of selection blocks). The performance of the
Cut operation is better than of the Copy operation followed by Delete operation.

Merge and Copy

All selection blocks are merged together and then the resulting contiguous block is placed into the Clipboard.

Complexity: from constant-time to linear-time (depends on the number of selection blocks).

Merge and Cut

All selection blocks are merged together and then the resulting contiguous block is placed into the Clipboard. The
selected data is then removed from the document, as if you executed the Delete command.

Complexity: from constant-time to linear-time (depends on the number of selection blocks). The performance of the
Cut operation is better than of the Copy operation followed by Delete operation.

Important Considerations

The file whose data is put into the Clipboard is referenced until something else is placed into the Clipboard (by any
application), running instance of the Hex Editor Neo is closed, or referenced document is saved. In all these cases, data is
silently removed from the Clipboard.

While the file is referenced, it cannot be deleted or modified outside the Hex Editor Neo.

Third-party Clipboard extension tools may prevent the document from being unreferenced at the proper time leading to an
inability to modify the file outside the Hex Editor Neo until you close it.

Advanced Copy & Export

Hex Editor Neo has an Advanced Copy & Export module, which may be used to convert binary data into text, using one of a
large number of supported formats. Starting from version 4.92, Hex Editor Neo also automatically puts data into Clipboard
in one of those formats (depending on the current editor window's settings) when you execute the Edit » Copy or Edit » Cut
commands.

Limitations

The current version of the Hex Editor Neo does not support creating patches if the document contains data pasted from
other documents. On the other hand, if the document contains only data pasted from itself, the patch can be created.

This limitation will be removed in future versions.

Hex Editor Neo Documentation Definitive Guide

92

Pasting Data

This section describes pasting file (or binary) data into Hex Editor Neo documents. To learn how to paste text data, see the
Pasting Text section.

You can paste data into the Hex Editor Neo if it is in one of the supported formats. To paste data from the Clipboard, you
need to have an editor window active. Position the cursor to the offset where you want the data to be placed and execute
the Edit » Paste command.

The current Insert Mode governs the behavior of the Paste command. If it is on, file's data beyond the cursor position is
shifted to free required space, in which Clipboard data is placed. If Insert Mode is off, file's data is overwritten with data
from the Clipboard.

If the multiple selection existed at a time you executed the Copy or Cut commands, additional gaps are inserted into the
document. If Insert Mode is on, those gaps are cumulative.

Paste Command Complexity

If Clipboard contains a file copied from the Windows Explorer, the paste command operates in constant-time, that is,
immediately. If data has been copied or cut from the same or another Hex Editor Neo's document, the complexity is linear-
time, depending on the number of blocks in the selection.

Pasting Text

Hex Editor Neo supports pasting text from Clipboard. This section describes supported formats and usage strategies:

Pasting Raw Text

Any plain text placed into the Clipboard may be pasted into the Hex Editor Neo's document. In order to paste the text,
perform the following steps:

1. Open (or create) the document you want to paste text to.
2. Make sure the required encoding is selected.
3. Navigate to the position where you want to paste text.
4. Check the Insert Mode switch. Turn it OFF to overwrite existing document's data with Clipboard's data, or ON to make

room for Clipboard's data.
5. Make sure the text pane is visible and active (the cursor image has a frame around it).
6. Execute the Edit » Paste command.

Pasting Formatted Numbers

In addition to providing the ability to paste the text “as it is”, Hex Editor Neo also supports parsing Clipboard's text in order
to extract a sequence of decimal or hexadecimal numbers.

Make sure the code pane is active before pasting data. If the text pane is active, Clipboard contents will be pasted “as is”, as
described in the previous section. As always, the Insert Mode switch is used to specify whether you want to overwrite or
insert data.

The current view type dictates the type of integers parsed from the input text. If current view type is a hexadecimal view
type, integers are assumed to be in base 16; otherwise, they are assumed to be in base 10. Use the “0x” prefix to temporary
change number's base to 16 (it affects only the number immediately following the prefix).

Numbers may be separated with one or more separators. Hex Editor Neo treats all non-digit (or non-hexadecimal digit)
characters as separators, including line feed and carriage return characters. If there are no separators, current editor
window's grouping mode is used to separate them.

Multiple separators are allowed. Parsing continues to the end of the input text.

Pasting Formatted Numbers feature is not supported for Float and Double view types.

Examples

The following text pasted into the editor window, currently in Hex Bytes view type…

1 2 3 4a 0x5
a 7f 12, ff; 12

Hex Editor Neo Documentation Definitive Guide

93

results in the following sequence (displayed in hex) to be inserted into the document:

01 02 03 4a 05 0a 7f 12 ff 12

The same text pasted into the Decimal Bytes window results in the following sequence (displayed in decimal):

1 2 3 4 5 7 12 12

Parsing ignored all invalid characters, treating them as separators. “0x” prefix may be used to temporary switch to
hexadecimal mode:

0x34 23 0x5a 0xaa 17

Which results in the following sequence (displayed in decimal):

52 23 90 170 17

The following text can be pasted into the editor window, which is currently in Hex Words mode:

7a20, 5, ffff, AE01;
12c 15 0 0 17FF

Advanced Copy & Export
In addition to standard Clipboard support, Hex Editor Neo provides advanced copy/export feature.

This feature allows you to convert selected data (multiple selection is fully supported) into one of supported format and
either place it into the Clipboard or write to a file.

All currently supported formats generate textual data that can directly be pasted into or opened by nearly every application.
Three formats, Raw Text, Formatted Data and Encoded Data are provided, each of which offer a rich set of configurable
options.

Copy & Export Tool Window

This tool window is used to configure the feature and start data conversion.

A window is divided into two parts: at the top, two panes, “Copy to Clipboard” and "Export" are displayed. Only one pane
may be opened at a given time. The active pane determines the action to be held by the Hex Editor Neo: if the “Copy to
Clipboard” pane is opened, data will be placed into the Clipboard, if "Export" pane is opened, data will be exported to a
given file.

“Copy to Clipboard” pane contains a single configurable option: a Merge switch. It becomes active when there is a multiple
selection and allows you to merge all selected blocks during data conversion.

“Export” pane allows you to specify the full path to the file you want the data to be written to. The Append switch allows you

Hex Editor Neo Documentation Definitive Guide

94

to append new data to an existing file and Merge switch, as already described, allows you to merge all selected blocks
during data conversion.

Second part of this tool window contains one pane for each supported data format. Only one pane may be opened at a
given time. Opened pane determines the format to be used for data conversion. Subsequent sections describe each format
in greater detail.

Raw Text Format

This data format is used to copy the contents of the text pane of the editor window, “as you see it”. In fact, selected
document's data is interpreted as textual data and placed into the Clipboard (or exported) in the given encoding.

The format has a single configurable parameter, Encoding, which can be used to tell Hex Editor Neo how to export
document's data.

NOTE: Support for a specific encoding depends on installed Windows code pages and fonts. If required components cannot
be found for a selected encoding, resulting output will be empty.

The following table lists all “special” encodings:

Encoding Notes
None Document's data is placed into the Clipboard (or file) “as is”. No processing is

performed. Selection is assumed to contain ANSI text.
Current The current editor window's encoding is used to convert data. This option is the

default.
System
default

Selected data is assumed to contain ANSI text in current system encoding. It is
converted to UTF-16.

OEM Selected data is assumed to contain ANSI text in current system OEM encoding. It is
converted to UTF-16.

UTF-7 Selected data is assumed to contain multi-byte UNICODE text encoded in UTF-7
encoding. It is converted to UTF-16.

UTF-8 Selected data is assumed to contain multi-byte UNICODE text encoded in UTF-8
encoding. It is converted to UTF-16.

Unicode
(UTF-16)

Document's data is placed into the Clipboard (or file) "as is". No processing is
performed. Selection is assumed to contain UNICODE UTF-16 text.

When selected data is not too complex, it is automatically put into the Clipboard in this format when user executes the Edit »
Copy or Edit » Cut and cursor is in the text pane.

All following encodings assume the text to be a single-byte or multi-byte DBCS text and convert it to UTF-16.

ANSI - Arabic
ANSI - Baltic
ANSI - Central European
ANSI - Cyrillic
ANSI - Greek
ANSI - Hebrew
ANSI - Latin I
ANSI - Turkish
ANSI/OEM - Japanese, Shift-JIS
ANSI/OEM - Korean (Unified Hangul Code)
ANSI/OEM - Simplified Chinese (PRC, Singapore)
ANSI/OEM - Thai (same as 28605, ISO 8859-15)
ANSI/OEM - Traditional Chinese (Taiwan; Hong Kong SAR, PRC)
ANSI/OEM - Vietnamese
Arabic - ASMO 449+, BCON V4
Arabic - ASMO 708
Arabic - Transparent Arabic
Arabic - Transparent ASMO
CNS - Taiwan
Eten - Taiwan
EUC - Japanese
EUC - Korean

Hex Editor Neo Documentation Definitive Guide

95

EUC - Simplified Chinese
EUC - Traditional Chinese
Europa 3
HZ-GB2312 Simplified Chinese
IA5 German (7-bit)
IA5 IRV International Alphabet No. 5 (7-bit)
IA5 Norwegian (7-bit)
IA5 Swedish (7-bit)
IBM EBCDIC - Arabic
IBM EBCDIC - Cyrillic (Russian)
IBM EBCDIC - Cyrillic (Serbian, Bulgarian)
IBM EBCDIC - Denmark/Norway (20277 + Euro symbol)
IBM EBCDIC - Denmark/Norway
IBM EBCDIC - Finland/Sweden (20278 + Euro symbol)
IBM EBCDIC - Finland/Sweden
IBM EBCDIC - France (20297 + Euro symbol)
IBM EBCDIC - France
IBM EBCDIC - Germany (20273 + Euro symbol)
IBM EBCDIC - Germany
IBM EBCDIC - Greek
IBM EBCDIC - Hebrew
IBM EBCDIC - Icelandic (20871 + Euro symbol)
IBM EBCDIC - Icelandic
IBM EBCDIC - International (500 + Euro symbol)
IBM EBCDIC - International
IBM EBCDIC - Italy (20280 + Euro symbol)
IBM EBCDIC - Italy
IBM EBCDIC - Japanese Katakana Extended
IBM EBCDIC - Korean Extended
IBM EBCDIC - Latin 1/Open System
IBM EBCDIC - Latin America/Spain (20284 + Euro symbol)
IBM EBCDIC - Latin America/Spain
IBM EBCDIC - Latin-1/Open System (1047 + Euro symbol)
IBM EBCDIC - Modern Greek
IBM EBCDIC - Multilingual/ROECE (Latin-2)
IBM EBCDIC - Thai
IBM EBCDIC - Turkish (Latin-5)
IBM EBCDIC - Turkish
IBM EBCDIC - U.S./Canada (037 + Euro symbol)
IBM EBCDIC - U.S./Canada
IBM EBCDIC - United Kingdom (20285 + Euro symbol)
IBM EBCDIC - United Kingdom
IBM5550 - Taiwan
ISCII Assamese
ISCII Bengali
ISCII Devanagari
ISCII Gujarati
ISCII Kannada
ISCII Malayalam
ISCII Oriya
ISCII Punjabi
ISCII Tamil
ISCII Telugu
ISO 2022 Japanese JIS X 0201-1989
ISO 2022 Japanese with halfwidth Katakana
ISO 2022 Japanese with no halfwidth Katakana
ISO 2022 Korean
ISO 2022 Simplified Chinese
ISO 2022 Traditional Chinese
ISO 6937 Non-Spacing Accent
ISO 8859-1 Latin I
ISO 8859-15 Latin 9
ISO 8859-2 Central Europe

Hex Editor Neo Documentation Definitive Guide

96

ISO 8859-3 Latin 3
ISO 8859-4 Baltic
ISO 8859-5 Cyrillic
ISO 8859-6 Arabic
ISO 8859-7 Greek
ISO 8859-8 Hebrew
ISO 8859-8 Hebrew
ISO 8859-9 Latin 5
Japanese (Katakana) Extended
Japanese (Latin) Extended and Japanese
JIS X 0208-1990 & 0121-1990
Korean (Johab)
Korean Extended and Korean
MAC - Arabic
MAC - Croatia
MAC - Cyrillic
MAC - Greek I
MAC - Hebrew
MAC - Icelandic
MAC - Japanese
MAC - Korean
MAC - Latin II
MAC - Roman
MAC - Romania
MAC - Simplified Chinese (GB 2312)
MAC - Thai
MAC - Traditional Chinese (Big5)
MAC - Turkish
MAC - Ukraine
OEM - Arabic
OEM - Baltic
OEM - Canadian-French
OEM - Cyrillic (primarily Russian)
OEM - Greek (formerly 437G)
OEM - Hebrew
OEM - Icelandic
OEM - Latin II
OEM - Modern Greek
OEM - Multilingual Latin I + Euro symbol
OEM - Multilingual Latin I
OEM - Nordic
OEM - Portuguese
OEM - Russian
OEM - Turkish
OEM - United States
Russian - KOI8-R
Simplified Chinese (GB2312)
Simplified Chinese Extended and Simplified Chinese
Simplified Chinese
T.61
TCA - Taiwan
TeleText - Taiwan
Ukrainian (KOI8-U)
US/Canada and Japanese
US/Canada and Traditional Chinese
US-ASCII (7-bit)
Wang - Taiwan

Formatted Data Format

This powerful format allows you to convert a binary data to a sequence of numbers, encoded according to the selected type.
You select a type of number, whether base 16 or base 10 is used to represent them, the number of numbers in a row and
output type.

Hex Editor Neo Documentation Definitive Guide

97

When selected data is not too complex, it is automatically put into the Clipboard in this format when user executes the Edit »
Copy or Edit » Cut and cursor is in the code pane.

The Elements combo among with Group combo provide you with a choice of number type and grouping mode:

Group/Elements BYTE WORD DWORD QWORD
Hex 8-bit

hexadecimal
values

16-bit
hexadecimal
values

32-bit hexadecimal
values

64-bit hexadecimal values

Decimal 8-bit
decimal
values

16-bit
decimal
values

32-bit decimal values 64-bit decimal values

Octal 8-bit octal
values

16-bit octal
values

32-bit octal values 64-bit octal values

Binary 8-bit binary
values

16-bit
binary
values

32-bit binary values 64-bit binary values

Float N/A N/A Single-precision floating-
point values (encoded
according to IEEE 754
standard).

N/A

Double N/A N/A N/A Double-precision
floating-point values
(encoded according to
IEEE 754 standard).

When Elements or Group are set to “Default”, their values are taken from the current editor window.

Columns combo lets you specify the number of values in a row. If “Default” is selected, it is taken from the current editor
window.

Addresses switch may be used to include row addresses in the output. Text pane switch includes the text pane in the output
as well. Text pane is included only if the element type size is one or two bytes. In the latter case, Unicode text appears in the
text pane. The text is separated from value list by the tabulation character (0x09). Both these options are available only for
“Space-separated text” and "Comma-separated text" output formats.

Use Type combo to select an output format:

Without separators

Select data is encoded into a text stream:

6fa864000001c349444154384fbd934f4893611cc7dfcaa16188985887898c31294407319d2df12082d0452112ea344f1578110c092

Space-separated text

Selected data is encoded into space-separated value list. Below is a sample text (Addresses and Text pane options are
turned OFF):

61 73 00 00 09 61 75 64 69 6f 73 69 7a 65 00 41
72 6f f6 60 00 00 00 00 08 68 61 73 41 75 64 69
6f 01 01 00 0a 61 75 64 69 6f 64 65 6c 61 79 00

Below is a sample text (Addresses and Text pane options are turned ON):

00000140: 61 73 00 00 09 61 75 64 69 6f 73 69 7a 65 00 41 as...audiosize.A
00000150: 72 6f f6 60 00 00 00 00 08 68 61 73 41 75 64 69 ro.`.....hasAudi
00000160: 6f 01 01 00 0a 61 75 64 69 6f 64 65 6c 61 79 00 o....audiodelay.

Comma-separated text

Selected data is encoded into comma-separated value list. Below is a sample text (Addresses and Text pane options are
turned OFF):

Hex Editor Neo Documentation Definitive Guide

98

61, 73, 00, 00, 09, 61, 75, 64, 69, 6f, 73, 69, 7a, 65, 00, 41
72, 6f, f6, 60, 00, 00, 00, 00, 08, 68, 61, 73, 41, 75, 64, 69
6f, 01, 01, 00, 0a, 61, 75, 64, 69, 6f, 64, 65, 6c, 61, 79, 00

Below is a sample text (Addresses and Text pane options are turned ON):

00000140: 61, 73, 00, 00, 09, 61, 75, 64, 69, 6f, 73, 69, 7a, 65, 00, 41 as...audiosize.A
00000150: 72, 6f, f6, 60, 00, 00, 00, 00, 08, 68, 61, 73, 41, 75, 64, 69 ro.`.....hasAudi
00000160: 6f, 01, 01, 00, 0a, 61, 75, 64, 69, 6f, 64, 65, 6c, 61, 79, 00 o....audiodelay.

C/C++ array

Selected data is converted into C/C++ array initialization:

C++
unsigned char b1[] = {
 0x61, 0x73, 0x00, 0x00, 0x09, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x73, 0x69, 0x7a, 0x65, 0x00, 0x41,
 0x72, 0x6f, 0xf6, 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 0x68, 0x61, 0x73, 0x41, 0x75, 0x64, 0x69,
 0x6f, 0x01, 0x01, 0x00, 0x0a, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x64, 0x65, 0x6c, 0x61, 0x79, 0x00
};

or

C++
unsigned short b1[] = {
 29537, 0, 24841, 25717, 28521, 26995, 25978, 16640, 28530, 24822, 0, 0, 26632, 29537, 30017, 26980,
 367, 1, 24842, 25717, 28521, 25956, 24940, 121
};

Java array

Selected data is converted into Java array initialization:

byte b1[] = {
 0x61, 0x73, 0x00, 0x00, 0x09, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x73, 0x69, 0x7a, 0x65, 0x00, 0x41,
 0x72, 0x6f, 0xf6, 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 0x68, 0x61, 0x73, 0x41, 0x75, 0x64, 0x69,
 0x6f, 0x01, 0x01, 0x00, 0x0a, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x64, 0x65, 0x6c, 0x61, 0x79, 0x00
};

or

ushort b1[] = {
 29537, 0, 24841, 25717, 28521, 26995, 25978, 16640, 28530, 24822, 0, 0, 26632, 29537, 30017, 26980,
 367, 1, 24842, 25717, 28521, 25956, 24940, 121
};

JavaScript array

Selected data is converted into Javascript array initialization:

JavaScript
var b1 = new Array (
 0x61, 0x73, 0x00, 0x00, 0x09, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x73, 0x69, 0x7a, 0x65, 0x00, 0x41,
 0x72, 0x6f, 0xf6, 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 0x68, 0x61, 0x73, 0x41, 0x75, 0x64, 0x69,
 0x6f, 0x01, 0x01, 0x00, 0x0a, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x64, 0x65, 0x6c, 0x61, 0x79, 0x00
);

or

JavaScript
var b1 = new Array (
 29537, 0, 24841, 25717, 28521, 26995, 25978, 16640, 28530, 24822, 0, 0, 26632, 29537, 30017, 26980,
 367, 1, 24842, 25717, 28521, 25956, 24940, 121
);

Delphi array

Selected data is converted into Delphi array initialization:

Hex Editor Neo Documentation Definitive Guide

99

b1 = array[1..48] of Byte = (
 0x61, 0x73, 0x00, 0x00, 0x09, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x73, 0x69, 0x7a, 0x65, 0x00, 0x41,
 0x72, 0x6f, 0xf6, 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 0x68, 0x61, 0x73, 0x41, 0x75, 0x64, 0x69,
 0x6f, 0x01, 0x01, 0x00, 0x0a, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x64, 0x65, 0x6c, 0x61, 0x79, 0x00
);

or

b1 = array[1..24] of Word = (
 29537, 0, 24841, 25717, 28521, 26995, 25978, 16640, 28530, 24822, 0, 0, 26632, 29537, 30017, 26980,
 367, 1, 24842, 25717, 28521, 25956, 24940, 121
);

C# .NET array

Selected data is converted into C# array initialization:

C#
Byte [] b1 = new Byte [] {
 0x61, 0x73, 0x00, 0x00, 0x09, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x73, 0x69, 0x7a, 0x65, 0x00, 0x41,
 0x72, 0x6f, 0xf6, 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 0x68, 0x61, 0x73, 0x41, 0x75, 0x64, 0x69,
 0x6f, 0x01, 0x01, 0x00, 0x0a, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x64, 0x65, 0x6c, 0x61, 0x79, 0x00
};

or

C#
UInt16 [] b1 = new UInt16 [] {
 29537, 0, 24841, 25717, 28521, 26995, 25978, 16640, 28530, 24822, 0, 0, 26632, 29537, 30017, 26980,
 367, 1, 24842, 25717, 28521, 25956, 24940, 121
};

Visual Basic .NET array

Selected data is converted into Visual Basic array initialization:

Dim b1() As Byte = { _
 61h, 73h, 00h, 00h, 09h, 61h, 75h, 64h, 69h, 6fh, 73h, 69h, 7ah, 65h, 00h, 41h, _
 72h, 6fh, f6h, 60h, 00h, 00h, 00h, 00h, 08h, 68h, 61h, 73h, 41h, 75h, 64h, 69h, _
 6fh, 01h, 01h, 00h, 0ah, 61h, 75h, 64h, 69h, 6fh, 64h, 65h, 6ch, 61h, 79h, 00h _
}

or

Dim b1() As UInt16 = { _
 29537, 0, 24841, 25717, 28521, 26995, 25978, 16640, 28530, 24822, 0, 0, 26632, 29537, 30017, 26980, _
 367, 1, 24842, 25717, 28521, 25956, 24940, 121 _
}

PHP array

Selected data is converted into PHP array initialization:

var $b1 = array (
 0x61, 0x73, 0x00, 0x00, 0x09, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x73, 0x69, 0x7a, 0x65, 0x00, 0x41,
 0x72, 0x6f, 0xf6, 0x60, 0x00, 0x00, 0x00, 0x00, 0x08, 0x68, 0x61, 0x73, 0x41, 0x75, 0x64, 0x69,
 0x6f, 0x01, 0x01, 0x00, 0x0a, 0x61, 0x75, 0x64, 0x69, 0x6f, 0x64, 0x65, 0x6c, 0x61, 0x79, 0x00
);

Assembler array

Selected data is converted into Assembler language array initialization:

b1 db 61h, 73h, 00h, 00h, 09h, 61h, 75h, 64h, 69h, 6fh, 73h, 69h, 7ah, 65h, 00h, 41h,
 72h, 6fh, f6h, 60h, 00h, 00h, 00h, 00h, 08h, 68h, 61h, 73h, 41h, 75h, 64h, 69h,
 6fh, 01h, 01h, 00h, 0ah, 61h, 75h, 64h, 69h, 6fh, 64h, 65h, 6ch, 61h, 79h,

Encoded Data Format

Hex Editor Neo Documentation Definitive Guide

100

This format converts selected data into the following formats: Base64 , UUencode , Quoted-Printable , Intel HEX and
Motorola S-Records .

Its single parameter Algorithm lets you choose the format to be used.

Below is an example of a data encoded in various formats.

Base64:

YXMAAAlhdWRpb3NpemUAQXJv9mAAAAAACGhhc0F1ZGlvAQEACmF1ZGlvZGVsYXkA

UUencode:

begin 666 c:\file.bin
M87,```EA=61I;W-I>F4`07)O]F``````"&AA<T%U9&EO`0$`"F%U9&EO9&5L
#87D`
`
end

Quoted-Printable:

as=00=00 audiosize=00Aro=F6`=00=00=00=00=08hasAudio=01=01=00=0Aau=
diodelay=00

Intel HEX:

:10000000CFBEC96422B97C49A6963FA3E62F8FA331
:080010000100000032000000B5
:00000001FF

Motorola S-Records

S1130000CFBEC96422B97C49A6963FA3E62F8FA32D
S10B00100100000032000000B1

NTFS Streams
NTFS (a native file system for all “NT-based” operating systems) has a little-known and usually underestimated feature,
called alternate data streams. Each file and directory on NTFS-formatted volume may have an unlimited number of data
streams. Each stream may be of any size, provided there is enough free space on the volume. Every file on the volume
always contains at least one stream, but may also contain other streams. Unlike the first, default stream, which is unnamed,
other file streams have names, which follow the same rules, as defined for naming files and folders on NTFS volume.

By convention, to refer to a specific named stream within a file, add the colon followed by a stream name to a full file name.
For example, if we have a named stream “AltStream” in a file "c:\temp\file.bin", then its full name is

PowerShell
c:\temp\file.bin:AltStream

This named stream can almost be considered as a separate file, which has its own attributes, such as size, sparse-ness and
so on. At the same time, it shares several attributes, such as security descriptor, with its “parent” file.

In addition, the system automatically copies or moves all file's streams each time a file is copied or moved.

This all is good. The bad thing is Windows (up to the very recent versions) does not support streams in its user interface
well. Windows Explorer and Command Prompt are completely unaware of streams. They will not show you file's streams,
they will not even show you the size they occupy on your disk! In fact, you may be quite surprised to see how much space is
“wasted” in this obscure and little-documented part of the file system.

In addition, if you copy or move a file to a volume which is not formatted with an NTFS, all alternate data streams are
silently deleted. The system also does not warn you if you delete a file with alternate data streams. (Note: this has changed a
bit in Windows Vista: at least the system now warns you if you copy a file with named streams to a volume that does not
support streams).

NTFS's alternate data streams is a not widely used feature, although, it is slowly becoming more popular. Several common
usage scenarios are provided below:

Hex Editor Neo Documentation Definitive Guide

101

Microsoft Internet Explorer creates a small (usually 26 bytes long) stream called “Zone.Identifier” in each file it
downloads from the "outside" world. In its file it records a zone identifier, naming the original zone a file came from.
This stream is later used by Windows Explorer, for example, to warn you that you are about to launch a downloaded
file. As soon as you open file's properties and click the “Unblock” button, the stream is deleted.
Several image viewing utilities are known to create a named stream and save a thumbnail version of the image inside
each catalogued image file on your disk.
Several anti-virus products store the information about last scan time and results in each scanned file so they can
subsequently quickly access it without the burden of maintaining complex database.
There have been reports of several malware and viruses that use the alternate data streams NTFS feature. Although the
Windows Explorer and Windows Command Prompt are unaware of streams, Win32 API supports streams quite well.
For example, a program or a script may start any named data stream for execution. Thus, a zero-sized file may actually
contain quite a big executable in one of its streams, or the executable may be disguised as a simple harmless text file.
Luckily, most anti-virus products today are capable of scanning NTFS streams and locating viruses and malware in
them. Hex Editor Neo can also be used to locate named streams on your computer.

Streams Support in Hex Editor Neo

Hex Editor Neo provides a rich toolset to work with NTFS alternate data streams. Most of the tools are available through the
NTFS Streams Tool Window.

The editor automatically detects and displays all named streams of each opened file. It allows you to open any stream for
viewing or editing, delete a stream or create a new stream. It also implements a Find Streams function, which allows you to
locate files, satisfying a given criteria, that contain one or more named streams of data. The result window then allows you
to open them in the editor, or delete them.

File Attributes Tool Window displays the total number of streams in a file, as well as three file size values: the size of the
main, unnamed stream - this is a size reported by Windows Explorer and most other programs; the size of all named
streams; and the total size occupied by a file, that is, a sum of two previous values.

Find in Files supports searching and replacing a pattern in named data streams.

NTFS Streams Tool Window

NTFS Streams tool window displays a list of streams. It operates in two modes. The first and default mode is to display all
streams of the active document. The window automatically updates as you switch between opened documents.

Execute the NTFS Streams » Create Stream… command to create a new stream. You will be asked to provide a stream
name. A file cannot have two streams with the same name. A stream name must also be a valid file name, that is, it cannot
contain the following characters: / , : , ? , * , " , < , > , | .

To rename a stream, select it and execute the NTFS Streams » Rename Stream… command. Note that the operating
system lacks support for renaming streams, so the Hex Editor Neo emulates renaming by copying the whole stream. It can
take a long time for large streams. In this case a progress bar is displayed and you may use the NTFS Streams » Cancel
Current Operation command to cancel stream renaming.

To delete a stream (or several streams), select it (or them) in the list and execute the NTFS Streams » Delete Stream(s)…
command. Please note that the delete operation cannot be undone.

To open stream (or several streams) in the editor, select them and execute the NTFS Streams » Open Stream(s)
command. All selected streams are opened in the editor. You may edit them as you edit normal files. The Always Create
Backups Option does not affect streams - backup is never created for a saved modified stream.

If the current document in the editor is a stream and not a file, NTFS Streams tool window displays a notification message,

Hex Editor Neo Documentation Definitive Guide

102

because NTFS does not allow streams to have sub-streams. In this case, you may use the NTFS Streams » Open Parent File
command to open stream's parent file in the editor.

Find Stream Mode

The Find Stream mode is described in detail in the following section.

Searching for Streams

Hex Editor Neo provides you with a powerful feature that allows you to locate all files (according to a given criteria) that
have alternate data streams in them. It can also be used to quickly calculate a total space occupied by streams on your disk.
Found streams may then be opened in the editor or deleted.

Execute the Tools » Find Streams… command to start searching for streams.

Provide a folder or a list of folders (separated by semicolon) in the Search In box. You may also press the Browse button to
open up the Folder List Window where you can visually select folders.

Use the File types box to specify the mask. You may specify several masks, separated by semicolons. This mask is used only
to filter files, not streams.

You may limit a search by defining the lower bound for a stream size, either in bytes, KBytes, MBytes or GBytes in the Larger
than box.

Exclude box lets you enter the regular expression used to exclude located streams. The predefined value
(Zone.Identifier)|(encryptable)|(favicon) excludes streams Zone.Identifier , encryptable and favicon , as the
system widely uses them and their size is small.

Include sub-folders option may be used to search deep into the selected folders.

When you finish configuring searching options, click the OK button.

Search Process and Results

As soon as you start searching for streams, the NTFS Streams Tool Window enters the search mode. In this mode it stops
displaying streams of the active document and starts displaying streams satisfying your criteria. The last line in the list
always tells you how much streams were found, how much files and folders scanned and total streams size. You may abort
searching by executing the NTFS Streams » Cancel Current Operation command.

When the search is finished, all matched streams are displayed in the list. You may sort the list by clicking on any column.

To open a stream (or several streams) in the editor, select it (or them) and execute the NTFS Streams » Open Stream(s)
command. All selected streams are opened in the editor. You may edit them as you edit normal files.

To delete a stream (or several streams), select it (or them) in the list and execute the NTFS Streams » Delete Stream(s)…
command. Please note that the delete operation cannot be undone.

To exit a search mode execute the NTFS Streams » Exit Find Streams Mode command.

Operation History
The Hex Editor Neo widely uses the concept of operation history. Operation history is a series of operations performed on
the document. The history is a document's property and is therefore shared by all document's editor windows.

Hex Editor Neo Documentation Definitive Guide

103

An operation is a command executed on the document that caused any modifications to it. Below is a list of all commands
that lead to document modification and thus always form an operation:

Typing (or Write)
Fill
Insert
Delete
Insert File
Change File Size
Replace
Replace All
Cut
Merge and Cut
Paste
Encrypt
Decrypt
Bitwise Operations
Arithmetic Operations
Shift Operations
Case Change Operations

All other commands (such as Find and Copy) do not modify the document's data and do not form an operation.

The current document's operation history is always displayed in the History Tool Window. In addition, Edit » Undo and Edit
» Redo commands can be used to navigate through the operations.

Organization

As you issue more and more commands on the document, they are added to its operation history, forming an operation list.
There is always a “current” operation in the list. The current operation is the last operation performed on the document. At
the very top of the list there is an Open or New operation in most cases. The New operation is used if the document was
created and Open operation is used if the document was opened.

If the History » Clear History command were used on the document, the root of the list may not be a New or Open
operation.

You can change the current operation using one of the following methods:

Execute another operation. The operation is added to the operation list and becomes a current operation.
Execute the Edit » Undo command. The operation, which is previous to the current one (if there is one), becomes a
current operation.
Execute the Edit » Redo command. The operation, which is next to the current one (if there is one), becomes a current
operation.
Select any operation in an operation tree in the History Tool Window. Selected operation becomes current.

When the current operation is not a last executed operation, all operations executed AFTER the current are grayed in the
History Tool Window. They are then called phantom operations, or operation tail. All these operations are stored in a
history, but are not currently affecting the document. Although, they can always be applied again to the document, if you
change the current operation.

Branches

Like in most other editors, the sequence of operations you perform on a document form an operation history. Imagine you
create a new document and perform several operations. This is a resulting operation history:

Now, you decide to undo the last operation and execute the Edit » Undo command. This is how the history list looks like
now:

Hex Editor Neo Documentation Definitive Guide

104

The last operation is still displayed, but this time in gray color. It is still available for you, but is not currently affecting a
document. If you execute the Edit » Redo command, the operation becomes active again.

But what if you execute a new operation, say, delete a byte at offset 0x1f? In most other editors, the grayed operation is
removed and you no longer can access it.

Hex Editor Neo introduces a concept of history branches. Think of an operation history as a tree; then a branch is a full path
from the tree's root to a tree's leaf. The number of branches equals the number of leafs. When new operation is added to an
operation history, one of the following occurs (providing the Auto Create Branches switch is ON):

If the current operation is a last one and there are no grayed (undone) operations, the new operation is added to the
end of the list and becomes active. This is a standard behavior found in most editors.
If the current operation is not a last in a list and there are grayed operations following it, a new branch is created. Then,
depending on the pinned state of the current branch, either the new operation is put into the newly created branch, or
the grayed tail is moved into the newly created branch.

Branches are displayed as tabs at the top of the History Tool Window.

Additionally, a special icon is added to every tree's fork. See the History Tool Window section for more information.

You can perform the following actions with branches:

Switch to a branch
To switch to a branch, click its tab.

Rename a branch
To rename a branch, double click its tab.

Delete a branch
To delete a branch, right-click it to bring up a shortcut menu and select a “Delete Branch” option.

Pin or unpin a branch
To pin or unpin a branch, click the pin icon. See below for a description of pinned branches.

Pinned Branches

When a new branch is created, the tail of the current branch is moved into a newly created branch, the new operation is
added to the current branch and it still remains a current one. This is a default behavior of unpinned branch.

When a branch is pinned, a new operation is added to a newly created branch which in turn becomes a current branch. This
allows you, for example, to assign a name to an important branch and make sure it stays “untouched” whenever you fork a
new branch from it.

History Tool Window

History Tool Window displays the operation history of the current document. The current document is a document whose
editor window is currently active.

Hex Editor Neo Documentation Definitive Guide

105

There is a list of branches at the top of the window. Each branch is represented by a tab which holds its name and its pinned
state.

Operations are displayed in a list in ascending order: older operations are at the top and newer operations are at the
bottom. Similar operations (operations of the same type) can be grouped, which is a default behavior. The History » Group
Same Operations switch is used to turn grouping on or off. Each operation is displayed with an image and operation name.
Operation parameters are also displayed. Grouped items are marked with a special overlay icon. To switch to a given
operation, click on it in a list. All document windows are immediately updated to reflect changes. The selected operation
becomes a current operation. All operations, issued after the current operation in the same branch become phantom
operations and are displayed in gray color. They currently do not affect the document's state.

If a displayed operation is a fork, a special “arrow” icon is displayed (as illustrated on a picture above). You can click on an
icon to bring up a list of all branches (except the current one), that are forked from the given operation.

Operation Tree Actions

In addition to History Commands, several actions may be carried directly on a tree using mouse or keyboard.

Use arrow keys or mouse to navigate operations in a tree.
Use the mouse to switch to branches (click on tabs).
Pin or unpin a branch by clicking on its pin icon.
Press Del button to execute the Purge Tail command.
Right-click the mouse button or press the Menu key to bring up the shortcut menu.
When on fork, press the Spacebar to display a list of branches growing from this fork. Alternatively, click on a arrow
with a mouse button or find one in a shortcut menu.

History Commands

Several Hex Editor Neo commands are related to document's history.

Edit » Undo

The last executed operation is undone and becomes the phantom operation. The previous operation becomes a current
operation. This command is disabled if there is no previous operation.

Complexity: constant-time.

Edit » Redo

The first operation in operation tail becomes a current operation. If there are no phantom operations, this command is
disabled.

Complexity: constant-time.

History » Clear History

Hex Editor Neo Documentation Definitive Guide

106

All operations in a history are deleted. The document state is NOT changed, all modifications are “merged” into the
single operation, which becomes an operation list root.

Complexity: linear-time (depends on the number of operations in history and their complexity).

History » Purge…

History Purge provides you with three ways of purging an operation history:

Purge redo tail - all phantom operations (or operation tail) are dropped and removed.
Purge branches - all branches except the current one are dropped and removed.
Purge all - remove all operations except the very first one. In most cases (if Clear History command was not used),
this root operation is “Open” or "New".

Complexity: constant-time. See the Purging History.

History » Group Same Operations switch
Turns automatic grouping on or off. Automatic grouping groups operations of the same type into one operation in a
list. You can expand this operation to see each operation that forms a group.

History » Auto Create Branches switch
When this switch is on (default), new branches are automatically created if there are any phantom operations at a time
you execute a new operation. When this switch is off, phantom operations are silently deleted and new operation is
added to the current branch.

History » Save Operation History…

The entire operation history is compressed and saved to a disk file. It then may be loaded and applied to the same
document. See the Saving History section for more information.

Complexity: linear-time.

History » Load Operation History…

Loads a saved operation history from a disk file. Several checks are performed to make sure the history is loaded for
the same document. See the Loading History section for more information.

Complexity: linear-time.

History » Full Operation History Tree…
Displays a complete operation history tree. See the Operation History Tree Window topic for more information.

Purging History

When the History » Purge… command is executed, the following window appears:

You may select the way you want to purge a history.

Purge redo tail - all phantom operations (or operation tail) are dropped and removed.
Purge branches - all branches except the current one are dropped and removed.
Clear history - all operations in a history are deleted. The document state is NOT changed, all modifications are
“merged” into the single operation, which becomes an operation list root.
Purge all - remove all operations except the very first one. In most cases (if Clear History command was not used), this
root operation is “Open” or "New".

Hex Editor Neo Documentation Definitive Guide

107

Purge History operation cannot be undone.

Saving and Loading History

Saving History

The entire operation history tree, complete with all operations and branches may be compressed and saved to a disk file.
Later, this operation history may be applied to the same document.

The complexity of this operation depends linearly on the number of operations in a history (in all branches).

Hex Editor Neo automatically stores a document's name and size in a history file.

Loading History

This command allows you to restore the previously saved operation history tree. Saved history must be loaded for the same
document it was created from.

If there is non-empty history in the current document when this command is invoked, the following window appears:

Select the Drop current history and replace it with a loaded one option to drop the current history and replace it with a one
you are loading.

Select the Save current history option if you want to retain the current history. In this case, you may enter an optional prefix
to be added to the name of each loaded branch to easily distinguish them from each other.

Operation History Tree Window

The purpose of this window is to display the entire document's operation history. Each operation is displayed as a box with
operation's icon and short description. A tooltip with more detailed information is displayed when you hover a mouse
pointer over the box.

The window works in two modes: full mode and forks only mode. The Forks Only command is used to switch between
modes.

Full Mode

Hex Editor Neo Documentation Definitive Guide

108

In this mode, entire operation history tree is displayed. As operation history grows larger, the tree gets more and more
complex. It is recommended to switch to the forks only mode in this situation.

Forks Only Mode

In forks only mode only tree's root, “leafs” and forks are displayed. Thus, all history branches are clearly visible, but the tree
stays compact. This mode may be useful for displaying complex history trees.

Navigation

As operation history tree grows large, it becomes impossible to display the entire tree in the window. Use the scroll bars,
keyboard keys or mouse to scroll the contents of the window to locate the required part.

Use the Zoom In, Zoom Out or mouse wheel to change the zoom level. The Fit to Screen command may be used to
automatically adjust the zoom level to try to completely fit the tree into the window. Please note however that there are
minimum and maximum zoom level limits.

You can use a keyboard navigation keys and mouse to select any operation in the tree. The underlying document's state is
immediately switched to the selected operation. Press the Enter key, or double-click the operation box to close the window
and switch to the selected operation.

Press the Esc key to cancel the changes and close a window.

Legend

Hex Editor Neo uses different colors and line widths to display the current branch, other (than current) branches as well as
undone operations in the current branch. You can change the colors using the Select Colors… command.

Shortcut Menu

Right-click the mouse button on any operation box to bring up the operation's shortcut menu. The following commands are
available:

Switch To
Switch to the given operation and close the window.

Purge Branches
Purge all history branches besides the one holding the given operation. Note that any branch originating below this
operation is not purged.

Purge Tail
Purge all operations below the given one.

File Comparison
File Comparison feature compares two files (either binary or text). It can be used, for example, to locate all changes you
have made to a file. After the operation completes, the File Comparison Tool Window contains comparison results. In
addition, corresponding areas are highlighted in the editor.

To change colors used by the file comparison feature, press the Select Colors… button on the File Comparison Tool
Window's toolbar.

To compare files execute the Tools » Compare Files… command.

Compare Files Window

This dialog is used to configure the file comparison feature and to start comparing files.

Hex Editor Neo Documentation Definitive Guide

109

First file, second file
Select the first and the second files to compare. All currently opened documents as well as last recently used
documents are listed in the drop-down. In addition, you can enter the full path manually, or use the ... button to browse
for it. After pressing the browse button, select one or two files. If you select a single file, it is used either as a first file, or
second file. If you select two files, they will be used as first file and second file correspondingly.

Comparison method
Select either the Simple comparison algorithm or Difference algorithm.

Normal/Precise
The quality/performance level of the difference algorithm.

Align documents
Select the automatic alignment of compared documents.

Synchronize windows
Select to synchronize cursor movement in compared documents (applicable only to the simple comparison algorithm).

Colors button
Press to change colors used to highlight different areas.

File Comparison Tool Window

This tool window contains the results of the file comparison operation.

For each block, its type, its size and offset in both files is provided. The block is colored according to its color in the editor
window. You can navigate the blocks using the keyboard or mouse, convert the blocks to selection, switch number display
between decimal and hexadecimal values.

“Combine mode” is used to display blocks from both documents in the list. When "combine mode" is off, only blocks from
the current document are displayed. Switch the documents to view blocks for another one.

Comparison Algorithms

Simple Comparison Algorithm

This algorithm compares file data byte-by-byte. It uses three types of blocks:

Matched
Different
Not Found

If two bytes are the same in both files - they will be marked as Matched. Otherwise, they are marked as Different. If one file
is larger than another, its excess part is marked as Not Found.

This algorithm is convenient if two files are almost equal and there were no data inserted or removed from them.

Difference Algorithm

This algorithm searches for matched, modified, inserted and removed blocks in both files:

Matched blocks are blocks of equal data in both files.
Inserted blocks are blocks of data inserted into the first file. They are marked only in the second file as they are missing

Hex Editor Neo Documentation Definitive Guide

110

in the first one.
Removed blocks are blocks of data removed from the first file. They are marked only in the first file as they are missing
in the second one.
Modified blocks are blocks of completely different data.

This algorithm has a quality/performance tuning option, specified in the Compare Files Window. If set to “Normal”, it may
operate faster, but less accurately, and if set to "Precise", it may operate slower (sometimes much slower), but will be able to
find more matches.

Patches
A patch is a difference between two states of a document. In most cases the size of this difference is much smaller than the
size of the file itself. Hex Editor Neo supports creating a special patch file, which contains all modifications made to an
opened document. The patch can subsequently be distributed and applied to the same file resulting in the same
modifications being made to a file.

Hex Editor Neo does not support applying patches in its framework. Instead, the separate application, PatchApply.exe is
provided for this purpose. Alternatively, Patch API provides several other methods of applying patches.

Distribution

Patch files created by the Hex Editor Neo may be freely distributed without any limitations. This also applies to self-
installing patch files.

Limitations

Currently, Hex Editor Neo does not allow you to create a patch if a file contains data, pasted from other documents. If a file
contains data pasted from itself, the patch may be created.

Creating Patches

To create a patch, you must have an opened and modified document. Execute the File » Create Patch… command.

Patch file name
Enter the full path name to the patch file or use the Browse (...) button. Hex Editor Neo automatically appends the
.hexpatch file extension if you omit it. If Self-installing patch option is turned on, .exe extension is appended instead.

Save original file name
Original file's name is saved in the patch file and then compared with a name of file the patch is applied on. If this
option is turned off, file name comparison is skipped.

Calculate and save file hash
A hash value is calculated for the whole file. Later, when the patch is applied, the hash value is calculated for the target
file and compared to this value.

Remove references to other files

Hex Editor Neo Documentation Definitive Guide

111

This option is not currently implemented.
Self-installing patch

The patch file is packaged inside the executable file. It can subsequently be used without the PatchApply.exe application.
You may specify whether you want to target any platform (“Target x86 platform”) or x64 platform only ("Target x64
platform").

After you press the OK button, Hex Editor Neo starts creating a patch. This may take a while.

Applying Patches

A separate application, the PatchApply.exe utility, is used to apply patches created by the Hex Editor Neo. The patch may
also be packaged inside the executable file. In this case, nothing else (except the target file, of course) is required to apply
the patch.

Patch API may also be used to apply the patch.

Care must be taken to make sure the patch is applied to exactly the same file. Hex Editor Neo provides three simple
mechanisms to validate the file's identity:

1. Hex Editor Neo always compares the size of the source and target files. If they differ, patch cannot be applied. This
option cannot be disabled by the user.

2. Hex Editor Neo may store and compare the name of the source and target files. You may disable this option.
3. Hex Editor Neo may compute the hash value for both files and compare it. You may disable this option. Hash

calculation may significantly slow down patch creation/applying but provides quite a good degree of confidence.

PatchApply.exe

The Apply Patch utility is launched from the Hex Editor Neo's group in the Start menu.

Hex Editor Neo always installs two versions of the utility. One is a native x86 application and another is a native x64
application. Only x86-platform version may be used on x86 platform and any version may be used on x64 platform (but
x64-platform version is preferable).

Path to file to patch
The full path to the target file you are going to apply patch on. You may enter the path manually or click on the Browse
(...) button.

Path to the patch file
The full path to the patch file. You may enter the path manually or click on the Browse (...) button.

This patch file
This switch is active if the patch file is encapsulated in the executable (self-installing patch).

Do not validate file name
File name validation is disabled. This option takes no effect unless “Save original file name” option was active during
patch creation.

Do not compute and compare file hash
Skip calculation and validation of file's hash value. This option take no effect unless “Calculate and save file hash”
option was active during patch creation.

Do not create backup
Skip creation of the backup copy of the target file. Use this option with care as you may lose your data if wrong patch is

Hex Editor Neo Documentation Definitive Guide

112

applied to a file, or patch is applied to a wrong file.

Command Line Interface

PatchApply.exe utility also provides the command-line interface.

PowerShell
PatchApply.exe [<target file>] [/patch <patch file>] [/noui] [/silent] [/skipfilename] [/skiphashcheck] [/skipbackup] [/help | /?]

where

target file

full path to the file being patched
patch file

full path to patch file (omit for self-installing patches)
/noui

do not display user interface (except progress and status)
/silent

do not display progress and status
/skipfilename

do not validate target file name
/skiphashcheck

do not calculate and compare file hash
/skipbackup

do not create target file backup
/help or /?

display this information

Patch API

Patch API provides the programming interface to the Hex Editor Neo's patch application functions. Patch API may not be
used to create a patch, only to apply it.

Hex Editor Neo's installer provides an option to install the Patch API on your computer.

More information on the API is found in separate documentation file, installed with a Patch API.

Pattern Coloring
Hex Editor Neo provides a feature called Pattern Coloring that can be used to automatically highlight specific patterns in an
edited document. You define a pattern and specify the coloring applied to it in an editor window. Pattern Coloring fully
supports regular expressions.

“Range Rule” type also allows you to specify a range in a document and coloring to apply to this range.

A Pattern Coloring Tool Window is used to define one or more patterns and coloring rules. For each defined pattern (or
range), background color, foreground (text) color, outline color and rounded edges flag are defined. It is recommended to
specify semi-transparent background colors. In this case, if several modules apply coloring to the same editor's cell, it is still
possible to differentiate them.

Pattern Coloring Tool Window

Pattern Coloring Tool Window is used to define a set of rules that associate specific patterns or data ranges with coloring
rules.

Hex Editor Neo Documentation Definitive Guide

113

The Tools » Pattern Coloring » Enable Pattern Coloring switch is used to quickly disable or enable application of all
defined coloring rules.

Creating and Editing Rules

Use the Tools » Pattern Coloring » Add New Rule command to define a new pattern coloring rule.

You define a pattern using the Pattern Window, which is part of this dialog. You also specify whether to ignore case while
matching the pattern. You can then specify the foreground and background colors, outline color and Round edges flag. In
addition, description may be specified for a pattern. It is then displayed in a tooltip when you hover the mouse over
highlighted pattern in an editor window.

Instead of entering a pattern to match in a document, you may create a range rule. For this rule, you enter a range by
specifying its starting offset and size in either hexadecimal or decimal formats. The coloring you specify is then applied to
the given range in all editor windows.

To edit a rule, double-click it in a list, or bring up the shortcut menu and choose the “Modify Rule…” option.

To remove a rule, select it in a list, bring up the shortcut menu and choose the “Remove” option.

Rule Schemes

All defined rules comprise the pattern coloring scheme. A scheme may be saved to a disk file and later loaded from it. To do
it, execute Tools » Pattern Coloring » Save Scheme… or Tools » Pattern Coloring » Load Scheme… correspondingly.
To delete all currently defined rules, execute the Tools » Pattern Coloring » Clear Coloring Scheme command.

Hex Editor Neo automatically records all defined rules and restores them next time you launch the application.

Hex Editor Neo Documentation Definitive Guide

114

Regular Expressions

The Pattern Coloring fully supports regular expressions. To search using regular expressions, select either “ASCII string
(char[])” or "UNICODE string (wchar_t[])" pattern type, enter the regular expression, make sure the “Regular expression”
checkbox is checked and enter the sub-expression number you want to search for. Sub-expression "0" represents the
expression itself.

Take the following limitation into account:

Complex regular expressions that start long before a visible area and/or end long after a visible are may not be
highlighted.

Structure Viewer
Structure Viewer interprets document's data according to some structure definition. A structure is an ordered set of fields,
each of which has defined type. A type may be a built-in type or another structure.

Structure Viewer allows you to bind structure definition to a given position within a file and analyze file's data according to
a structure definition. In addition, you may use parsed fields to modify data in a document.

This section describes features provided by the Structure Viewer and how to control it.

See also the What's new in Structure Viewer section for more information on latest changes.

What's New in Structure Viewer

What's New in Structure Viewer (version 6.31)

Starting from version 6.31, a new JavaScript engine is used by Structure Viewer. This allows writing JavaScript ES2015
code.

This is also a breaking change: the document object is no longer exposed directly to the structure being bound. Only subset
of methods and properties are now available. See the document object topic for more information.

_SVC_VER compiler version macro value has been changed to 0x401 (major version: 4, minor version: 1), which indicates a
major upgrade. The major version change is related to breaking change in support for the document object and the version
of JavaScript engine.

What's New in Structure Viewer (version 6.25)

New Language Features

_SVC_VER compiler version macro
Compiler version in 6.01 has a value of 0x307 (major version: 3, minor version: 7), which indicates minor upgrade.

New directives
New directives are supported: $revert_to, $shift_by and $remove_to. New field attribute exact_only.

What's New in Structure Viewer (version 6.01)

This is a minor upgrade to Structure Viewer. This release also introduces the new built-in structure definition file editor.

New Language Features

_SVC_VER compiler version macro
Compiler version in 6.01 has a value of 0x306 (major version: 3, minor version: 6), which indicates minor upgrade.

New built-in value type
New built-in value type ByteArray is now supported.

New built-in functions
This release adds the following new functions: array, length, element, subarray, substring and find.

Structure Library revised
Structure Library is now a separate tool window.

Hex Editor Neo Documentation Definitive Guide

115

Fixed bugs

Various function scope bugs fixed
Invalid scope rules were used when executing native functions.

Incorrect if statement branch optimization
The editor could incorrectly optimize if statement branch in some cases.

Incorrect language grammar
Structure definition language grammar was fixed: it sometimes erroneously prohibited otherwise legitimate constructs.

What's New in Structure Viewer (version 5.12)

This is a minor upgrade to Structure Viewer. In addition to several bug fixes

New Language Features

_SVC_VER compiler version macro
Compiler version in 5.12 has a value of 0x305 (major version: 3, minor version: 5), which indicates minor upgrade.

New predefined macros
This version adds the following predefined macros: _SVC_X86 , _SVC_X64 , _SVC_POINTER_SIZE ,
_SVC_POINTER_SIZE_REAL .

Optimization of core algorithms
Optimization of core algorithms improved binding time by about 10%. This is more noticeable for complex structures,
where a lot of computations and other expression evaluation occurs during binding.

Integer type modifiers
It is now possible to use little_endian and big_endian to change integer's type default byte ordering. This functionality
complements the #pragma byte_order directive and has priority over it.

New type [display] attribute
This release introduces the first type attribute: display. Previous versions automatically generated values for collapsed
items. Values of first 5 type's fields in curly braces is displayed by default. Version 5.12 allows you to override this
behavior for a specific type. You provide an expression, whose evaluated value is used. This expression is evaluated in
current type's scope and has access to all its fields.

New built-in functions
New functions — is_valid() Function and evaluate_if() Function have been added to a list of supported built-in
functions.

Limited support for references
Version 5.12 adds support for taking references of fields. References may be used to pass fields (including arrays and
complex type fields) as arguments to native functions or to compare two objects. A new built-in function ref is used to
get a field's reference.

New method in Parser object
This release adds the IParser.add_coloring_scheme method to the IParser interface.

Fixed bugs

Error removing non-existing files from the library
It was impossible to remove a non-existing structure definition file from the library.

Invalid operation
In some rare cases Structure Viewer could read garbage from the document instead of real data.

Errors updating Output window
Several inconsistences with Structure Errors tool window and present/absent definition files have been fixed.

Errors in native functions implementation
Assignment statement did not work in native functions, which also resulted in inability to use for statement in them.

Incorrect scope for array indexing operator
Array indexing operator used incorrect scope while evaluating the index expression, which could led to bugs or “ID not

Hex Editor Neo Documentation Definitive Guide

116

found” exceptions.
Crash after removing file from the library

Application could crash after removing structure definition file from the library (after it stopped watching its directory
for changes, that is, after the last file from that directory was removed).

Crash when trying to remove used file from the library
Application crashed when you tried to remove used structure definition file from the library.

Very long string handling issue
Structure Viewer could crash when it tried to display a very long string (longer than 65536 characters).

What's New in Structure Viewer (version 5.01)

This is a major upgrade to Structure Viewer. This module has almost been rewritten from scratch, taking advantage of new
compiler, parallel processing (on multi-processor and multi-core computers), new features and a major performance boost.

Hex Editor Neo does not perform pre-compilation anymore. The speed of compilation is now 10-100 times faster and is
performed by multiple cores. Structure Viewer initialization no longer slows down application start up.

New version improves the binding time and reduces memory consumption of bound structures.

New Language Features

_SVC_VER compiler version macro
Compiler version in 5.01 has a value of 0x300 (major version: 3, minor version: 0), which indicates major upgrade.

Breaking change
break operator now always exits the current scope, even if not used inside a loop or switch statement.

Breaking change
When defining constants, the expression at the right side must evaluate to a constant value at compile time. Compare
this to variables.

Breaking change
Visual Basic Scripting is not supported anymore. You can create external functions on Javascript only.

Alternative syntax for specifying enumeration's base type
New syntax (the one described in C++11) for specifying enumeration's base type may be used. The old one is still
supported.

Update to #pragma byte_order behavior
This pragma may now be used at any scope. It changes the byte ordering immediately (effective for next fields if used
inside a user-defined type, for example).

Non-fatal $assert directive is supported
This release finally makes use of non-fatal $assert directive possible (it was documented, but not supported in previous
releases).

Updating of array elements
Previous versions allowed you to declare variable arrays. This version adds support for modifying individual array
elements after they have been declared (and possibly initialized).

New attributes

In addition to noindex attribute, the following attributes introduced:

noautohide - allows you to turn off automatic hiding of empty fields.
onread - specify the expression to be evaluated each time the value is read.
format - specify the format string to be used when displaying the field's value.
description - specify the user-friendly description of the field.
color_scheme - specify the color scheme for the field.

New built-in functions
The following new built-in functions were introduced: bool, decimal, hex, octal, binary, integer_convert and format.

Support for native functions
In addition to existing support for using JavaScript functions (either inline or defined in external files), new Structure

Hex Editor Neo Documentation Definitive Guide

117

Viewer allows you to define native functions. This also introduces the return statement.
Automatic optimization of sub-expressions

Previous versions of Structure Viewer could automatically optimize constant expressions. New version adds automatic
optimization to sub-expressions as well.

New directive
New $alert directive allows you to evaluate an expression at bind time and display the result in a message box.

New UI Features

Support for color schemes
Combined with new color_scheme attribute, allows the customer to apply different color schemes to individual fields in
a bound structure.

Structure Library dialog improvements.
Various improvements of the Structure Library dialog.

External structure editor support
Added support for external structure editor.

Improved error detection and reporting

This version dramatically improves syntax error detection and reporting. The editor is now capable of detecting more
errors and provides more accurate position for an error. It is also now has so-called “expectation points” in its
grammar. For example, in the following code fragment:

C++
public struct A
{
 int a[5;
};

A “syntax error” with message "] expected" is displayed. A cursor points to the ‘;’ character.

Change to bind error behavior
Now, when bind error occurs, all items that have already been bound are left in the Structure Viewer. Exception item is
added to the end of the list of bound items.

Structure Errors tool window
New tool window displays all compilation and binding errors. You can double-click any entry in a list to display the
position of the error.

What's New in Structure Viewer (version 4.96)

Hex Editor Neo is a constantly developing application. Structure Viewer in version 4.96 adds support for the following:

_SVC_VER compiler version macro
Compiler version in 4.96 has a value of 0x206 (major version: 2, minor version: 6).

Incorrect bit field values editing fixed : This version fixes the error in editing bit field values.

Regular Expressions in File-Scheme Association
Structure Viewer now uses regular expressions to associate a file and a scheme.

What's New in Structure Viewer (version 4.92)

Hex Editor Neo is a constantly developing application. Structure Viewer in version 4.92 adds support for the following:

_SVC_VER compiler version macro
Compiler version in 4.92 has a value of 0x205 (major version: 2, minor version: 5).

New statements
New statements are now supported: while, for and do…while.

In-line javascript code

Hex Editor Neo Documentation Definitive Guide

118

Javascript code may now be specified in the same file, without using the #pragma script directive. A new javascript
keyword is used for this.

Changes in $print directive operation
Before this version, $print directive always converted its argument to string. Now it preserves the argument's type and
uses Structure Viewer's visualization engine to display it. It will now appear exactly as any other parsed field. And do
not remember, that $print directive not only displays its value, it also introduces new field into the scope.

New visualization mode for pointers
Hex Editor Neo now also prints computed address for a pointer as well as “peeks” inside the pointed type (as it does for
structures and arrays).

What's New in Structure Viewer (version 4.71)

Hex Editor Neo is a constantly developing application. Structure Viewer in version 4.71 adds support for the following:

_SVC_VER compiler version macro
Starting from the current version, Structure Viewer defines a macro that holds a current compiler version. Compiler
version in 4.71 has a value of 0x200 (major version: 2, minor version: 0).

New built-in types
The parser now natively recognizes three additional types: bool (one-byte boolean type), string (null-terminated single-
byte character string) and wstring (null-terminated two-byte character string).

Dynamic typing

When evaluating expressions, dynamic typing rules are used. For example, adding two integers produces an integer,
but adding a floating-point number and an integer number produces a floating-point number. The same rules apply to
other types and other operators.

Note that this feature introduces a breaking change: the syntax for defining constants has changed.

Variables
You can now define variables, and change their values at a later time. Variable's type is polymorphic, that is, it may be
changed by assigning a value of another type.

Constant and Variable Arrays

You can now define constant or variable arrays and reference their elements in expressions:

C++
const Months[]={
 "January",
 "February",
 "March",
 "April",
 "May",
 "June",
 "July",
 "August",
 "September",
 "October",
 "November",
 "December"
};

public struct A
{
 short month;
 $print("Month as string",Months[month]);
};

Scripting support

You may now call functions written in Javascript or VBScript from the Structure Viewer expressions. In addition, a
number of internal functions are provided. Structure Viewer makes two objects, parser and document, available to the
running script.

functions.js:

Hex Editor Neo Documentation Definitive Guide

119

JavaScript
function ScriptAdd(a,b)
{
 return a+b;
}

function IsModified()
{
 return document.Modified;
}

structure.h:

C++
#pragma script("functions.js")

struct A
{
 if (IsModified())
 $print("warning","The document has been modified!");
 char array[ScriptAdd(10,8)]; // equivalent to char array[10+8];
};

Statements
Hex Editor Neo's parser now understands the if statement and switch statement.

“Infinite” Arrays
An array may now be declared as having an infinite (unknown) number of elements. Combined with a new
$break_array directive, this allows declaring arrays for which the number of elements is not known beforehand.

#pragma byte_order

You may now instruct the parser how your multi-byte values are packed.
Array optimization

Arrays of simple integer types are now optimized by the parser, reducing the binding time and memory consumption.
In addition, you may refer to character arrays (arrays of type char and wchar_t) in expressions. In this case, the contents
of an array is represented as a string:

C++
struct A
{
 char TagName[10];
 if (TagName == "#Default")
 // do something
};

hidden: and visible: directives
You may now use “hidden:” and "visible:" directives to change the visibility of a field in a user-defined type. The
visibility only affects the displaying of the field, otherwise it remains visible when referenced in expressions.

public and private user-defined types.
A user-defined type may now be marked as private or public: private types are not displayed in the Bind Structure
Dialog.

$bind directive
$bind directive allows a structure definition to bind another structure.

current_offset built-in variable
You may now use the current_offset pseudo variable in expressions. It will always equal to the offset the next field will
be bound to.

array_index built-in variable

This variable evaluates to a current array index when used in an user-defined type. For example:

Hex Editor Neo Documentation Definitive Guide

120

C++
struct B;

struct A
{
 B b[10]; // array of 10 B's
};

struct B
{
 int b;
 if (array_index == 3) // fourth element contains another integer
 int c;
};

“Synchronize Position” mode
A new “Synchronize Position” mode allows you to easily match the location of a bound field anywhere in the
document.

Overall performance enhancements and several bug fixes.
Structure Viewer can now easily handle extremely complex structures and arrays with billions and billions of items.
Navigating such complex structure is very simple and fast.

Structure Library Tool Window

A structure is defined in a text file (that usually has .h extension). A file may contain one or more structure definitions and
may also reference other files with an #include directive. The syntax for structure definition is defined in the Language
Reference section.

A Structure Viewer Library is used to manage a list of structure files from which a list of defined structures is taken. To
access the Structure Library, open the Structure Library tool window by executing the View » Tool Windows » Structure
Library command.

The library window displays a list of managed files and a list of structure definitions, taken from them. They are grouped
under the Files and Structures folders correspondingly.

Double-click the file to open its contents in the built-in editor. Double-click the structure name to open its definition file in
the built-in editor. Cursor is automatically moved to the structure definition location.

Hex Editor Neo watches for modifications of bound structure files added to the Structure Library. If the file is changed
outside the Hex Editor Neo, you are offered to reload and re-scan it.

Library Management

Hex Editor Neo Documentation Definitive Guide

121

Use the Tools » Structure Viewer » Library » Add Definition File… command to add an existing structure definition file
to the library. A file is compiled and a list of error messages is displayed in Output window.

Use the Tools » Structure Viewer » Library » New Definition File… command to create an empty structure definition
file and add it to the library. You will be prompted for a file location.

Highlight the file in the library window and execute the Tools » Structure Viewer » Library » Remove Definition File to
remove a file from the library.

Compilation

Hex Editor Neo compiles all structure definition files on each launch. It also automatically re-compiles source files when
they are modified using built-in editor or by an external program unless the Tools » Structure Viewer » Library » Auto
Recompile option is turned OFF. You may manually force the editor to recompile all structure definition files by executing
the Tools » Structure Viewer » Library » Compile command.

Structure Editor

Starting from version 6.01, Hex Editor Neo includes built-in Structure Editor. Use this editor to modify any existing structure
definition or to create new definitions. The editor has built-in syntax coloring and you may customize used colors as
described in Structure Editor Coloring section.

Built-in structure editor allows you to view and edit structure definition files. To open a file, use one of the following:

Structure Library Tool Window
Double-click on any file or structure in a list to automatically open it in the editor.

Tools » Structure Viewer » Library » New Structure File…
Use this command to create a new structure definition file and open it in the editor. You will be asked for a location and
name.

Editor uses syntax coloring (which you may customize as described in the Structure Editor Coloring section) and provides
advanced editing capabilities.

Find

Use the Edit » Find… command to bring up the Find window. Enter the pattern to search, configure options and press the
Find button. Then use the Edit » Find Next command to jump to the next pattern occurrence.

Replace

Hex Editor Neo Documentation Definitive Guide

122

Use the Edit » Replace… command to bring up the Replace window. Enter the source and replacement patterns, configure
options and then press the Replace or Replace All button.

Go to Line

Use the Edit » Go to Line command to bring up the Go to Line window. Enter the line number and press OK button.

Structure Editor Coloring

This window allows you to configure fonts and colors used by Structure Editor. You can change the appearance of the
following categories:

Comments
Comments are standard C/C++ comments sections, enclosed between /* and */ or one-line commentaries started with
//

Functions
Built-in functions.

Identifiers
Identifiers, such as field names, variable names and structure names.

Keywords
Structure definition language keywords, such as statements and types.

Numbers

Hex Editor Neo Documentation Definitive Guide

123

All numeric values.
Operators

All supported operators.
Plain text

Other un-categorized text.
Pragmas

Pragma declarations.
Preprocessor

Preprocessor directives.
Strings

String literals.

Licenses

This product includes the open source project Scintilla. Scintilla project license is provided below and is also available at
http://www.scintilla.org/License.txt. License for Scintilla and SciTE

Copyright 1998-2002 by Neil Hodgson <neilh@scintilla.org>

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation.

NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

Structure Binding

In order to be able to use any structure defined in the Structure Library, you must bind it to the document's data.

To bind a structure, execute the Tools » Structure Viewer » Bind… command. This brings up the Structure Bind dialog:

Hex Editor Neo Documentation Definitive Guide

124

Select the structure you want to bind from the Type list. You can also press the Browse (...) button to go to the Structure
Library where you can add new source files, for example. Give a bound structure a name - this will allow you to differentiate
between several bound structures of the same type and to reference structure's fields.

Specify the address of the structure in a file. Address may be specified as hexadecimal or decimal value. You may select one
of the following bind types which change the meaning of the address value:

Absolute address
The structure is bound to the absolute address. The structure remains at the given address regardless of any actions
performed on the document.

Relative address
The structure is bound to the given address. The structure is then moved each time you insert or delete data before its
start address. This does not relate to complex editing commands, such as Delete (with multiple selection), Replace or
Replace All.

Cursor : The structure is bound to the cursor's location and moves with it.

Alternatively, you can enter the address of a structure as an expression. An expression is allowed to use constants,
enumerations (defined in the global scope of any of added source files) and fields of already bound structures.

You also specify two coloring rules (one for the whole structure and another for a structure's field). The first coloring is
applied when a bound structure is visible in an editor window. When you select a structure's field in a Structure Viewer Tool
Window, the second coloring rule is applied to each cell the field occupies in an editor window.

Structure Viewer Tool Window

Structure Viewer Tool Window displays structures bound to the current document.

Hex Editor Neo Documentation Definitive Guide

125

For each bound structure, its name, type, binding address and coloring sample are displayed. Click on the plus button to
expand the structure.

A checkbox on the left to the bound structure controls whether it and the currently selected field are highlighted in the
editor window.

After the structure is expanded, all its fields appear on a screen:

For every field of an expanded structure, you see the name, value, address and field type. As the structure may contain fields
whose types are also structures, you may continue expanding them until only built-in types are visible.

The data displayed in a “Value” column is not read-only. You may edit any field by double-clicking on it or executing the Edit
» Edit Cell command. When you finish editing a field's value, press the Enter key to submit the changes. The changes are
then propagated directly to the current document.

Managing Bound Structures

To bind a new structure, execute the Tools » Structure Viewer » Bind… command. To change the bound structure's
properties, double-click it in the list, or select the Edit… option from the shortcut menu.

You may copy the structure's field or the whole structure into the Clipboard using the Copy to Clipboard or Copy All to
Clipboard shortcut menu options. Structure may also be exported into the CSV file.

NOTE
Structure viewer limits the amount of data that you can place into the Clipboard. Export to CSV, on the other hand, is
capable of processing the entire structure tree, regardless of its complexity, provided you have enough free disk space.

To unbind (delete) a bound structure, select it and press the Del key. You may also select the Unbind option from the
shortcut menu.

Hex Editor Neo Documentation Definitive Guide

126

Execute the Tools » Structure Viewer » Unbind All command to remove all bound structures.

The Tools » Structure Viewer » Display Hex Values switch is used to switch between displaying data in decimal or
hexadecimal formats.

The Synchronize Position toolbar command tells the Structure Viewer to synchronize cursor movement between the
current editor window and the bound structure.

Autorefresh option (on the toolbar) controls whether the Structure Viewer automatically re-binds all currently bound
structures whenever a document changes. It is recommended to switch this option off if you have a complex structure
bound.

Press the On-line Repository… toolbar button to open an on-line structure definition repository.

Working with Schemes

All bound structures may be saved as a scheme. To save a scheme, execute the Tools » Structure Viewer » Save
Scheme…. Specify the scheme's name and click the OK button.

All defined schemes are then listed in a scheme combo box.

To load a given scheme, select it in a list. To remove a current scheme execute the Tools » Structure Viewer » Remove
Scheme command.

Structure Viewer Settings Page

The Structure Viewer Settings Page allows you to specify the list of include directories and structure-file associations.

Include Directories

The list of include directories is managed in the left part of the window. Use the Add, Remove and Remove All buttons to
manage the list. Include directories are scanned by the #include directive when it searches for included structure files.

Hex Editor Neo Documentation Definitive Guide

127

File Associations

File Associations let you associate a Structure Viewer Scheme with a specific file using regular expressions. Next time a file
which name matches the regular expression is opened in the Hex Editor Neo, the given structure scheme is automatically
loaded. File associations are managed in the right part of the window.

Use the Add, Remove and Remove All buttons to manage associations.

Language Reference

Hex Editor Neo supports advanced structure definition syntax. It is based on the Standard C type definition syntax and
extends it in a number of ways.

While Standard C only allows defining static types, that is, data structures which size and memory allocation is strictly
defined at compile time, Hex Editor Neo extends the syntax to allow definition of dynamic types. The following code
illustrates this:

C++
struct StaticType
{
 int Array[128];
};

struct DynamicType
{
 int ArraySize;

 // invalid in Standard C (non const expression), valid in Hex Editor Neo
 int Array[ArraySize / sizeof(int)];
};

The DynamicType structure definition is valid in Hex Editor Neo. The size of the structure is determined at the time it is
bound to the data and the number of elements in Array array varies.

Workflow

Hex Editor Neo compiles all protocol definition files in its library on each application start. A preprocessor is run on each
source file. It is responsible for the following tasks:

Elimination of all comments from the source file.
Macro evaluation.
Processing of conditional compilation blocks.
Processing of all #include directives and building the dependency graph.

Multiple files are pre-processed and compiled in parallel if Hex Editor Neo is running on multi-processor and/or multi-core
computer.

Tokenization

Source files are tokenized according to standard C language rules: there must be one or more space characters between
tokens if they cannot be distinguished without spaces and there may optionally be one or more spaces between tokens if
they are distinguishable without spaces.

Space is a space character (' '), tabulation ('\t'), newline ('\n') or comment.

C++
int a; // valid, space is used to separate tokens "int" and "a"
int/* comment */a; // valid, comment is used to separate tokens "int" and "a"
inta; // invalid, compiler cannot distinguish between "int" and "a" and parses it as "inta"
int // continued on the next line…
 a // still continued…
 ; // valid, newline is valid space character

a & b // valid, space is used to separate "a" and "&" and "&" and "b"
a&b // still valid, space is not required - compiler is able to
 // distinguish between "a" (identifier) and "&" (operator)

Space must not be used inside a keyword, such as built-in type int or operator && :

Hex Editor Neo Documentation Definitive Guide

128

C++
in t a; // invalid, "int" must not contain space
a & & b // valid, but will be parsed as a & (&b)
a | | b // invalid, space inside keyword (operator "||")

Comments

Two standard C-style comments are supported: single-line and multi-line comments. Single-line comment starts with //
character sequence and continues to the end of the current line. Multi-line comments must be started with /* sequence
and terminated with */ sequence.

C++
// Single-line comment
/* multi-line
 (continued here)
 comment */

Multi-line comments may be used “in-place”:

C++
struct /* comment */ A
{
 int /* another comment */ a;
};

Comments are completely ignored and removed from the document prior to compiling it.

Preprocessor

Preprocessor is a special compiler that is run each time the application compiles the protocol definition file. It executes
before compilation of the source file and prepares a source file for compilation.

Hex Editor Neo provides a fully C99-compliant preprocessor which supports the following directives:

#include

Performs a physical inclusion of the contents of another source file into the current file.
#pragma once

Prevents a file from being included multiple times.
#define , #undef

Allows defining preprocessing constants and macros.
#if , #ifdef , #ifndef , #else , #elif , #endif , defined() operator .

Provides support for conditional compilation.
#error

Unconditionally stops source file compilation.

#include directive

#include directive physically includes the contents of a specified file into the current file.

Syntax:

C++
#include "filename"

or

C++
#include <filename>

When used in its first form, the referenced file is searched in the same folder as the current file.

For example, let us have following two files:

Hex Editor Neo Documentation Definitive Guide

129

file1.h

C++
struct A
{
 // …
};

And file2.h :

C++
#include "file1.h"

struct B
{
 A a;
};

If there was no #include directive in file2.h , you would not be able to add this file to a Structure Library, as it uses an
undefined type A . But preprocessor, which runs on the file before it is compiled, transforms the file into the following:

C++
struct A
{
 // …
};

struct B
{
 A a;
};

That is, it physically inserts the contents of file1.h into file2.h , thus, making file2.h compilable. See also the
#pragma once directive.

Using Absolute and Relative Paths

Both syntax forms, form 1 and form 2 allow you to specify absolute or relative paths, for example:

C++
// will use an absolute path
#include "c:\Projects\definitions.h"

// includes "definitions.h" file, located in "inc" sibling
#include "..\inc\definitions.h"

// includes "definitions.h" file, located in "lib" subdirectory
// of one of standard include paths.
#include <lib\definitions.h>

#pragma once Directive

#pragma once directive prevents the file from being included multiple times.

Syntax:

C++
#pragma once

Let fileA.h be #include -ed into fileB.h and into fileC.h . If you now write a fileD.h with the following two lines:

C++
#include "FileB.h"
#include "FileC.h"

“fileA.h” will get included twice. In order to prevent this, put a following line into the "fileA.h" file:

C++
#pragma once

Hex Editor Neo Documentation Definitive Guide

130

#define Directive

#define directive lets you define preprocessor-time constants and macros.

Syntax:

C++
#define id [token-string]

or

C++
#define id([id, [id, […]]) [token-string]

A macro declaration must end on the same line. If you need to continue on the next line, finish a line with a backslash
character:

C++
#define MY_STRING "This is a start of the long " \
 "long long " \
 "string" // the end of macro declaration

Defining Constants

In its first form, #define creates a preprocessor-time constants. For example:

C++
#define MAX_LENGTH 5

This declaration will instruct the preprocessor to scan the source file and replace all occurrences of MAX_LENGTH with 5 . The
preprocessor is smart enough to only perform a replace when MAX_LENGTH is used as an identifier, that is, it will transform
the following code fragment:

C++
// This example uses MAX_LENGTH:
struct A
{
 int array[MAX_LENGTH];
 const int MaxLength = MAX_LENGTH;
 $assert(MaxLength == MAX_LENGTH, "Error with MAX_LENGTH");
};

into the following:

C++
// This example uses MAX_LENGTH:
struct A
{
 int array[5];
 const int MaxLength = 5;
 $assert(MaxLength == 5, "Error with MAX_LENGTH");
};

As you see, substitution had not occurred in comment and in string. All other occurrences have been replaced.

A constant may be more complex, for example:

C++
#define MAX_LENGTH (2 + 5)

Note the use of parenthesis in order to prevent operator precedence errors.

Defined constants may refer to constants defined before:

C++
#define SECOND 10000000
#define MINUTE (60 * SECOND)

Hex Editor Neo Documentation Definitive Guide

131

The following form:

C++
#define SOME

will only define a constant, without assigning it a particular value. If occurred in a text, it gets removed from it. However, you
may successfully test such constant within the #ifdef directive or using a defined() operator:

C++
#define INCLUDE_STRUCT_A
// …
#ifdef INCLUDE_STRUCT_A
struct A
{
 // …
};
#endif

By convention, macros and preprocessor constants are named with uppercase letters.

Defining M acros

The second form of the directive is used to define macros:

C++
#define ADD(x,y) ((x) + (y))

The preprocessor will not only perform a replace, but also will perform a parameter substitution:

C++
ADD(7,8) // will be replaced with ((7) + (8))
ADD(n,-1) // will be replaced with ((n) + (-1))

Macros may contain any number of parameters:

C++
#define MAX(a,b) ((a) > (b) ? (a) : (b))

Variadic M acros

Hex Editor Neo supports variadic macros. To use variadic macros, the ellipsis may be specified as the final formal argument
in a macro definition, and the replacement identifier __VA_ARGS__ may be used in the definition to insert the extra
arguments. __VA_ARGS__ is replaced by all of the arguments that match the ellipsis, including commas between them.

#undef Directive

An #undef directive is used to remove the macro definition.

Syntax:

C++
#undef id

Example:

Hex Editor Neo Documentation Definitive Guide

132

C++
#define MAX_LENGTH 5
struct A
{
 int array[MAX_LENGTH];
};

#undef MAX_LENGTH
struct B
{
 // compile-time error, "MAX_LENGTH" identifier not found
 // (preprocessor did not replace it with "5")
 int array[MAX_LENGTH];
};

#error Directive

#error directive stops compilation of the current source file.

Syntax:

C++
#error error-message-string

error-message-string is displayed to the user.

Preprocessor Operators

Stringizing Operator

The number-sign or “stringizing” operator # converts macro parameters to string literals without expanding the parameter
definition. It is used only with macros that take arguments. If it precedes a formal parameter in the macro definition, the
actual argument passed by the macro invocation is enclosed in quotation marks and treated as a string literal. The string
literal then replaces each occurrence of a combination of the stringizing operator and formal parameter within the macro
definition.

White space preceding the first token of the actual argument and following the last token of the actual argument is ignored.
Any white space between the tokens in the actual argument is reduced to a single white space in the resulting string literal.
Thus, if a comment occurs between two tokens in the actual argument, it is reduced to a single white space. The resulting
string literal is automatically concatenated with any adjacent string literals from which it is separated only by white space.

Further, if a character contained in the argument usually requires an escape sequence when used in a string literal (for
example, the quotation mark (") or backslash () character), the necessary escape backslash is automatically inserted before
the character.

C++
#define ASSERT(condition, message) $assert(condition, message ": " #condition)

// …
struct A
{
 int a;
 ASSERT(a > 5, "a must be greater than 5");
// The previous line will be replaced with $assert(a > 5, "a must be greater than 5" ": " "a > 5");
};

Token-Pasting Operator

The double-number-sign or “token-pasting” operator ## , which is sometimes called the "merging" operator, is used in both
object-like and function-like macros. It permits separate tokens to be joined into a single token and therefore cannot be the
first or last token in the macro definition.

If a formal parameter in a macro definition is preceded or followed by the token-pasting operator, the formal parameter is
immediately replaced by the un-expanded actual argument. Macro expansion is not performed on the argument prior to
replacement.

Then, each occurrence of the token-pasting operator in token-string is removed, and the tokens preceding and following it
are concatenated. The resulting token must be a valid token. If it is, the token is scanned for possible replacement if it
represents a macro name. The identifier represents the name by which the concatenated tokens will be known in the

Hex Editor Neo Documentation Definitive Guide

133

program before replacement. Each token represents a token defined elsewhere, either within the program or on the
compiler command line. White space preceding or following the operator is optional.

This example illustrates use of token-pasting operator:

C++
#define BIT_FIELD(type, n) type field##n:n
// …
struct A
{
 BIT_FIELD(unsigned,5); // will be replaced with: unsigned field5:5;
 BIT_FIELD(unsigned,7); // will be replaced with: unsigned field7:7;
};

Conditional Compilation Directives

#if , #elif , #else , #endif , defined() operator

The #if directive, with the #elif , #else , and #endif directives, controls compilation of portions of a source file. If the
expression you write (after the #if) has a nonzero value, the line group immediately following the #if directive is retained
in the translation unit.

C++
#if expression
text
[
#elif expression
text
[
#elif expression
text
]]
[
#else
text
]
#endif

Each #if directive in a source file must be matched by a closing #endif directive. Any number of #elif directives can
appear between the #if and #endif directives, but at most one #else directive is allowed. The #else directive, if present, must
be the last directive before #endif .

The #if , #elif , #else , and #endif directives can nest in the text portions of other #if directives. Each nested #else ,
#elif , or #endif directive belongs to the closest preceding #if directive.

All conditional-compilation directives, such as #if and #ifdef , must be matched with closing #endif directives prior to
the end of file; otherwise, an error message is generated. When conditional-compilation directives are contained in include
files, they must satisfy the same conditions: There must be no unmatched conditional-compilation directives at the end of
the include file.

Macro replacement is performed within the part of the command line that follows an #elif command, so a macro call can
be used in the expression.

The preprocessor selects one of the given occurrences of text for further processing. A block specified in text can be any
sequence of text. It can occupy more than one line. Usually text is program text that has meaning to the compiler or the
preprocessor.

The preprocessor processes the selected text and passes it to the compiler. If text contains preprocessor directives, the
preprocessor carries out those directives. Only text blocks selected by the preprocessor are compiled.

The preprocessor selects a single text item by evaluating the constant expression following each #if or #elif directive
until it finds a true (nonzero) constant expression. It selects all text (including other preprocessor directives beginning with
#) up to its associated #elif , #else , or #endif .

If all occurrences of constant-expression are false, or if no #elif directives appear, the preprocessor selects the text block
after the #else clause. If the #else clause is omitted and all instances of constant-expression in the #if block are false, no
text block is selected.

The constant-expression is an integer constant expression with these additional restrictions:

Hex Editor Neo Documentation Definitive Guide

134

Expressions must have integral type and can include only integer constants, character constants, and the defined()
operator.
The expression cannot use sizeof() operator.

The preprocessor operator defined can be used in special constant expressions, as shown by the following syntax:

C++
defined(identifier)
defined identifier

This constant expression is considered true (nonzero) if the identifier is currently defined; otherwise, the condition is false
(0). An identifier defined as empty text is considered defined. The defined directive can be used in an #if and an #elif
directive, but nowhere else.

C++
// Define the structure definition variant:
#define VARIANT 2

// …

struct A
{
#if VARIANT == 1
 char a;
#elif VARIANT == 2
 short a;
#elif VARIANT == 3
 int a;
#else
 long a;
#endif
};

#ifdef , #ifndef

T h e #ifdef and #ifndef directives perform the same task as the #if directive when it is used with
defined(identifier) .

C++
#ifdef identifier
#ifndef identifier

// equivalent to
#if defined(identifier)
#if !defined(identifier)

You can use the #ifdef and #ifndef directives anywhere #if can be used. The #ifdef identifier statement is equivalent
to #if 1 when identifier has been defined, and it is equivalent to #if 0 when identifier has not been defined or has been
undefined with the #undef directive. These directives check only for the presence or absence of identifiers defined with
#define .

Predefined Macros

Hex Editor Neo defines several macros, called predefined macros. These macros are available for each structure definition
file:

Hex Editor Neo Documentation Definitive Guide

135

Macro Description
_SVC_VER An integer that specifies the current compiler's version. Low 8 bits

represent the minor version, high 8 bits represent major version. For
example, version 3.05 is represented as 0x305.

_SVC_X86 Defined for 32-bit version of Hex Editor Neo. Undefined for 64-bit
version.

_SVC_X64 Defined for 64-bit version of Hex Editor Neo. Undefined for 32-bit
version.

_SVC_POINTER_SIZE An integer that specifies the size of pointer in bits on current machine.
Equals to 32 for 32-bit version of Hex Editor Neo and 64 for 64-bit
version.

_SVC_POINTER_SIZE_REAL An integer that specifies the size of pointer in bits on current machine.
Always returns the real value, even if 32-bit version of Hex Editor Neo
is running on 64-bit OS.

Built-in Types

Integer Types

Hex Editor Neo natively supports the following integer types:

Type Name Other Valid Names Typedefs in
stddefs.h

Description Range

bool N/A N/A One-byte boolean value.
Displayed as “true” and
"false".

N/A

char signed char CHAR, int8,
__int8

8-bit signed character -27 to
27 - 1

wchar_t N/A WCHAR 16-bit UNICODE character 0 to
216 - 1

unsigned char N/A UCHAR , BYTE ,
uint8

8-bit unsigned character 0 to 28
- 1

short signed short ,
short int ,
signed short int

SHORT , int16 ,
__int16

16-bit signed integer -215 to
215 - 1

unsigned short unsigned short int USHORT , WORD ,
uint16

16-bit unsigned integer 0 to
216 - 1

int signed int , signed INT , int32 ,
__int32

32-bit signed integer -231 to
231 - 1

unsigned int unsigned UINT , uint32 32-bit unsigned integer 0 to
232 - 1

long signed long ,
long int ,
signed long int

LONG 32-bit signed integer -231 to
231 - 1

unsigned long unsigned long int ULONG , DWORD 32-bit unsigned integer 0 to
232 - 1

__int64 N/A LONGLONG ,
int64

64-bit signed integer -263 to
263 - 1

unsigned __int64 N/A ULONGLONG ,
FILETIME ,
uint64

64-bit unsigned integer 0 to
264 - 1

Type Modifiers

Two modifiers, little_endian and big_endian may be used to change the default byte ordering of a type. They may be
used directly in declaring fields:

Hex Editor Neo Documentation Definitive Guide

136

C++
struct A
{
 big_endian short value;
};

or in typedef declaration to create a new type:

C++
typedef big_endian short b_short;

Note that #pragma byte_order directive may still be used to change default byte ordering for the rest of a scope. If
little_endian or big_endian modifier is present, it always overwrites the current default.

Floating-Point Types

Hex Editor Neo natively supports the following floating-point types:

Type
Name

Description Size, in
Bytes

Range

float Single-precision floating-point type, according to IEEE
754-1985

4 3.4∙10±38 (7
digits)

double Double-precision floating-point type, according to IEEE
754-1985

8 1.7∙10±308 (15
digits)

String Types

Hex Editor Neo natively supports the following string types:

Type Name Description
string Null-terminated ANSI string (each character occupies single byte).
wstring Null-terminated UNICODE string (each character occupies two bytes).

Expressions

Expressions are allowed in different places in the structure definition. For example, the size of the bit field, the number of
items in array and pointer offset are all specified using expressions. Expressions are also used in calculating constant values
and enumeration values.

Expression is a combination of immediate values, constants, enumeration values, function calls and field references. All
these elements are connected with one or more operators.

An expression may be as simple as:

C++
5 // evaluates to integer "5"

or as complex as:

C++
5 + 7*(10 - 2) // calculate an expression
info.bmiHeader.sel.header.biSizeImage // take a value of a field several scopes deep
bfTypeAndSignature.bfType == 'BM' && bfReserved1 == 0 && bfReserved2 == 0 // verify a condition
RvaToVa(OptionalHeader.DataDirectory[i].VirtualAddress) // access a field in a nested structure and array and call an external function

Operators

Below is a table of supported operators. Operators are sorted by their precedence, from highest to lowest. Operators in the
same row have the same precedence value and are evaluated from left to right.

Hex Editor Neo Documentation Definitive Guide

137

Operator(s) Name or Meaning
. [] () Field access, array indexing, expression grouping
() Function call
- ~ ! sizeof() & Unary minus, bitwise NOT, logical NOT, sizeof, address-of
* / % Multiplication, division, modulo division
+ - Addition, subtraction
<< >> >>> Left shift, right shift, right unsigned shift
< <= > >= Less than, less than or equal, greater than, greater than or equal
== != Equality, inequality
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
&& Logical AND
|| Logical OR
?: Conditional operator

Optimization

All expressions are evaluated at the time a structure file is compiled. If expression is successfully evaluated to constant value
(that is, it does not contain any field references), calculated value is used instead of the expression. It is used each time a
type is bound to the data, thus greatly minimizing bind time. You can get advantage of this optimization taken by the Hex
Editor Neo: instead of

C++
const SecondsInHour = 3600; // 60 * 60
const SecondsInDay = 86400; // 60 * 60 * 24

use

C++
const SecondsInHour = 60*60;
const SecondsInDay = SecondsInHour * 24;

As the result will be the same after the source file is compiled.

Hex Editor Neo is also capable of optimizing sub-expressions:

C++
struct A
{
 int size;
 byte data[size * (sizeof(int) - 1)];
};

Important note here is that constant sub-expression must be enclosed in parenthesis in order to be optimized. Otherwise,
Hex Editor Neo will not optimize it because it considers a variable as having arbitrary type:

C++
var i = ...
var j = i + (5 + 3); // will be optimized to i + 8
var j = i + 5 + 3; // will not be optimized (consider the case when i is a string, for example, which results in i + "53").

Immediates

An expression may contain an immediate value. There are several ways to specify an immediate:

Integer N umber

A signed or unsigned integer number may be specified in either base 10 or base 16:

Hex Editor Neo Documentation Definitive Guide

138

C++
9 // integer number 9
-7 // integer number -7
0x5a // integer number 90

Floating-Point N umber

A floating-point number is specified in either standard or scientific notation:

C++
2.3 // floating-point number 2.3
-4e-9 // floating-point number -0.000000004

Character Constants

A character constant is one, two or four symbols enclosed in single quotation marks:

C++
'c' // integer number 99
'BM' // integer number 19778
'NTFS' // integer number 1397118030

A standard C escape character may be used inside the quotation marks:

C++
'\n' // integer number 10
'\t' // integer number 9

String Constants

String constants are only allowed in $assert directive and in $print directive. A sequence of characters (including escape
characters) enclosed in double quotation marks. Several subsequent strings are automatically concatenated.

C++
"Hello, World!" // "Hello, World!" string
"Hello, " "World!" // the same "Hello, World!" string (automatically concatenated)
"Col1\tCol2\tCol3\n1\t2\t3" // simple table with two rows and three columns

References

Hex Editor Neo allows getting a reference to a field by using the built-in function ref. The following operators are allowed
for two references:

== operator
!= operator
< operator
<= operator
> operator
>= operator

If one argument of a binary operator is a reference and another one is not, a reference is automatically dereferenced and
then the normal operator rules apply.

In addition, a reference may be dereferenced using one of the built-in conversion functions.

Limitations

The result of ref function application may not be used with [] operator and . operator. Assign the result of the function to the
local variable and use the variable instead:

Hex Editor Neo Documentation Definitive Guide

139

C++
struct A
{
 struct { int a,b; } field;

 var t1 = ref(field).a; // syntax error
 var r_field = ref(field);
 var t2 = r_field.a; // OK

 int array[100];
 var t3 = ref(array)[50]; // syntax error
 var r_array = ref(array);
 var t4 = r_array[50]; // OK
};

Byte Arrays

Byte arrays are introduced in version 5.15. This is a new value type in addition to previously supported boolean , integer ,
floating-point , string and reference value types.

Byte arrays represent contiguous ranges in memory and usually contain unstructured data. The following operations are
supported on byte arrays:

References are implicitly converted to byte arrays if they are used in the expression with other byte arrays. See example
below.

Byte arrays may be specified as immediate values using the following syntax:

C++
struct Header
{
 unsigned char Signature[3];

 $assert(Signature == { 0x20, 0xff, 0xfe }); // Immediate byte array
 // Note the implicit conversion between the array field and byte array.
 // Array field is first automatically converted to reference and then implicitly converted to
 // byte array
};

Other value types may be explicitly converted to byte array using the array() function.

Arrays may be compared for equality and inequality. Arrays also support the following operators: < , > , <= and >= for
which lexicographical comparison is used.

An individual element of byte array may be taken using the element() function.

A portion of an array may be extracted using the subarray() function.

A length() function returns the number of bytes in an array. This function also works with strings, returning the length
of the string.

A find() function allows you to search for an occurrence of one byte array within another one. This function also works
with strings.

Field Access

An expression may reference any field within visible scope. A field is referenced by its name, which is case sensitive. Name
lookup continues from child scope to parent scope until the match is found. If the field is not found, constants and
enumeration values are searched. If no match is found in constants and enumeration values, an error is generated.

The following example illustrates this:

Hex Editor Neo Documentation Definitive Guide

140

C++
enum
{
 EnumerationValue =0x20,
};

const ConstantValue = 0x30;

struct A
{
 int a;
 int Array1[a]; // references a in this structure
 int Array2[ConstantValue]; // references ConstantValue in global scope
 int Array3[EnumerationValue]; // references EnumerationValue in global scope
 struct
 {
 int Array4[a]; // references a in parent scope
 } contained;
};

Pointed to types are allowed to reference fields in pointer field's scope. It is their direct enclosing scope. For example:

C++
struct PointedType; // forward declaration

struct PointerType
{
 int a;
 int b as PointedType *; // b is converted to a pointer to PointedType structure
 int c;
};

struct PointedType
{
 int Array[a + c]; // references a and c in PointerType (note c is declared AFTER b, the reference is still valid)
};

this Pseudo-Field

The special field this is defined for each bound user-defined type and evaluates to the absolute offset of this bound
structure.

C++
struct B
{
 // …
};

struct A
{
 int OffsetToB as B *(this); // B will automatically be bound to &A + OffsetToB
};

When passed to the built-in ref function, the result is a reference to the current object.

array_index Built-In Variable

This built-in variable evaluates to the current array element index, if the structure is being used inside an array, otherwise it
is evaluated to -1.

Hex Editor Neo Documentation Definitive Guide

141

C++
struct B;

struct A
{
 B b[10];
};

struct B
{
 int a;
 if (array_index == 3) // array_index evaluates to a current array index
 int b;
};

current_offset Built-In Variable

This built-in variable evaluates to the address the next field will be bound to.

C++
#pragma script("get_doc_size.js") // we use a GetDocumentSize() function

struct A
{
 int b[10];
// pad this structure to the end of the file
 char padding[GetDocumentSize() - current_offset];
};

. Field Access Operator

Field access operator is used to access fields in contained scopes.

Syntax:

C++
id.id[.id[.id …]]

The following code fragment illustrates the use of the field access operator:

C++
struct A
{
 struct
 {
 int c;
 } b;
 int Array[b.c]; // access the c field inside the b field
};

struct, union, case union or pointer field may be used on the left of the field access operator.

[] Array Indexing Operator

Array indexing operator allows you to reference individual array items.

Syntax:

C++
id[exp]

The following code fragment illustrates the use of the array indexing operator:

C++
struct A
{
 int Array1[10]; // static array of 10 integers
 int Array2[Array1[2]]; // dynamic array, which size is taken from the third value of Array1 array
};

Hex Editor Neo Documentation Definitive Guide

142

Array elements are numbered from 0 to Count - 1, where Count is (static or dynamic) array size.

() Expression Grouping Operator

Expression grouping operator allows you to change the precedence rules of operators in an expression.

Syntax:

C++
(exp)

The following code fragment illustrates the use of the expression grouping operator:

C++
2 + 3 * 4 - 7 // evaluates to 7
2 + 3 * (4 - 7) // evaluates to -7

You can use parenthesis whenever you need to change the precedence of operators or increase the readability of the
expression.

() Function Call Operator

Function call operator allows you to call an internal or external function.

Syntax:

C++
id([param-list])
param-list: expr [,expr ,[…]]

The following code fragment illustrates the use of the function call operator:

C++
struct A
{
 int Array1[int(10.2)]; // Call an internal cast function
 int Array2[ExternalFunction()]; // Call an external function with no parameters
};

External function calls are never optimized at compile-time. All expressions containing external function calls will be
computed at run-time.

- Unary Minus Operator

Unary minus operator change the sign of the expression.

Syntax:

C++
-exp

The following code fragment illustrates the use of the unary minus operator:

C++
-7 // evaluates to integer number -7

~ Bitwise NOT Operator

Bitwise NOT operator inverts all bits of the expression.

Syntax:

C++
~exp

The following code fragment illustrates the use of the bitwise NOT operator:

Hex Editor Neo Documentation Definitive Guide

143

C++
~7 // evaluates to -8

This operator is not applicable to floating-point values.

& Bitwise AND Operator

This operator performs a bit-wise AND operation on its operands.

Syntax:

C++
exp1 & exp2

Usage:

C++
7 & 8 // evaluates to 0
2 & 2 // evaluates to 2

This operator is not applicable to floating-point values.

^ Bitwise XOR Operator

This operator performs a bit-wise XOR (eXclusive OR) operation on its operands.

Syntax:

C++
exp1 ^ exp2

Usage:

C++
7 ^ 8 // evaluates to 15
2 ^ 2 // evaluates to 0

This operator is not applicable to floating-point values.

| Bitwise OR Operator

This operator performs a bit-wise OR operation on its operands.

Syntax:

C++
exp1 | exp2

Usage:

C++
7 | 8 // evaluates to 15
2 | 4 // evaluates to 6

This operator is not applicable to floating-point values.

! Logical NOT Operator

Logical NOT operator inverts (logically) an expression. Evaluates to 0 if the expression is non-zero or to non-zero if the
expression is zero.

Syntax:

C++
!exp

Hex Editor Neo Documentation Definitive Guide

144

The following code fragment illustrates the use of the logical NOT operator:

C++
!7 // evaluates to 0
!0 // evaluates to 1

&& Logical AND Operator

This operator evaluates to non-zero if and only if both operands are non-zero, otherwise it evaluates to zero.

Syntax:

C++
exp1 && exp2

Usage:

C++
7 && 8 // evaluates to 1
0 && 2 // evaluates to 0
5 == 5 && 2==2 // evaluates to 1

If exp1 evaluates to zero, exp2 is not evaluated.

|| Logical OR Operator

This operator evaluates to non-zero if at least one of if its operands is non-zero, otherwise it evaluates to zero.

Syntax:

C++
exp1 || exp2

Usage:

C++
0 || 0 // evaluates to 0
0 || 2 // evaluates to 1
5 == 5 || 2==3 // evaluates to 1

If exp1 evaluates to a non-zero value, exp2 is not evaluated.

sizeof() Operator

This operator returns the size, in bytes, of the enclosed identifier.

Syntax:

C++
sizeof(id)

id may be either a built-in type, typedef'ed type, user-defined type or field reference. Taking the size of user-defined
dynamic type is incorrect and will result in compile error.

The following code fragment illustrates the use of the sizeof() operator :

Hex Editor Neo Documentation Definitive Guide

145

C++
struct A
{
 int a;
 int b;
 int c[4];
};

struct B
{
 int a;
 int b[a];
};

struct C
{
 B b;

 const SizeOfInt = sizeof(int); // correct, evaluates to 4
 const SizeOfA = sizeof(A); // correct, evaluates to 24 (size of static user-defined type A)
 const SizeOfB = sizeof(B); // incorrect, results in compile-time error, B is dynamic type
 var SizeOfb = sizeof(b); // correct, will be calculated at run-time
};

& Address-Of Operator

This operator takes the address (offset) of the given field.

Syntax:

C++
&field-id

Returned address is absolute.

C++
struct A
{
 int a;
 int b;
 const OffsetTob = &b - this; // offset to field b (in bytes) from the beginning of the
 // structure is now stored in OffsetTob constant
};

* Multiplication Operator

This operator computes the multiplication of two given expressions.

Syntax:

C++
exp1 * exp2

Usage:

C++
7 * 8 // evaluates to 56
(2 + 2) * (7 - 1) // evaluates to 24

/ Division Operator

This operator computes the result of division of one operand by another.

Syntax:

C++
exp1 / exp2

If the divisor evaluates to zero, a run-time error occurs. If the result of the expression is used as an integer value, the result
of the division is truncated to the nearest integer value.

Hex Editor Neo Documentation Definitive Guide

146

C++
4 / 2 // evaluates to 2
3 / 2 // evaluates to 1
5 / 0 // a run-time error occurs

% Modulo Division Operator

This operator computes the remainder of the division of the first operand by the second operand.

Syntax:

C++
exp1 % exp2

If the divisor evaluates to zero, a run-time error occurs.

C++
4 % 2 // evaluates to 0
5 % 2 // evaluates to 1
5 % 0 // a run-time error occurs

This operator is not applicable to floating-point values.

+ Addition Operator

This operator computes the sum of two given expressions.

Syntax:

C++
exp1 + exp2

Usage:

C++
7 + 8 // evaluates to 16
2 + 2 // evaluates to 4

Addition operator may also be used in string expressions to concatenate strings or to add immediate or field to a string.

- Subtraction Operator

This operator computes the difference between two given expressions.

Syntax:

C++
exp1 - exp2

Usage:

C++
7 - 8 // evaluates to -1
2 - 2 // evaluates to 0

<< Left Shift Operator

This operator performs a left shift of the first operand. The second operand specifies how many bits to shift.

Syntax:

C++
exp1 << exp2

Usage:

Hex Editor Neo Documentation Definitive Guide

147

C++
7 << 1 // evaluates to 14
-3 << 3 // evaluates to -24

This operator is not applicable to floating-point values.

>> Right Shift Operator

This operator performs an arithmetic right shift of the first operand. The second operand specifies how many bits to shift.

Syntax:

C++
exp1 >> exp2

Usage:

C++
456 >> 3 // evaluates to 57
-100 >> 2 // evaluates to -25

This operator is not applicable to floating-point values.

>>> Right Unsigned Shift Operator

This operator performs a logical (unsigned) right shift of the first operand. The second operand specifies how many bits to
shift.

Syntax:

C++
exp1 >>> exp2

Usage:

C++
456 >>> 3 // evaluates to 57
-100 >>> 2 // evaluates to 1073741799 (0x3fffffe7)

This operator is not applicable to floating-point values.

< Less Than Operator

This operator evaluates to non-zero value if first operand is less than the second operand or to zero value otherwise.

Syntax:

C++
exp1 < exp2

Usage:

C++
7 < 8 // evaluates to 1
2 < 2 // evaluates to 0

<= Less Than or Equal Operator

This operator evaluates to non-zero value if first operand is less than or equal to the second operand or to zero value
otherwise.

Syntax:

C++
exp1 <= exp2

Hex Editor Neo Documentation Definitive Guide

148

Usage:

C++
7 <= 8 // evaluates to 1
2 <= 2 // evaluates to 1
3 <= 2 // evaluates to 0

> Greater Than Operator

This operator evaluates to non-zero value if first operand is greater than the second operand or to zero value otherwise.

Syntax:

C++
exp1 > exp2

Usage:

C++
8 > 7 // evaluates to 1
2 > 2 // evaluates to 0
3 > 5 // evaluates to 0

>= Greater Than or Equal Operator

This operator evaluates to non-zero value if first operand is greater than or equal to the second operand or to zero value
otherwise.

Syntax:

C++
exp1 >= exp2

Usage:

C++
8 >= 7 // evaluates to 1
2 >= 2 // evaluates to 1
3 >= 5 // evaluates to 0

== Equality Operator

Evaluates to non-zero value if both operands are equal or to zero otherwise.

Syntax:

C++
exp1 == exp2

Usage:

C++
7 == 8 // evaluates to 0
2 == 2 // evaluates to 1

!= Inequality Operator

Evaluates to non-zero value if operands are different or to zero otherwise.

Syntax:

C++
exp1 != exp2

Usage:

Hex Editor Neo Documentation Definitive Guide

149

C++
7 != 8 // evaluates to 1
2 != 2 // evaluates to 0

?: Conditional Operator

This is the only supported ternary operator. It evaluates to the value of its second operand if the first operand evaluates to
non-zero value, otherwise, it evaluates to the value of the third operand.

Syntax:

C++
exp1 ? exp2 : exp3

Usage:

C++
5 == 3 ? 8 : 7 // evaluates to 7
2 == 2 ? 8 : 7 // evaluates to 8

Functions

Internal Functions

Built-In Functions

Hex Editor Neo provides a number of built-in functions:

Function Name Description
bool(exp)

Convert a given parameter exp to a boolean value.
The following conversion rules apply:

Value's
type

Behavior

bool exp returned
int false if exp equals to zero,

true otherwise
double false if exp equals to zero,

true otherwise
string false if exp is an empty

string, true otherwise
reference false if reference is not

initialized, true otherwise

Note that when a statement expects a boolean, it
converts the passed value to boolean
automatically. The same rules are used during this
implicit conversion.

int(exp) Convert a given parameter exp to an integer
value. Floating-point numbers are truncated to
nearest integer, strings are parsed as containing an
integer. If parsing error occurs, the result of the
conversion is zero. If passed string starts with 0 , it
is considered as containing octal number. If passed
string starts with 0x or 0X , it is considered as
containing hexadecimal number. References are
first dereferenced and then converted to integer.

double(exp) Convert a given parameter exp to a floating-point
value. If used on string, a string is parsed as
containing a floating-point number. If parsing

Hex Editor Neo Documentation Definitive Guide

150

error occurs, the result of the conversion is zero.
References are first dereferenced and then
converted to floating-point.

string(exp) Convert a given parameter exp to a string value.
References are dereferenced.

decimal(exp) Convert a given parameter exp to an integer
value. Always treats a passed string as containing
decimal number (regardless of any prefixes).
References are dereferenced.

hex(exp) Convert a given parameter exp to an integer
value. Always treats a passed string as containing
hexadecimal number (regardless of any prefixes).
References are dereferenced.

octal(exp) Convert a given parameter exp to an integer
value. Always treats a passed string as containing
octal number (regardless of any prefixes).
References are dereferenced.

binary(exp) Convert a given parameter exp to an integer
value. Always treats a passed string as containing
binary number (regardless of any prefixes).
References are dereferenced.

integer_convert(exp, radix) Convert a given parameter exp to an integer
value. An integer's base is passed as second
argument to the function. It is automatically
converted to integer. References are dereferenced.

format(fmt_string, ...) This function takes a format string fmt_string
and arbitrary number of arguments. It returns a
string after placing each passed parameter to
corresponding placeholder in a format string.

substring(string, pos, [count]) This function extracts a substring from a given
string . pos is zero-based index of the first
character of the substring and count is an optional
number of characters in a substring. If omitted,
substring continues until the end of the string. If
pos is greater than the string length, an exception
occurs. Count can be any positive integer or -1,
which is equivalent to omitting the parameter.

subarray(array, start_offset[, length]) This function extracts a sub-array of a byte array.
First and second arguments are required. array is
an array from which you are extracting a sub-array
and start_offset is a zero-based offset of the
beginning of sub-array. Optional length
parameter specifies the length of the resulting sub-
array in bytes.

element(array, position) Returns the byte at a given offset in an array byte
array.

length(exp) Return a length of a string if exp is a string
expression, or byte array (in bytes), if exp is a byte
array.

find(find_where, find_what[, start_pos) Find a substring in a string (if both find_where
and find_what expressions are strings) or one
array within another, if both expressions are byte
arrays. Optional start_pos parameter specifies
the location from which to start searching. It
defaults to 0. The function returns integer
specifying the found location or -1 if no occurrence
is found.

type(exp)
Determine the type of the expression exp. Returns
one of the following values (symbolic names are

Function Name Description

Hex Editor Neo Documentation Definitive Guide

151

predefined in stddefs.h):

Symbolic
Constant

Value Type of
Expression

BooleanType 0 bool

IntegerType 1 int

FloatingPointType 2 double

StringType 3 string

ReferenceType 4 reference
ref(exp)

Take the reference of expression. Expression must
be a Field Access or Array Indexing Operator. The
result of this function may not be used on the left
of . operator or [] operator.

A special construct ref(this) is used to get a
reference to the current object.

array(exp) Convert an expression to a byte array. Little-endian
representation of boolean , integer and floating-
point values are returned. If exp is a reference, a
copy of referenced value is returned as byte array.
All other conversions are prohibited.

is_valid(exp) This function evaluates the expression and returns
false if any exception occurs during evaluation,
otherwise, it returns true . Expression's result is
never used and is silently discarded.

evaluate_if(exp1, exp2)
This function evaluates expression exp1 and
returns its result. If any exception occurs during
evaluation, it returns the value of expression exp2 .
Note that if another exception occurs during
evaluation of exp2 , it is handled as usual
(propagated to user interface). This function is
equivalent to

C++
is_valid(exp1) ? exp1 : exp2

but evaluates exp1 only once.

Function Name Description

Examples

C++
int(2.5) // results to 2 (integer)
int("89") // results to 89 (integer)
double("7.8") // results to 7.8 (floating-point)
double("string") // results to 0.0 (floating-point)

Native Functions

Hex Editor Neo supports native functions. A native function is a function defined in the header file that uses the same
language syntax.

The following syntax is used to define a function:

Hex Editor Neo Documentation Definitive Guide

152

C++
optional-attributes
function f_name (parameter-list)
{
 function-body
}

optional-attributes := [function-attribute [, function-attribute [, …]]]

function-attribute := arguments_array | nooptimize

parameter-list := param-name1 [, param-name2 [, …]]

function-body := *(variable-declaration | statement)

The function may be declared at any scope (either global or user-defined). Function's name must be unique within a scope.
A function can take any number of arguments (or no arguments). It is allowed to pass different number of arguments
during a function call. If fewer arguments passed, the rest are undefined, if more arguments passed, extra parameters are
ignored.

Only the following constructs are allowed in a function body:

A declaration of constants or constant arrays.
A declaration of variables or variable arrays.
Any supported statement, including expression calculation statement.

Ability to use any statement allows you to create branches and loops. A return statement sets function's return value and
exits function. A function is allowed to have multiple return statements.

A following pseudo-variables are available for a function's body:

parameter_count

Holds the actual number of passed parameters.
arguments_array

Holds values of all passed parameters. The size of the array is parameter_count . If function has named arguments,
both named parameters and values of this array may be used to reference passed parameters.

Note: for performance reasons this array is generated only when arguments_array attribute is specified before the
function's definition.

All parameters are always passed by value. If arguments_array attribute is specified and a function has named arguments,
corresponding array elements and named parameters have copies of values (that is, modifying one does not modify
another).

Function Scope

Each function defines its own scope. All variables declared in this scope are destroyed when function execution finishes and
re-created next time it is run.

Function Optimization

Hex Editor Neo automatically optimizes constant functions. If it encounters a function that always returns a constant value
and is being used with constant arguments, it replaces the function call with a calculated value. That means that all native
functions must be immutable, that is, they must not affect any global state.

If you still need to use a function that modifies a global state, use the nooptimize attribute to suppress function
optimization.

Note that function optimization always works at the call site. Consider the following example:

Hex Editor Neo Documentation Definitive Guide

153

C++
function square(x)
{
 return x * x;
}

struct A
{
 char array[square(5)]; // will be optimized to 25
 int size;
 char array2[square(size)]; // will not be optimized
};

External Functions

Attaching Scripts

External functions referenced in your structure definition files must be defined in separate files. Hex Editor Neo supports
functions written in JavaScript.

Use the following syntax to attach a script file to the structure definition file:

C++
#pragma script(path-to-script-file)

Path-to-script-file is a string containing the absolute or relative (to the structure definition file) path to a script file.
Only JavaScript external files (with any extension) are supported.

As with included files, Hex Editor Neo automatically rescans a file if it is modified outside the editor.

Examples

functions.js

C++
function f()
{
 return 10;
}

structure.h:

C++
#pragma script("functions.js")

public struct A
{
 char array[f()];
};

javascript Keyword

In addition, JavaScript code may be specified in the structure definition file using the javascript keyword:

C++
javascript
{
 function f()
 {
 return 10;
 }
};

public struct A
{
 char array[f()];
};

The number of javascript blocks is not limited. All blocks are processed before any structure is bound, so all functions
declared in these blocks are always visible to any structure, regardless of the place where you define them.

Hex Editor Neo Documentation Definitive Guide

154

External Functions

Hex Editor Neo allows you to use external functions in expressions. External functions are defined in script files, attached to
structure definition files using the #pragma script preprocessor directive.

An external function accepts zero or more parameters and must always return a value (“void” functions, or procedures are
not supported). External function must be written in JavaScript.

Hex Editor Neo automatically performs parameter type conversion when the function call is made. Although, make sure the
value returned by the function is of correct type, as Hex Editor Neo expects a value of a given type in several places, such as
in array declaration:

functions.js:

C++
function GetArraySize()
{
 return 11/2;
}

structure.h:

C++
#pragma script("functions.js")

struct A
{
 int array[GetArraySize()]; // error here: script returns a floating-point number, integer expected
 int array[int(GetArraySize())]; // correct
};

Script Objects

Hex Editor Neo provides scripts running as part of expression evaluation with two built-in objects:

Object
Name

Description

document References the document for which Structure Viewer parses a structure. Refer to the
Working with Document Object section for more information.

parser Allows script to reference other bound structures, their fields, as well as bind other
structures to the current document and display debugging messages. This object is a
default “global” object for a script, so its methods may be called directly, without using
parser.Method notation. Refer to the Working with Parser Object section for more
information.

Example

C++
function GetDocumentSize()
{
 return document.FileSize;
}

Statements

Statements control the flow of execution. They are allowed on user-defined type scope and in the function body. This
section describes all statements supported by the Hex Editor Neo.

The general statement syntax may be described by the following grammar:

Hex Editor Neo Documentation Definitive Guide

155

C++
statement:
 statement-if | statement-switch | statement-break | statement-while | statement-for | statement-dowhile | statement-

statement-block:
 statement | field-declaration

Where field-declaration is either standard or user-defined type, or structure definition.

See the following topics for more information:

if statement
switch statement
break statement
while statement
for statement
do…while statement
return statement

if Statement

if statement has the following syntax:

statement-if:
if (expr)
 statement-block | { statement-block * }
[else
 statement-block | { statement-block * }
]

statement-block:
 statement | field-declaration

expr is evaluated at run-time and if true , the first statement-block is evaluated, otherwise, the second statement-block is
evaluated. If it is omitted and expr is false, nothing is evaluated and control flows to the next statement or declaration. If
multiple statements or declarations need to be specified in the body of if or else, use the curly braces. For example:

C++
struct A
{
 int a;
 if (a>0)
 float b;
 else
 {
 double b;
 int c;
 }
};

switch Statement

switch statement has the following syntax:

statement-switch:
switch (sw-expr)
{
 case const-case-expr1:
 statement-block *
 [case const-case-expr2:
 statement-block *
 …
]
 [default:
 statement-block +
]
}

WARNING

Hex Editor Neo Documentation Definitive Guide

156

switch statement's block must not be followed by a ‘;’ character!

switch statement is evaluated according to the following procedure:

1. All const-case-exprN expressions are evaluated at compile time. If they fail to compute to a constant value,
compilation error occurs. If you need to use non-const expressions, consider using the case_union.

2. sw-expr is evaluated at run time.
3. The resulting value is compared with each const-case-exprN value one by one until a match is found. If the match is

not found, statement-block after the “default:” label is evaluated, if present.
4. If the match is found, all statement blocks after the corresponding “case” label are evaluated, until the "default:" label,

end of switch statement or a break statement are met.

C++
struct A
{
 BYTE type;
 switch (type)
 {
 case 0:
 int value;
 break;
 case 1:
 double value;
 break;
 case 2:
 string value;
 break;
 default:
 $assert("Invalid file");
 } // note: no ';' allowed here!
};

break Statement

break statement has the following syntax:

statement-break:
break;

NOTE
The ‘;’ character at the end of the statement is mandatory.

The break statement may be used:

Inside the switch statement to stop statement evaluation.
Inside the for statement, while statement or do…while statement to cancel a loop.

In addition, break statement always ends the current scope, even if it is used outside of the switch or loops.

while Statement

while statement has the following syntax:

statement-while:
while (expr)
 statement-block

Evaluates statements and declarations in statement-block until expr becomes false . If expression is false at the first
iteration, no statements are evaluated.

Hex Editor Neo Documentation Definitive Guide

157

C++
var i = 10;
while (i)
{
 int a;
 i = i - 1;
}

for Statement

for statement has the following syntax:

statement-for:
for (init-expr; condition-expr; increment-expr)
 statement-block

for statement is equivalent to the following construct:

C++
init-expr;
while (condition-expr)
{
 statement-block;
 increment-expr;
}

It evaluates statements in statement-block while condition-expr evaluates to a non-zero value.

Note that unlike C/C++, all for statement expressions must be present and cannot be omitted. Hex Editor Neo does not
support unary operators like ++ , -- , += , -= and others, so increments must be specified in the form of i = i + 1 instead
of ++i .

init-expr must have the following syntax:

C++
init-expr:
var name = expr

For example,

C++
for (var i = 0; i < 10; i = i + 1)
{
 int a;
}

do…while Statement

do…while statement has the following syntax:

statement-dowhile:
do
 statement-block
while (expr);

Evaluates statements and declarations in statement-block until expr becomes false . If expression is false at the first
iteration, statements in statement block are evaluated exactly one time.

C++
var i=10;
do
{
 int a;
 i = i - 1;
} while (i);

return Statement

return statement has the following syntax:

Hex Editor Neo Documentation Definitive Guide

158

return expr;

Evaluates the passed expression and sets the current native function's return value. It also exits the current function. If used
outside the function body, an exception is generated.

C++
function square(x)
{
 return x * x;
}

Scopes

A scope is a namespace for user-defined types, typedef-ed types, constants and native functions.

There is always a global scope, a scope that represents the source file itself. All enumerations, typedefs and user-defined
types declared in the file (and not enclosed by other user-defined types) are said to be defined at the global scope.

C++
// beginning of the file
typedef int MyIntType;

enum MyEnum
{
 // …
};

const MyConstant = 5;

struct MyStruct
{
 // …
};

In the example above, all identifiers, that is, MyIntType , MyEnum , MyConstant and MyStruct are declared in the global
scope.

Each user-defined type creates its own scope:

C++
struct A // A is declared in the global scope and creates its own scope
{
 const B = 10; // B is declared in scope of structure A
};

Every enclosed scope “sees” all its parent scopes. That is, when name-lookup is performed (for the search of the identifier),
first, the most enclosed scope is searched. If the identifier is not found, a parent scope is searched and so on.

This allows an identifier to be overloaded in the enclosed scope:

C++
const MyConstant = 10;
struct A
{
 const MyConstant = 5;
 int array[MyConstant]; // will use MyConstant from the A scope
};

struct B
{
 int array[MyConstant]; // will use MyConstant from the global scope
};

A compiler does not provide a way to reference MyConstant from the global scope from scope A in this example. But once
the scope is closed, a global scope is active again (see structure B).

Enumerations are slightly different in a way they use scopes: enumeration declaration does not create a scope but places all
enumeration values into the parent scope. See the enumerations section for more information.

Constants and Constant Arrays

Hex Editor Neo Documentation Definitive Guide

159

Constants allow you to calculate the value of an expression and store it. Compare constants with preprocessor constants.
Preprocessor is run before compilation of source file occurs and therefore has limited expression evaluation capabilities.

Syntax:

const name-id = value-expr;

Constants are allowed in any scope. A value-expr must be constant:

C++
const MyConstant = 5; // valid, constant expression

struct A
{
 int a;
 const double_a = a * 2; // error, value-expr is not a constant
};

Constant Arrays

You can use the following syntax to declare an array:

C++
const name-id [] = { initializer-list };

Where name-id is a name of array and initialize-list is a comma-separated list of expressions that initialize array
elements.

Variables and Variable Arrays

Variables work almost like constants with an exception that you can change their value at a later time.

Syntax:

C++
var name-id [= value-expr];

You do not specify the type of the variable. It is automatically determined from the type of the value-expr. You may change
the variable type at a later time by assigning another value to a variable.

Variables are allowed at user-defined type scope. If value-expression is omitted, variable is initialized with zero. You can
change the value of a variable using the following syntax:

C++
variable-name-id = expression;

Variables may be used in expressions just like constants. For example:

C++
struct A
{
 var SomeVariable = 10; // declare variable and assign a value to it
// …
 SomeVariable = SomeVariable * 2 - 20; // change the value of the variable
// …
 char Data[SomeVariable]; // use variable
};

Optimizations

Hex Editor Neo performs an optimization when it compiles variables. All constant expressions are evaluated to their
numeric equivalents. Hex Editor Neo can also optimize constant sub-expressions if they do not have side effects.

Hex Editor Neo Documentation Definitive Guide

160

C++
struct A
{
 var MyConstant = 60 * 60; // will be optimized directly to 3600
 var PI = 3.1415926;
 var _2PI = 2 * PI; // will be optimized directly to 6.2831852
 int a;
 var test = a * (_2PI / 180); // sub-expression in parenthesis will be optimized
};

Using Variables

Variables let you overcome the limitations of standard lookup procedure. A good example is a definition of a PNG file
structure (installed with Hex Editor Neo). A PNG file consists of several chunks of different type and size. Although these
chunks are almost unrelated, sometimes the structure of a chunk greatly depends on some of the fields of one of the
previous chunks. Using variables you may “capture” the value of such field and later use it in subsequent chunks to choose
between one structure or another. See the provided sample file for more information on using variables.

Variable Arrays

You can use the following syntax to declare an array:

C++
var name-id [[total-elements-expr]] [= { initializer-list }];

Where name-id is a name of array, total-elements-expr is an optional number of elements in an array. If omitted, the
number of expressions in the initializer-list sets the number of elements in an array.

initialize-list is a comma-separated list of expressions that initialize array elements.

Enumerations

Hex Editor Neo supports the special form of integer constants, called enumerations.

Syntax:

C++
// legacy syntax:
enum [name-id[<integer-type>]]
{
 value-id [= const-expression]
 [, value-id [= const-expression] …
]
};

// new syntax
enum [name-id[: integer-type]]
{
 value-id [= const-expression]
 [, value-id [= const-expression] …
]
};

Enumeration may optionally have a name and a type. If name is omitted, a nameless enumeration is created. If type is
omitted, it is defaulted to int.

An expression, if specified, must be a constant expression, that is, its value must be calculable at the compile-time. You may
use immediates, constants and other previously defined enumerations as well as sizeof() operator in its static form.

If expression is omitted, the value of the current element is computed as a value of the previous element plus one. If this is a
first enumeration element, its value will be 0:

Hex Editor Neo Documentation Definitive Guide

161

https://www.hhdsoftware.com/hex-editor

C++
enum MyEnum : unsigned
{
 FirstValue, // defaulted to 0
 SecondValue, // defaulted to 1
 ThirdValue = 5, // overridden, equals 5
 FourthValue, // defaulted to 6
 FifthValue = ThirdValue - SecondValue, // equals to 4
};

An enumeration does not create its own scope and places all values in the parent scope.

C++
enum MyEnum
{
 FirstValue =0x00000010,
 SecondValue =0x00000020
};

const test = FirstValue; // valid, as FirstValue (and SecondValue) are placed in the global scope, parent to MyEnum's scope

Using Enumerations

You may use named enumerations as types for fields in user-defined types. If you do this, Hex Editor Neo will automatically
recognize the enumeration value when the structure is bound to the data. For example:

C++
enum MyFlags : unsigned
{
 FIRST_BIT_SET =0x00000001,
 SECOND_BIT_SET =0x00000002,
};

struct A
{
 MyFlags flags;
};

When you bind structure A to data, flags gets visualized as following:

Data Value Display
1 FIRST_BIT_SET
2 SECOND_BIT_SET
0 0
3 FIRST_BIT_SET SECOND_BIT_SET
5 FIRST_BIT_SET 4
8 8

Hex Editor Neo automatically parses the enumeration value and displays its symbolic name (or names).

User-Defined Types

Hex Editor Neo Documentation Definitive Guide

162

[public | private] (struct | union | protocol) [name-id]
{
 [element-decl; [element-decl; …]]
};

[public | private] case_union [name-id]
{
 case expression1:
 [element_decl; …]
 [
 case expression2:
 [element_decl; …]
 …
]
 [
 default:
 [element_decl; …]
]
};

element-decl:
 [(field-decl | typedef-decl | const_decl | user-defined-type-decl) ; …]

field-decl:
 type var-decl [, var-decl …] ;

var-decl:
 (id | id[expression] | id:expression | id as type-id * [(expression)])

The first syntax form allows you to define structure or union, while the second form allows you to define a case union.

When public keyword is placed before the structure declaration, the structure becomes a public user-defined type and
appears in Bind Structure Window. A private keyword may be used to prevent the structure from being listed in the list of
user-defined types in the Structure Binding window. If omitted, a structure declaration is private by default. Applies only to
user-defined types, declared on the global scope.

A special directives may appear within a declaration of a structure, union or a case union:

C++
hidden:
visible:

A hidden: directive hides all subsequent fields and visible: directive makes fields visible. By default, all fields are visible.
Hiding a field only hides it from the screen, the field remain visible when referenced in expressions.

This and subsequent sections provide an in-depth description of user-defined types.

Each user-defined type creates a scope. All enclosed constants, enumerations, typedefs, native functions and user-defined
types are then included into this newly created scope.

A structure, union or case union may be nameless. Nameless types are allowed anywhere besides the global scope. A
nameless type may also be used in the typedef declaration:

C++
typedef struct
{
 // …
} A;

equivalent to:

C++
struct A
{
 // …
};

while the following fragment creates a structure named A and its aliases B and C:

Hex Editor Neo Documentation Definitive Guide

163

C++
typedef struct A
{
 // …
} B,C;

Supported Types

Structures

A structure is a combination of data fields. A structure occupies space required to store all its fields, one by one, subject to
structure packing or alignment.

A structure definition consists of zero or more of data fields:

type var-decl [, var-decl…];

where var-decl is:

(id | id[array-size-expression] | id:bit-field-size-expression | id as type-id *)

A structure may contain different fields with a same name. If such a field is referenced in expression, an [] operator may be
used to address individual fields. If this operator is not used, the first field is referenced.

Typedefs, constants, enumerations, native functions and nested user-defined types are also allowed within a structure
definition.

Plain field, array field, bit field and pointer field are described in more detail in their corresponding sections.

Empty structures are eliminated from the output. See also the noautohide attribute section.

Example:

C++
struct A
{
 int a; // plain data field
 int b:3; // bit-field
 int c[10]; // array
 int d as B *; // pointer

 short s,t[5],u:12; // multiple fields may be combined
};

Packing and Alignment

The important thing about user-defined types is the size and alignment of a type. The size of the structure is a sum of sizes
of all its fields (subject to alignment). The alignment of the built-in type equals its size, and alignment of the structure is
calculated by Hex Editor Neo, taking in account the alignment of all structure fields and current structure packing value. By
default, structure packing value is 1.

You may change the structure packing value using the following directive:

C++
#pragma pack(N)

where N is one of the following values: 1, 2, 4, 8, 16, 32.

NOTE
The following rule is used when computing the alignment of each structure field:
Each data field starts at offset which is a multiple of its alignment. A number of unused padding bytes is inserted if
required, but no more than the current structure packing value.

The implementation of structure packing and field alignment in Hex Editor Neo complies with standard C implementation.

Hex Editor Neo Documentation Definitive Guide

164

Byte Order

By default, Hex Editor Neo respects the current byte order specified for the editor window. You can change the byte order at
any time using the following directive:

C++
#pragma byte_order(LittleEndian | BigEndian | Default)

This directive changes the current byte order until the end of the current scope, or until another byte_order directive.

Unions

A union is a combination of data fields. In contrast to a structure, all union data fields are located at the same address and,
therefore, share the same storage space. The size of the union equals to the size of the largest field, and alignment of the
union equals the largest field's alignment.

A union definition consists of zero or more of data fields:

type var-decl [, var-decl…];

where var-decl is:

(id | id[array-size-expression] | id:bit-field-size-expression | id as type-id *)

A union may contain different fields with a same name. If such a field is referenced in expression, an [] operator may be
used to address individual fields. If this operator is not used, the first field is referenced.

Typedefs, constants, enumerations, native functions and nested user-defined types are also allowed within a union
definition.

Plain field, array field, bit field and pointer field are described in more detail in their corresponding sections.

Example:

C++
union A
{
 int intVal;
 short shortVal;
 double dblVal;
 char charArray[4];
 struct
 {
 int a;
 __int64 b;
 } nestedStruct;
};

Case Unions

A case union is a special construct offered by a Hex Editor Neo to dynamically select types at run time. It is virtually
impossible to describe real-world data structures using only static types (types offered by C compiler, for example). And
although dynamic types greatly increase the flexibility of the language to describe data structures, they still lack the ability
to select one or another type based on run time conditions.

For example, imagine we have a byte in the data structure, followed by one of three different data structures, depending on
this byte's value. Hex Editor Neo's case unions allow you to describe such data structure.

Case union syntax (copied from User-Defined Types section):

A union definition consists of zero or more of data fields:

Hex Editor Neo Documentation Definitive Guide

165

C++
case_union [name-id]
{
 case expression1:
 [element_decl; …]
 [
 case expression2:
 [element_decl; …]
 …
]
 [
 default:
 [element_decl; …]
]
};

element-decl:
 [(field-decl | typedef-decl | const_decl | user-defined-type-decl) ; …]

field-decl:
 type var-decl [, var-decl …] ;

var-decl:
 (id | id[expression] | id:expression | id as type-id *)

Case union consists of one or more case blocks and an optional default block. Hex Editor Neo evaluates each expressionN
and if it is nonzero, elements immediately following a case block are used. All other case blocks and default block are
ignored. If none of case expressions is evaluated to a non-zero value, the default block is used. If the default block is
omitted, a case union becomes an empty structure and is removed from the output.

C++
struct B
{
 // …
};

struct C
{
 // …
};

struct A
{
 BYTE val;
 case_union
 {
 case val == 0:
 int a;
 int b;
 case val == 1:
 B b;
 default:
 C c;
 } s;
};

Case Union Optimization

All case expressions are evaluated at compile time. If an expression is a non-zero constant expression, a whole case union
becomes equivalent to a corresponding structure. If all case expressions evaluate to constant zero, the whole case union
becomes equivalent to a structure with fields from the default block. If there is no default block in a case union, it becomes
an empty structure and is eliminated from the output.

Forward Declarations

Hex Editor Neo Neo requires that each referenced type must be defined before it is used; otherwise, the compile-time error
occurs. Sometimes it is impossible or inconvenient to follow this rule. Forward declarations allow you to declare the
identifier as a user-defined type, without actually defining it:

Hex Editor Neo Documentation Definitive Guide

166

C++
struct B; // forward declaration of B

struct A
{
 B b; // compiles OK, as B has been declared
};

struct B // actually define B
{
 // …
};

Syntax:

(struct | union | case_union) name-id ;

name-id is required in forward declarations.

All forward declarations must be resolved before the end of the source file, otherwise an error occurs. However, it is not an
error not to resolve a forward declaration if it has not been referenced.

Data Fields

Plain Field

Plain field is an ordinary field of a given type.

Syntax:

type-id var-id;

Example of plain fields:

C++
struct B
{
 // …
};

struct A
{
 int a;
 B b;
};

Both a and b fields of structure A are plain fields.

Array Field

Array field describes an array of some data type. Array is a sequence of several values of the same type.

Syntax:

[[noindex]] type-id var-id[expression];

Expression may be constant expression or dynamic expression. If it evaluates to 0, the field is removed from the output.

Hex Editor Neo automatically distinguishes between a simple array and an ordinary array. An array of elements of integer
and floating-point built-in types is considered a simple array. Simple arrays do not impose a limit on a number of items and
are extremely cheap to bind and consume no memory at all. Ordinary arrays (that is, arrays of user-defined types, or string
types) have a hard-coded limit on array item count (about 2 million items) and require a corresponding amount of free
RAM. A noindex attribute may precede the array field declaration if you do not use an Array Indexing Operator in any of
the expressions to refer to elements of this array.

This will save the memory and structure binding time.

Example of array fields:

Hex Editor Neo Documentation Definitive Guide

167

C++
struct B
{
 // …
};

struct A
{
 int a[5]; // static array, considered as simple array
 B b[a[0]]; // dynamic array (a number of elements is taken from the first element of a). Not a simple array
};

Simple and Ordinary Arrays

Any array of elements of integer or floating-point built-in types is called a simple array. Array of elements of other types is
called an ordinary array.

The following table briefly describes the difference between two array types:

Property Simple Array Ordinary Array
User-defined element type supported No Yes
Consumes more memory as array's
size increases

No Yes

Consumes more time as array's size
increases

No Yes

Has upper array size limit No Yes
Supports [noindex] attribute No, ignored if

used
Yes, consumes less memory and time if
used on an array

“Infin ite” Arrays

You are allowed to declare an array of “infinite” size when declaring an array. The following syntax is used:

type-id var-id[*];

type-id must be a user-defined type that must contain at least one $break_array directive that will specify the last element
of the “infinite” array.

This is very useful if array size is not known at the array declaration point. For example, the following code snippet is
capable of parsing a C-style null-terminated string:

C++
struct StringCharacter
{
 char c;
 if (c == 0)
 $break_array(true);
};

struct NullTerminatedString
{
 StringCharacter chars[*];
};

// Display the class usage
struct FileStructure
{
 NullTerminatedString FileName;
 NullTerminatedString Location;
 // …
};

Visualization

When Hex Editor Neo visualizes an array, it optionally visualizes its first several values in-line. Other values are displayed
when you expand the array item. Character arrays (arrays of elements of char and wchar_t types) are visualized as ANSI or
UNICODE strings respectively.

Hex Editor Neo Documentation Definitive Guide

168

Bit Field

Bit field is an integer field which occupies less space than the underlying integer type.

Syntax:

typeid var-id:expression;

The underlying type-id of a bit field must be an integer type. Expression may be constant expression or dynamic
expression.

Example of bit fields:

C++
struct Date
{
 unsigned short nWeekDay : 3; // 0..7 (3 bits)
 unsigned short nMonthDay : 6; // 0..31 (6 bits)
 unsigned short nMonth : 5; // 0..12 (5 bits)
 unsigned short nYear : 8; // 0..100 (8 bits)
};

The conceptual memory layout of an object of type Date is shown in the following figure.

Note that nYear is 8 bits long and would overflow the word boundary of the declared type, unsigned short. Therefore, it is
begun at the beginning of a new unsigned short. It is not necessary that all bit fields fit in one object of the underlying type;
new units of storage are allocated, according to the number of bits requested in the declaration.

The ordering of data declared as bit fields is from low to high bit, as shown in the figure above.

Pointer Field

Pointer field is functionally equivalent to a plain field but additionally describes the type this field points to. When Hex Editor
Neo binds a pointer field, it automatically binds a pointed type at a calculated offset.

Syntax:

type-id var-id as pointed-type-id * [(expression)];

Expression , if present, is evaluated at run-time and the result is added to a field value. type-id must be an integer type.
pointed-type-id must be a user-defined type.

Example of pointer field:

C++
struct B
{
 // …
};

struct A
{
 short ptr1 as B *;
 unsigned int ptr2 as B *(10); // B will be bound at offset (ptr2 + 10)
};

The resulting offset must be an absolute offset in a file. In cases where fields contain only relative offsets, this keyword may
be used in an expression to “convert” a relative offset to an absolute offset:

Hex Editor Neo Documentation Definitive Guide

169

C++
struct B;

struct A
{
 short ptr1 as B *(this); // B will be bound at offset (this + ptr1)
};

When pointers are processed and pointed structures are bound at resulting offsets, the current structure scope is used as a
parent scope for a bound structure. This allows referencing its fields from the pointed structure:

C++
struct B;

struct A
{
 int a;
 int ptr as B *;
};

struct B
{
 int array[a]; // will reference a in A, if B is automatically bound via a pointer
};

Late-evaluation is performed for pointers, which allows pointed types to reference fields from the parent scope even if they
are defined below the pointer field.

Attributes

Field Attributes

Hex Editor Neo supports a number of useful attributes that change the default behavior for individual bound fields. You
should put attributes before a field you want them affect. The following syntax is supported:

attribute-list:
[*attribute-decl]

attribute-decl:
noindex | noautohide | read(expr) |
format(expr) | description(expr) | color_scheme(expr)

See the following sections for attribute descriptions.

Type Attributes

In addition to field attributes, a single display attribute is supported on types. It allows the user to change the default
visualization for a type.

Field Attributes

noindex Attribute

Syntax:

noindex

Specifying this attribute for an array field turns off automatic building of array index. Array index is required for Array
Indexing Operator to work properly. This attribute is ignored if used on simple array or non-array field.

noautohide Attribute

Syntax:

noautohide

By default, Hex Editor Neo eliminates fields which have zero size during binding. Specifying this attribute allows you to turn
this behavior off.

Hex Editor Neo Documentation Definitive Guide

170

onread Attribute

Syntax:

onread(expr)

Allows you to change the way this field is read by the Hex Editor Neo. You may specify expression to be evaluated each time
Structure Viewer accesses the field's value.

Take the following notes into consideration:

Your expression will be evaluated each time the field's value is read from the document, even during binding.
Hex Editor Neo caches field values. This means that the result of your expression must be persistent. That is, for any x
and y , if x == y , expr(x) == expr(y) .

In expression you may refer to actual field's value using a special variable _1 :

C++
struct A
{
 // The following field stores the size of the array minus 2
 [onread(_1 + 2)]
 int array_size; // will be displayed as actual value + 2
 char array[array_size];
};

format Attribute

Syntax:

format(const-string-expr)

Use this attribute to set the format string used during visualizing of the field's value. Note that only part of the full format
string must be specified: instead of “{0b16}” use just "b16". const-string-expr is evaluated at compile time.

description Attribute

Syntax:

description(const-string-expr)

Set the field description to be displayed in Hex Editor Neo user interface. const-string-expr is evaluated at compile time.

color_scheme Attribute

Syntax:

color_scheme(const-string-expr)

Set the color scheme to be used by Hex Editor Neo to visualize the field. const-string-expr is evaluated at compile time.

exact_only Attribute

Syntax:

C++
exact_only

Using this attribute for enum fields forces exact matching algorithm. Normally, when this attribute is not specified, the
following visualization algorithm is used for enumerations:

1. First, enumeration type is searched for exact match. If exact match is found, enumeration identifier is displayed.
2. If exact match is not found, enumeration type is considered a bit-field and is decomposited into components. Any

remaining value is then added at the end.

Type Attributes

Hex Editor Neo Documentation Definitive Guide

171

display Attribute

Syntax:

display(expr)

This attribute may be used to override the default type's visualization algorithm.

When Hex Editor Neo generates a value for a collapsed type, it by default displays values of first 5 type's fields. This
attribute allows you to change that.

Hex Editor Neo evaluates the expr expression in the context of the current type (that is, you may reference all type fields
directly). The result is then converted to string and displayed in Structure Viewer.

The following example renders the user-friendly MAC address:

C++
[display(format("{0b16Xw2arf0}:{1b16Xw2arf0}:{2b16Xw2arf0}:{3b16Xw2arf0}:{4b16Xw2arf0}:{5b16Xw2arf0}",
 data[0],data[1],data[2],data[3],data[4],data[5]))]
struct MAC
{
 unsigned char data[6];
};

The following example displays the sum of array's values:

C++
function sum(r)
{
 var sum = r[0];
 for (var i = 1; i < 6; i = i + 1)
 sum = sum + r[i];
 return sum;
}

[display(sum(ref(data)))]
struct MAC
{
 unsigned char data[6];
};

Typedefs

You can create an alias for any built-in or user-defined type.

Syntax:

C++
typedef existing-type new-type-id [,new-type-id …];

Type alias definitions are allowed at any scope. existing-type must be either built-in type, enumeration or user-defined
type. Nameless types are allowed.

C++
typedef int INT;
typedef struct { int a,b; } MyStruct;

struct A
{
 // …
};

typedef A B,C,D;

Typedef does not create a new type, it only creates an alias for an existing type. You may reference a type by its original
name, or by one of its aliases.

Directives

Directives are special commands to the compiler which are only allowed at non-global scope.

Hex Editor Neo Documentation Definitive Guide

172

View the subsequent topics to get detailed description of each supported directive.

$assert Directive

Syntax:

C++
$assert(condition-expression [, message [, fatal-expression]]);

Assert directive is evaluated at run-time. First, condition-expression is evaluated. If it evaluates to non-zero value,
nothing happens. But if it evaluates to a zero value, message is displayed to the user and structure binding is terminated. If
message is omitted, standard “Assertion Failed” message is displayed. message , if present, must be a string expression.
fatal-expression , if present, must be a constant expression. If it evaluates to a non-zero value, the assertion is fatal (this is
a default behavior), that is, fired assertion terminates structure binding. If it evaluates to zero, assertion is only
informational.

Assertions are good at verifying whether the data structure is being bound to correct data.

C++
struct A
{
 int a;
 $assert(5 < a && a < 10,"a must be between 5 and 10");
};

$print Directive

Syntax:

C++
$print(var-name-string-expression, var-value-expression);

The first expression must be a constant string expression and serves as a pseudo-field name. This name is displayed in the
Structure Viewer Tool Window. It is also added as a real field into the current scope and may be later referenced in
expressions. The second expression is a field's value. It may be either a constant expression or a non-const expression, that
will be evaluated at run time.

C++
struct A
{
 int a;
 int b;
 $print("double_a", a * 2);
 $print("a/b", double(a) / b);
};

Both $print directives in the example above introduce new fields into the current scope (of struct A), but only the first one
may be referenced in expressions, because the second one has incorrect name. So, it's OK to use any name for the first
argument, but only syntactically correct ones may be referenced in expressions.

$break_array Directive

Syntax:

C++
$break_array(const-conditional-expression);

When used in a user-defined type, unconditionally breaks an enclosed array.

The parameter, which must be a constant value, specifies whether the current element should be included into an array
(const-conditional-expression = true), or not (const-conditional-expression = false)

May be used either in conjunction with infinite array or with an ordinary array. If used not inside an array, the directive is
ignored.

Hex Editor Neo Documentation Definitive Guide

173

C++
struct StringCharacter
{
 char c;
 if (c == 0)
 $break_array(true);
};

struct NullTerminatedString
{
 StringCharacter chars[*];
};

$bind Directive

Syntax:

C++
$bind(type-string-expr, var-string-expr, addr-expr);

All expressions are evaluated at run time. First two are automatically converted to strings, while the third is expected to be
of integer type.

This directive instructs parser to bind another structure to a given address. Binding is delayed until the current structure
binding is successfully finished.

NOTE
You must reference the full type name, for example struct MyStruct , not the MyStruct , and the referenced type
must have been declared as public.

C++
public struct B
{
// …
};

public struct A
{
 int Offset;
 if (Offset != 0)
 $bind("struct B","pB",Offset);
};

$alert Directive

Syntax:

C++
$alert(expr);

Evaluates expr at bind time and displays the result in a message box.

$revert_to Directive

Syntax:

C++
$revert_to(reference-expression);

This directive updates the current_offset . It may be used to have look ahead in a structure. reference-expression is
evaluated at run-time and must be a reference to a field in the current type. After this directive executes, current_offset
becomes the start of a field.

Hex Editor Neo Documentation Definitive Guide

174

C++
struct A
{
 int type;
 switch (type)
 {
 case 0:
 B b;
 break;
 case 1:
 C c;
 break;
 default:
 $revert_to(ref(type));
 D d;
 }
};

$shift_by Directive

Syntax:

C++
$shift_by(integer-expression);

This directive updates the current_offset . It may be used to have look ahead in a structure. integer-expression is
evaluated at run-time and must be an integer value, which is added to current_offset upon directive execution.

C++
struct A
{
 int skip_bytes;
 $shift_by(skip_bytes);
 int next_field;
};

$remove_to Directive

Syntax:

C++
$remove_to(reference-expression);

This directive removes one or more last bound fields until the referenced field. reference-expression is evaluated at run-
time and must be a reference to a field in the current type.

WARNING
All fields being removed must be visible and no hidden fields must be between them.

C++
struct A
{
 int type;
 switch (type)
 {
 case 0:
 B b;
 break;
 case 1:
 C c;
 break;
 default:
 $remove_to(ref(type));
 D d;
 }
};

Format String Syntax

Hex Editor Neo Documentation Definitive Guide

175

This section describes the format string syntax. Format string is used in format() function and format attribute.

Library format string syntax is not compatible with the standard printf syntax. Instead, it has a different syntax.

The format string has blocks of plain text which are directly copied to the output and parameter placeholders. Each
placeholder has the following syntax:

{<param-index>[width-decl][alignment-decl][plus-decl]
[precision-decl][base-decl][padding-decl][ellipsis-decl]
[locale-decl]}

The placeholder must be enclosed in curly braces. If you need to use the opening curly brace in the text, you need to
duplicate it to distinguish from the placeholder beginning. There is no need to escape the closing brace, it will always be
parsed correctly.

Parameter declaration starts with a parameter’s number. This is the only mandatory field. Parameters are ordered starting
from zero. All subsequent declarations are optional. If several declarations are used, their order is not significant and there
must be no space or any other separator between them.

width-decl

Use this declaration to limit the minimum and/or maximum length of a rendered parameter, in characters. The syntax
of a declaration is one of:

w<min-width>,<max-width>
w<min-width>
w,<max-width>

Both min-width and max-width must be decimal integers and if specified, max-width must be larger than min-width .

alignment-decl

Use this declaration to set parameter alignment. It is ignored unless width-decl is also used. Use one of:

al – align left (default)
ar – align right
ac – align center

plus-decl

Forces the plus sign to be rendered for positive numbers. Syntax:

+

precision-decl

Use the declaration to specify the number of digits to be displayed after the comma. Used only for floating-point types.
If not specified, the default one (6) is used.

p<number>

base-decl

Specify a base for an integer. If any base besides 10 is used with the floating-point type, only the integer part is
rendered. Only bases of 2, 8, 10, and 16 are supported. Lowercase or uppercase hexadecimal may be specified:

b2 – binary
b8 – octal
b10 – decimal (default)
b[0]16[x] – lowercase hexadecimal. If prefix “0” is used, library adds "0x" before the number
b[0]16X – uppercase hexadecimal. If prefix “0” is used, library adds "0X" before the number

padding-decl

Set the character to fill the space when min-width is set (see the width-decl above). The default one is space.

f<character>

ellipsis-decl

Add the ellipsis sign when truncating output. It is not compatible with center alignment (will act as left alignment).

Hex Editor Neo Documentation Definitive Guide

176

e

locale-decl

Separate thousands with the default user locale's thousand separator. Will work only for base 10.

l

Errors

This topic describes all compilation and binding errors generated by Hex Editor Neo.

CE001 : The requested operation is not allowed on the given data type or not expected here

Operation or operator you attempted to use is not supported. Example:

C++
var result = "string" - 2; // operator - is not supported for strings

CE002 : Divison by zero

Divison by zero has been encountered.

C++
int array[5/0];

CE003 : The specified identifier was not found

You referenced the previously undeclared identifier.

C++
public struct A
{
 int a;
 int b;
 int arr[c]; // generates CE003, c is undeclared
};

CE004 : Scalar is expected

A requested operation is allowed only on scalar values.

C++
public struct A
{
 int data[10];
 int array[data]; // generates CE004, data is not a scalar
};

CE005 : Vector is expected

A requested operation is allowed only on vector values.

C++
public struct A
{
 int a;
 int b[a[1]]; // generates CE005, a is not a vector
};

CE006 : Array index is out of range

An attempt to access array's element that is outside of the declared array size.

C++
public struct A
{
 int a[10];
 int b[a[12]]; // generates CE006, a only has 10 elements (0..9)
};

Hex Editor Neo Documentation Definitive Guide

177

CE007 : Not implemented yet
This operation has not yet been implemented.

CE008 : Invalid bit field size
Unsupported bit field size is used.

CE009 : Syntax error
See error's additional message for detailed syntax error information.

CE010 : Type has only been forward-declared

An attempt to materialize a type that has only been forward-declared is detected.

C++
// forward declare B
struct B;

public struct A
{
 B data; // generates CE010
};

// end of file

CE011 : Operation not supported for dynamic type

sizeof operator is used with dynamic type.

C++
struct B
{
 int size;
 char data[size];
};

public struct A
{
 char reserved[sizeof(B)]; // generates CE011, B is dynamic type
};

CE012 : Type is redefined

An attempt to redefine already defined type is detected.

C++
struct B
{
 int a;
};

struct B // generates CE012
{
 int c;
};

CE013 : Assertion failed
Assertion (generated by $assert directive) has failed.

CE014 : Constant expression is expected
Compiler expects a constant expression here.

CE015 : Constant string expression is expected
Compiler expects a constant string expression here.

CE016 : Wrong number of arguments for a function call
An invalid number of arguments used in a call to built-in function.

CE017 : Subscript operation for non-indexed array (hint: remove [noindex] attribute)

[] operator has been used for non-indexed array. Remove the noindex attribute.

Hex Editor Neo Documentation Definitive Guide

178

C++
struct B { … };

struct A
{
 [noindex] B data[1000];

 char reserved[data[5].size]; // generates CE017, remove [noindex] from previous line
};

CE018 : Error returned by JavaScript engine
JavaScript function returned an error.

CE019 : Invalid argument
Invalid argument has been passed to built-in function.

CE020 : Maximum allowed recursion depth is reached

Check your source file for infinite recursion.

C++
struct B;

struct A
{
 B b;
};

struct B
{
 A a;
};

// will generate CE020 after several iterations

CE021 : Expression of another type is expected
Compiler expects expression of another type here. Additional information specifies what type is expected.

Examples

A number of example structure definitions file that illustrate most features of the Structure Viewer are installed in the
Sample Structures folder within the product installation folder.

Disassembler
A disassembler is a computer program that translates machine language into assembly language - the inverse operation to
that of an assembler. A disassembler differs from a decompiler, which targets a high-level language rather than an
assembly language. Disassembly, the output of a disassembler, is often formatted for human-readability rather than
suitability for input to an assembler, making it principally a reverse-engineering tool.

Example

A processor consumes instructions encoded as raw bytes to change its internal state (to calculate something or to change
the operation flow). For example, sequence of three bytes 83 C4 04 is interpreted by x86 processor as an instruction to add
value 4 to register esp. However, it is difficult to operate with raw instruction bytes for humans. It is much easier to
represent the same command as an assembler instruction:

 add esp, 4

This instruction is directly translated (or assembled) to 83 C4 04 .

Disassembler is intended to do the opposite. It will parse 83 C4 04 and produce a add esp, 4 . So, a disassembler is
needed to convert raw binary file into something readable by a human eye.

Supported Instruction Sets

A current version of the Hex Editor Neo supports disassembling:

32-bit x86-compatible instruction set (including FPO, MMX, SSE, SSE2 and 3DNow! instruction sets).

Hex Editor Neo Documentation Definitive Guide

179

64-bit x64-compatible instruction set.
Microsoft Intermediate Language (MSIL) - .NET assemblies.

A comprehensive instruction set documentation is available at Intel® (x86 and x64) and Microsoft® (MSIL: part III) web
sites.

Definitions

This section provides a set of term definitions that will help you to get accustomed to the Hex Editor Neo's disassembler
module.

PE File Format

The Portable Executable (PE) format is a file format for executables, object code, and dynamic-link libraries, used in 32-
bit and 64-bit versions of Microsoft Windows operating systems. The term “portable” refers to the format's versatility
in numerous environments of operating system software architecture. The PE format is basically a data structure that
encapsulates the information necessary for the Windows OS loader to manage the wrapped executable code. A PE file
consists of a number of headers and sections that tell the loader how to map the file into memory.

Hex Editor Neo's disassembler gathers information needed to parse the PE (Portable Executable) file from headers that
are located at the beginning of a file.

PE Sections

An executable file (usually the one with .exe or .dll extension) is divided into sections (or segments) that are mapped to
memory during load. Different sections can be mapped to different virtual addresses (raw section's size and size of
section in memory may differ).

Usually different sections are introduced to split the file into several code/data blocks with different memory protection
modes and to provide paging (swapping) mechanism.

Disassembler window allows you to select the section you want to disassemble. A section that contains executable code
is usually named “.text” or "CODE".

Virtual Address
Virtual address is an address identifying a virtual (non-physical) entity. Virtual Address is used to describe location of
data mapped into memory. Physical Address 0x1000 (in file) can be mapped to virtual address 0x401000.
Disassembler displays both addresses - physical (column “Raw Address”) and virtual (column "Virtual Address"). In
case no section information is available for an image, raw offsets cannot be converted to virtual addresses and the
column is empty.

Symbols

Debug symbols is the information about what high-level programming language constructions generated specific
piece of machine code in the given executable module. Sometimes it's embedded into the module's binary, or
distributed as a separate file, or just discarded during the compilation and/or linking. Symbols enable a person using a
debugger to gain additional information about the binary, such as the names of variables and routines from the
original source code. This information is sometimes extremely helpful while trying to investigate and fix a crashing
application.

Hex Editor Neo uses only part of debug symbols, namely, it is capable of displaying function and variable names where
appropriate. It is also capable of automatically locating symbol files for used modules and showing exported function
names.

Starting Disassembler

To start disassembler, execute the Tools » Run Disassembler… command.

If you have a document opened in the editor, the disassembler window automatically selects this document for
disassembling. Both files and processes may be disassembled this way. Hex Editor Neo is capable of locating a proper
image and loading its PE header.

If the current document has a selection, its start and size are used to fill the corresponding fields in the Disassembler
window. Otherwise, the cursor's position is used as a starting offset.

Disassembler Window

Hex Editor Neo Documentation Definitive Guide

180

http://www.intel.com/products/processor/manuals/
http://www.ecma-international.org/publications/standards/Ecma-335.htm

File
Enter the full path to an executable file or press the browse ("..." button).

Instruction Set
Select a required instruction set. Disassembler automatically selects the valid instruction set, according to the fields in
the image's PE header.

Section

If the file has a valid PE Header, a list of file sections is displayed in this field. A first code section (usually named “.text”
or "CODE") is automatically selected. You can select any other section, effectively changing the value of the Start and
Size fields. As described above, if the current document is used for a disassembler, Start and Size fields are
automatically filled using the cursor's position and/or current selection.

This field is disabled if MSIL instruction set is selected.

Symbols…
Click to display the Symbols Window for a selected file. Using this window you can select a specific symbol and instruct
the disassembler to disassemble only this symbol (that is, to update the Start and Size fields appropriately).

Start
The starting offset for disassembling. This field is disabled if MSIL instruction set is selected.

Size
The size of the area for disassembling. This field is disabled if MSIL instruction set is selected.

Hexadecimal/Decimal switch
Set to specify whether offset and size are entered as hexadecimal or decimal numbers.

Dual view
If checked, both Disassembler View and usual editor window will be opened for a document. The views will be
connected to each other, that is, highlighting an instruction in Disassembler View will select its bytes in a editor window
provided “Synchronize cursor with Hex View” and "Synchronize selection with Hex View" options are enabled.

Synchronize cursor with Hex View
Paired editor window's cursor movement results in a disassembler's active row being changed.

Synchronize selection with Hex View
Disassembler automatically selects all bytes of the currently selected instruction in disassembler. This selection replaces
the current selection of the paired editor window.

Reset
Click to reset the state of all fields to their default values.

Headers
This section displays the contents of the file's PE Header.

Hex Editor Neo Documentation Definitive Guide

181

Symbols Window

Symbols window displays available symbolic information for a selected document.

The window is structurally divided into three parts. There is a horizontal splitter that can be used to change the size of these
parts and the whole Symbols Window is resizable as well. There are Source files list at the top left, Module details field at the
top right and Symbols list at the bottom of the window.

Source Files List

This list contains a full list of source files used to compile the given executable. This list may be empty if corresponding
information is missing in the symbol file.

Each source file is displayed with full path name. Please note that path names are only valid on the same computer
where the image was compiled.

You can copy the whole list or only a part of it to the Clipboard using the shortcut menu.

Module Details

Module details field provides information about the symbol file, its format, location and several other properties. It
displays whether line numbers, global symbols, type information and public symbols are present in the symbol file or
not. Hex Editor Neo does not use all information from the symbol file.

You can copy the contents of the window to the Clipboard using the shortcut menu.

Symbols List

This list at the bottom of the window lists all symbols located for a given document. A symbol's raw address, symbol's
undecorated name, size, type and flags are displayed.

You can use the Address and Name fields to search for a specific symbol.

Select a symbol and press the Select button (if available) to select it in the Disassembler Window, or press the Jump
button to jump to it in the Disassembler View.

Disassembler View

Disassembler view displays all decoded instructions in an instruction list. For each instruction, the following information is
provided:

Hex Editor Neo Documentation Definitive Guide

182

Raw Address
Instruction's raw address in a document.

Virtual Address
Instruction's virtual address, if available.

Relative Offset
A relative offset inside a method (applicable only in MSIL).

Bytecode
Bytes that comprise an instruction.

Mnemonic
Instruction's name.

Operands
All explicit instruction's operands, with appropriate modifiers. All referenced symbols and metadata tokens are
decoded, if symbol information available.

Implicit Operands
Implicit operands, that is operands, which are not explicitly specified, but are still referenced or modified by an
instruction. An example of instruction that implicitly modifies registers (esp and eip) is call.

CPU
CPU family in which this instruction appeared.

Flags Checked
All flags that this instruction reads.

Flags Modified
All flags this instruction modifies.

Right-click on the column bar to open the Select Columns Window where you can select columns for the list.

When symbols are available, all jumps and calls for which the Hex Editor Neo is able to locate a symbolic name show this
name before the destination address. The destination address in this case follows the name in parenthesis.

Vertical lines in a view may be switched off, using the “Show grid lines” option in General Settings page.

View Refresh

When disassembled document is changed through one of the editor windows, disassembly may need to be refreshed. In
some cases, where the size of the instruction remains the same, Disassembler View refreshes itself automatically and no
additional refresh is required.

Hex Editor Neo Documentation Definitive Guide

183

In other cases, manual refresh is required. To refresh, use the Refresh command from either the shortcut menu, or from the
window's toolbar.

Positioning within a Document

Use the Edit » Go to Offset… command to go to a specific offset in the Disassembler View. In addition, you can use the
window's toolbar to quickly jump to a given raw or virtual address.

Searching for a Text

You can search a Disassembler View for a given text. Use the Edit » Find… command to enter the search sequence and then
press the Find button to find the next occurrence. Searching is performed only in selected columns (see above).

Exporting and Copying to Clipboard

You can export the whole Disassembler View or only selected part of it into a text file (.txt or .csv) or copy it into the
Clipboard. Both commands are available in the shortcut menu. For the export command, you are provided with a choice of
columns to export, for the Copy to Clipboard command, the currently selected data is exported.

Bookmarks
A bookmark is a stored location within a document. Bookmarks may be used to quickly navigate through the document.

Hex Editor Neo supports creation of several bookmark groups. Each group holds an unlimited number of bookmarks. You
can specify different coloring schemes for different bookmarks. The Bookmarks Tool Window is used to display and
manage all bookmark groups and their properties.

Each bookmarks group may be visible or hidden. All bookmarks of the visible bookmarks group are displayed in all editor
windows belonging to a given document. All bookmarks groups are properties of a document, so each opened document
may have its own bookmarks.

Bookmarks Tool Window

Bookmarks Tool Window displays all defined bookmarks groups for a current document. Each bookmarks group may be
visible or hidden.

The check box next to each bookmark group signals if the group is visible.

On the right, the Bookmark Details window is displayed. It displays all the bookmarks of the currently selected bookmark
groups. You can navigate the list with mouse or keyboard. When you select a given bookmark, the current editor window
scrolls to the position of this bookmark.

Active vs. Selected Bookmark Group

There is one active and one selected bookmark group in a list. Selected bookmark group is signaled by a selection box while
active bookmark group is signaled with an active radio button, which is next to group's name.

Several bookmarks commands always operate on the active group, while other bookmarks command operate on the
selected group.

In addition, the Bookmark Details window always displays the details of the selected bookmarks group.

Hex Editor Neo Documentation Definitive Guide

184

Creating and Deleting Bookmarks Groups

To create a new bookmarks group, select the Bookmarks » New Bookmarks Group command. In addition, new
bookmarks group is automatically created in some cases, as described in Working with Bookmarks section.

To delete a bookmarks group, select it in a list and press the Del key. You can also delete a group from a shortcut menu.

Shortcut menu's Remove All command may be used to delete all defined bookmarks groups.

Working with Bookmarks

There are several commands that work with bookmarks.

Working with Active Bookmarks Group

Toggle Bookmark

Puts a bookmark on the currently active cell (a cell with a cursor). If there is already bookmark (in an active bookmarks
group) on the current cell, it is removed. If there are no bookmarks groups defined for the active document, the new
one is created and becomes active.

Complexity: constant-time.

Next Bookmark

The cursor is moved to the beginning of the next bookmark within the active bookmarks group. If there are no more
bookmarks till the end of the document, the cursor is moved to the beginning of the very first bookmark in a group.

Complexity: constant-time.

Previous Bookmark

The cursor is moved to the beginning of the previous bookmark within the active bookmarks group. If there are no
more bookmarks till the beginning of the document, the cursor is moved to the beginning of the very last bookmark in
a group.

Complexity: constant-time.

Working with Selected Bookmarks Group

Selection to Bookmarks

Current editor window's multiple selection is converted to bookmarks and added to the selected bookmarks group. If
there are no bookmarks groups defined for the active document, the new one is created.

Complexity: from constant-time to linear-time.

Bookmarks to Selection

The selected bookmarks group is converted to the current editor window's selection. If the window currently does not
have a selection, the bookmarks group is silently converted into selection, otherwise, you are presented with a
following choice:

New selection - the current selection is dropped and bookmarks group is converted into the selection.
Add to selection - the current selection and bookmarks group are merged together.
Subtract from selection - the current bookmarks group is subtracted from the selection.

Complexity: linear-time (depends on the number of blocks in the selection and/or bookmarks group)

Other Commands

Save Bookmarks…

All defined bookmarks groups are saved to the file.

Complexity: linear-time.

Load Bookmarks…

Hex Editor Neo Documentation Definitive Guide

185

Load one or several bookmarks groups from a file. In addition, loading data from selection files is also supported.

Complexity: linear-time.

Statistics
Hex Editor Neo provides unique capability of calculating several file statistics. You may calculate General Statistics and
Pattern Statistics for any opened document. In addition, Descriptive Statistics is calculated for both modes, and Entropy
Analysis is performed for General Statistics mode.

Statistics Tool Window is used to display the results of statistics calculations. To calculate statistics, open (or activate) the
document for which you wish to calculate it, and execute the Tools » Statistics » Refresh command.

Statistics is always calculated for the whole file, unless the selection is present in the current editor window. If selection is
present, statistics calculation is limited to this selection. Multiple selections are fully supported.

Statistics Tool Window

Statistics Tool Window is used to display the results of statistics calculation. The window provides two views: histogram

and table

Use the Tools » Statistics » Table View to switch between views.

There is a statistics calculation type switch at the top of the window. Choose from General Statistics and Pattern Statistics
modes. For “Pattern Statistics” mode, a pattern needs to be defined. Press the Define… button to define a new pattern.
After it is defined, it is displayed next to the type switch.

Hex Editor Neo Documentation Definitive Guide

186

Histogram View

In histogram view, the graphical representation of the recently calculated statistics is displayed. You may define colors using
the Tools » Statistics » Modify Colors… command. You may also copy the histogram image to the clipboard using the
shortcut menu.

The Statistics » Hide Maximum Value switch may be used to temporary remove a maximum value from the histogram.

As you move a mouse over the histogram view, a tooltip with more information about the point under mouse cursor is
displayed.

Table View

In table view, the tabular representation of the recently calculated statistics is displayed. You may sort the table by any
column. In addition, the descriptive statistics window is displayed to the table's right. You may change their sizes using the
splitter bar between them.

General Statistics

General Statistics is a distribution of individual bytes within the document (or selection). A document or selection is scanned
and total number of each byte's occurrences is calculated. The results are then displayed in a table and on a histogram.
Descriptive Statistics and Entropy Analysis are then calculated for the resulting data.

General Statistics may be used to estimate the amount of redundancy in a file - if you observe a number of large peaks on a
histogram, it means several bytes are more often found in a document than others. This is very typical for executable and
most data files. Compressed files, on the other hand, tend to be more “smooth” on their histograms: the number of
occurrences of each byte in a file is nearly the same.

Pattern Statistics

Pattern Statistics is another statistics calculation mode, provided by Hex Editor Neo, in addition to the General Statistics. In
this mode, you define a pattern which is then searched in a document or current selection, if it is present. The whole target
range is divided into a number of blocks (you define the number of blocks). The number of occurrences of a pattern in each
block is then calculated. The results are displayed in a table and on a histogram. Descriptive Statistics is also calculated for
the results.

Edit Pattern Window

When you switch to the “Pattern Statistics” mode, or press the Define… button in the Statistics Tool Window, the Edit
Pattern Window is displayed.

A pattern is defined using the Pattern Dialog, which is encapsulated in this window. In addition, the Ignore Case option may
be enabled to ignore case while matching the pattern. You also specify the number of blocks into which the file is divided.

Regular Expressions

The Pattern Statistics command fully supports regular expressions. To use regular expressions, select either “ASCII string
(char[])” or "UNICODE string (wchar_t[])" pattern type, enter the regular expression, make sure the “Regular expression”
checkbox is checked and enter the sub-expression number you want to search for. Sub-expression "0" represents the
expression itself.

Take the following limitation into account:

Hex Editor Neo Documentation Definitive Guide

187

Using Pattern Statistics in regular expressions mode within a selection (either single-range, or multiple) is not
supported.

Descriptive Statistics and Entropy Analysis

In addition to calculating two types of statistics, Hex Editor Neo also calculates some cumulative values for statistics results.

Descriptive Statistics

Descriptive Statistics is calculated for both General Statistics and Pattern Statistics results and is a standard statistical
calculation for a random value. The following values are calculated:

Mean
Sample Variance
Standard Deviation
Standard Error
Kurtosis
Skewness
Median
Mode (one or several)
Range
Minimum value
Maximum value
Sum

Entropy Analysis

Entropy analysis is performed for General Statistics mode only. The single-byte (256 different symbols) alphabet is used in
entropy calculations. The following values are computed:

Entropy
Entropy value in bits and as percentage from maximum (which is 8 for selected alphabet). The higher entropy, the less
redundancy in the file.

Redundancy
Redundancy equals to 100% - Entropy as percentage. Indicates the data redundancy in a file (or selection).

Compression size limit
Theoretical compressed size limit. Again, as a simple single-byte alphabet is used in computing entropy, this
“theoretical” limit may be much larger than the real compressed file size, produced by any modern compressor, as they
use advanced alphabet selection strategies.

Attributes
Attributes Tool Window

The Attributes Tool Window displays the current file's attributes. It also allows you to modify the state of some attributes.

The following attributes are displayed for files and file streams:

Hex Editor Neo Documentation Definitive Guide

188

Attribute Description Changeable?
File Name Full file's path NO
Archive File is ready to be archived (file has been modified since

last archival)
YES

Hidden File is hidden YES
System File is system YES
Read-Only File is read only YES
Sparse File is a sparse file NO
Temporary File is a temporary NO
Offline File is offline NO
Encrypted File is encrypted NO
Compressed File is compressed NO
Has Reparse Points File has reparse points NO
Created Date/Time File's creation date and time YES
Last Access Date/Time File's last access date and time YES
Last Write Date/Time File's last write date and time YES
Hard Links A number of file's hard links NO
Streams A number of alternate data streams in a file NO
Total Size (with
streams)

A total size a file occupies on the disk NO

Total Size (without
streams)

A size of the file's unnamed (default) stream NO

Total Streams Size A total size of all file's named streams NO

The following attributes are displayed for opened processes:

Attribute Description Changeable?
Process Name (ID) The process name and process ID NO
File Path Full path to process' executable NO
Number of Blocks Total number of opened memory blocks NO
Number of Modules Total number of opened modules NO
Start Starting memory address NO
Size Size of opened range NO
End Ending memory address NO

To a change a flag value, click on the checkbox. To change a date/time value, double-click on it. The following window
appears:

To apply changes you made to a file's attributes, execute the Tools » Attributes » Apply Changes command. The Tools »
Attributes » Reset Attributes command may be used to undo all attribute changes.

Hex Editor Neo Documentation Definitive Guide

189

Base Converter
Base Converter Tool Window

The Base Converter Tool Window provides you with a mechanism to convert numbers from one format into another.

The following formats and encodings are supported by the Base Converter:

Decimal
Hexadecimal
Octal
Binary
Float (single-precision floating-point number)
Double (double-precision floating-point number)
ASCII character
UNICODE character
EBCDIC character

Once you enter the value in one of the supported formats, it gets immediately converted into other compatible formats. Use
the Reset button to clear all fields. Hexadecimal values may be entered with or without the 0x prefix.

Data Inspector
The Data Inspector Tool Window allows you to interpret data under the cursor in several formats. For each format, decoded
data is displayed in corresponding field in a tool window. As the cursor is moved, the window updates all fields. In addition,
it can be instructed to highlight the currently selected field in an editor window, thus showing you all the cells the
highlighted value occupies in the document.

Hex Editor Neo Documentation Definitive Guide

190

For example, in Hex Bytes view type, selecting the ULONGLONG fields in the Data Inspector window highlights the cursor
cell and next 7 cells, as 64-bit ULONGLONG value occupies 8 bytes.

You can configure the highlight colors using the Tools » Data Inspector » Modify Colors… command. Highlighting is
toggled on or off with a Tools » Data Inspector » Enable Highlighting command.

Updated Data Inspector allows you to define your own formats. See the Creating New Format section for more information.

Fields

The following formats are automatically installed with Hex Editor Neo:

Format Description
BYTE 8-bit unsigned integer value ranged from 0 to 255 (0 to 0xFF)
USHORT 16-bit unsigned integer value ranged from 0 to 65,535 (0 to 0xFFFF)
UINT 32-bit unsigned integer value ranged from 0 to 4,294,967,295 (0 to 0xFFFF FFFF)
ULONGLONG 64-bit unsigned integer value ranged from 0 to 18,446,744,073,709,551,615 (0 to

0xFFFF FFFF FFFF FFFF)
char 8-bit ASCII character
wchar_t 16-bit UNICODE character
SHORT 16-bit signed integer value ranged from -32768 to 32767 (0x8000 to 0x7FFF)
INT 32-bit signed integer value ranged from -2,147,483,648 to 2,147,483,647 (0x8000

0000 to 0x7FFF FFFF)
LONGLONG 64-bit signed integer value ranged from -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807 (0x8000 0000 0000 0000 to 0x7FFF FFFF FFFF FFFF)
float 32-bit single-precision floating-point value
double 64-bit double-precision floating-point value

Data Modification

In addition to displaying data in different formats, the Data Inspector allows you to modify data in different formats. In
order to do it, activate any field and double click it to start editing. The Edit » Edit Cell command may also be used to start
editing currently active field. After you finish editing a field, press the Enter key to commit changes. Entered data will be
propagated to the active document at the cursor's position. The field type will be used to determine the number of cells
affected by the change. This action will result in a Write command being added to the document's operation history.

Hex Editor Neo Documentation Definitive Guide

191

Hexadecimal values may be prefixed by the 0x prefix. Character values may be entered either inside quotation marks, or
without them. You may also use the Structure Viewer expression when entering a field value.

User-defined data format must include the special “member function” assign to successfully support data modification. See
the Creating New Format section for more information.

Byte Order

Data Inspector respects the current editor window's byte order to display and process data in the list.

Creating New Format

New version of Data Inspector allows you to define your own formats. Structure Viewer language definition format is used
to define the format.

Use the following steps to define a new format:

1. Use Tools » Data Inspector » Add New Type… command to open the Type Definition window.
2. Enter the new type's name. 3, Enter the new type's definition. Definition must be a Structure Viewer's public user-

defined type with optional display attribute.

If data modification is required, the defined public type must also have a special “member” function called assign . This
function takes a single parameter and must convert it and assign to defined type's field(s).

The following example defines new Data Inspector type which displays an IP address.

Hex Editor Neo Documentation Definitive Guide

192

C++
// display attribute allows IP address formatting
[display(format("{0}.{1}.{2}.{3}",a,b,c,d))]
public struct IP
{
 // Little-endian IP address encoding
 unsigned char d, c, b, a;

 // assign function allows data modification through the user interface
 function assign(value)
 {
 var na_end = int(find(value, "."));
 var nb_end = int(find(value, ".", na_end+1));
 var nc_end = int(find(value, ".", nb_end+1));

 a = int(substring(value, 0, na_end));
 b = int(substring(value, na_end + 1, nb_end - na_end - 1));
 c = int(substring(value, nb_end + 1, nc_end - nb_end - 1));
 d = int(substring(value, nc_end + 1));
 }
};

Checksum Calculation
Hex Editor Neo provides a number of checksum calculation algorithms. All algorithms are capable of quickly calculating the
result for the whole document, or only part of it. All checksum calculation algorithms fully support multiple selection.

The following section, Checksum Tool Window, describes the user interface window used to configure and start checksum
calculation. Below is a complete list of supported algorithms.

Simple summators
This section contains the following algorithms: 8-bit sum, 16-bit sum and 32-bit sum. It treats the document (or
selection) as a stream of unsigned bytes and computes the sum of them. A summator is sized according to the selected
algorithm and overflow may occur during calculation.

More summators
This section contains the algorithms that treat the document as a stream of 8, 16, 32 or 64-bit unsigned little-endian or
big-endian numbers. Each algorithm calculates the simple 64-bit sum of all values.

Signed sums
This section has the same algorithms as in previous section, but each algorithm now operates on signed numbers.

Checksum

The following algorithms are supported:

Algorithm Notes
CRC-16 Cyclic redundancy check. CRC polynomial: x16 + x15 + x2 + 1. Used in XMODEM,

USB, many others.
CRC-16
(CRC-
CCITT)

Cyclic redundancy check. CRC polynomial: x16 + x12 + x5 + 1. Used in X.25, V.41,
Bluetooth, PPP, IrDA, BACnet

CRC-32 Cyclic redundancy check. CRC polynomial: x32 + x26 + x23 + x22 + x16 + x12 + x11
+ x10 + x8 + x7 + x5 + x4 + x2 + x + 1. Used in V.42, MPEG-2.

CRC
XMODEM

Cyclic redundancy check. CRC polynomial: x16 + x12 + x5 + 1. Used in XMODEM.

Custom
CRC

Allows you to specify the polynomial values used in checksum calculation. See
the Configuring Custom CRC section for more information.

Adler-32 Adler-32 checksum. Used in zlib and others.
Fletcher RFC 1146. Fletcher checksum.

Hashes

Note that actual list of algorithms in this section depends on version and localization of operating system. Some of the
following algorithms may not be available in old or localized versions of operating system.

Hex Editor Neo Documentation Definitive Guide

193

Algorithm Notes
MD2 RFC 1319. Digest size is 128 bits.
MD4 Digest size is 128 bits.
MD5 Digest size is 128 bits.
SHA-1 RFC 3174. Digest size is 128 bits.
SHA-256 Not supported on Windows XP
SHA-384 Not supported on Windows XP
SHA-512 Not supported on Windows XP
RMD-160 RIPEMD-160 (RACE Integrity Primitives Evaluation Message Digest) - 160-bit

message digest algorithm.
RMD-128 RIPEMD-128 (RACE Integrity Primitives Evaluation Message Digest) - 128-bit

message digest algorithm.

Checksum Tool Window

Checksum Tool Window is used to display checksum calculation results. It lists all algorithms supported on the current
platform.

Use the checkbox near the algorithm name to specify which checksums you want to compute. Choose whether you want
selected checksums to be calculated for the whole document (“Whole Document” type) or for a current selection ("Selection
Only" type). Click the Refresh toolbar button to start checksum calculation.

Displaying Results

As soon as checksum calculation completes, results for all computed checksums are displayed in the list. Checksum's value
is displayed both as hexadecimal and decimal number. The shortcut menu may be used to copy the results to the Clipboard
or export them to a comma-separated file. You can also double-click the individual result to bring up the Result window
where you can easily view and copy the checksum value.

Adding, Removing and Restoring Algorithms

Hex Editor Neo supports algorithms which provide one or more customization parameters. Currently only Custom CRC
algorithm supports this. You may have multiple entries of such algorithms in a list, each with its own set of parameters.

To add new algorithm, use the Tools » Checksum » Add Algorithm… command. To configure parameters for selected
algorithm, use the Tools » Checksum » Parameters… command. To remove algorithm, use the Tools » Checksum »
Remove Algorithm command. To reset the list of algorithms (including the default checkboxes), use the Tools »
Checksum » Reset Algorithms command.

All commands are available through the main menu, Checksum Tool Window toolbar or context menu.

Performance Considerations

Hex Editor Neo is capable to utilize several processors or processor cores when multiple algorithms are selected. Most
algorithms (especially summators) are extremely fast. The slowest algorithms are Custom CRC and MD2. When several
algorithms are started on multi-core computer, the total execution time will be limited by the speed of the slowest

Hex Editor Neo Documentation Definitive Guide

194

algorithm.

Fast algorithms, executed on file opened from fast HDD or SSD are parallelized almost linearly.

Configuring Custom CRC

Custom CRC dialog is used to configure the Custom CRC checksum algorithm.

To open a Custom CRC configuration dialog, use the Tools » Checksum » Parameters… command.

Select the type of CRC to compute: either 16-bit or 32-bit. Enter the algorithm initial value, polynomial and XOR out
constants. Reflection In and Reflection Out switches specify whether the algorithm should reflect bits on input and/or on
output.

Volume Navigator
Starting from version 6.01 Hex Editor Neo includes a built-in Volume Navigator which is capable of parsing volume
structure.

Currently, only NTFS-formatted volumes and CDFS volumes are supported. Volume Navigator sometimes is also capable of
parsing slightly damaged NTFS volume structure.

Features

Volume Navigator implements the following functionality:

Parsing volume structure
An entire volume is parsed and represented in Volume Navigator Tool Window. This includes all directories, files, file
streams, file attributes and so on.

Showing file record structure
Whenever file record is selected in navigator's window, it is automatically parsed in Structure Viewer Tool Window.

Locating volume items
A location (all clusters) an item occupies on a volume may be highlighted in opened editor window.

Copying volume items
Any selected item (stream, file, directory or entire volume) may be copied.

Opening Volume
Every time an supported volume is opened with File » Open » Open Volume… command, Volume Navigator
automatically parses volume structure and displays it in its Volume Navigator Tool Window.

Volume Navigator Tool Window

Hex Editor Neo Documentation Definitive Guide

195

Volume Navigator Tool Window contains a parsed NTFS volume structure. Each row represents a parsed file record. File
records can be one of two types: directory record and file record.

When you change selection, cursor location in current editor window is moved to the beginning of the selected file's record.
In addition, Structure Viewer shows parsed file record.

The following information is displayed for each file record:

Name
Size (not available for directories)
Attributes
Creation Date
Last Modification Date
Last Access Date

Double-click a directory item to open it. Click the plus sign next to file entry to see all file's streams. Clicking on a stream
navigates the current editor window to the beginning of stream's data.

Volume Navigator Commands

The following commands are available on Volume Navigator toolbar or in item's context menu:

Up to Parent
Navigate to parent directory.

Update Current View
Rescan current directory.

Select All Stream Data
Select all clusters that selected stream occupies. May produce multiple selection object if stream is fragmented.

Open File in Editor
Open selected file in Hex Editor Neo.

Open Containing Folder
Open Windows Shell and locate it to selected file.

Copy to…
Copy selected item to a given location.

Hex Editor Neo Documentation Definitive Guide

196

Copy Volume…
Copy the entire volume based on parsed volume structure.

Built-In Explorer
Explorer Tool Window

This tool window mimics the Windows Explorer. It consists of two parts - Folder List and File List. You may hide a Folder List
using the Folders button on the toolbar. Use the splitter bar between parts to change their relative sizes.

Hex Editor Neo's Explorer behaves much like standard Windows Explorer. You may browse your file system, network
neighborhood, open files in the editor by double-clicking on them, or dragging to the editor's window. You may also use
drag&drop to copy or move files and folders between different folders, as you do it in Windows Explorer. Right-clicking the
file or folder brings up the standard file or folder shortcut menu.

Previous and Next commands may be used to navigate backward and forward (within a list of visited folders). Up command
navigates to a parent folder. Locate Current command navigates to the location where the current document is situated.
Find in Files command launches the Find in Files function in the current folder.

Two Explorer tool windows are present in the Hex Editor Neo. Each window has its own position, current folder and other
settings.

Data Operations
Hex Editor Neo supports a number of data operations that can be applied either to the whole document, or a current
multiple selection. All operations are found under the Operations main menu item and are structurally divided into five
categories: Bitwise Operations, Arithmetic Operations, Shift Operations, Case Change Operations and Reverse Operations.

All data operations execute in linear time and depend on the selection's complexity. That is, for single-range selection
operation execution time does not depend on data size.

Bitwise Operations

Bitwise operations include NOT, OR, AND and XOR. The first operation does not require an operand, while all others require
the operand of a given size. More information is provided in the table below (in the table below x is a variable containg
currently processing value):

Name Operand Operation Description
NOT N/A x = ~x

OR a x = x | a

AND a x = x & a

XOR a x = x ^ a

The size of both operands depends on the view type of the current editor window.

Bitwise Operation Window

When you execute a bitwise operation, the following window appears:

Hex Editor Neo Documentation Definitive Guide

197

The operation you executed is automatically selected, but you can change it if you like.

If the chosen operation requires an operand, select its type and enter its value.

Using Patterns as Operands

You can use a pattern for a bitwise operation (except for NOT). In this case, the operation iterates through each byte (or
word etc., depending on view type) as the operation is applied to the selection.

Alignment

Non-byte size operands are always aligned.

Arithmetic Operations

Arithmetic operations include Negation, Addition, Subtraction, Multiplication, Division and Remainder. The first operation
does not require an operand, while all others require the operand of a given size. More information is provided in the table
below (in the table below x is a variable that represents a current value):

Name Operand Operation Description
Negation N/A x = -x

Addition a x = x + a

Subtraction a x = x - a

Multiplication a x = x * a

Division a x = [x / a]

Remainder a x = x % a

Set Minimum a x = x < a ? a : x

Set Maximum a x = x > a ? a : x

Arithmetic Operation Window

When you execute an arithmetic operation, the following window appears:

Hex Editor Neo Documentation Definitive Guide

198

The operation you executed is automatically selected, but you can change it if you like.

If the chosen operation requires an operand, select its type and enter its value.

Alignment

Non-byte size operands are always aligned.

Shift Operations

Shift operations include Logical Left, Logical Right, Arithmetic Left, Arithmetic Right, Rotate Left and Rotate Right. All
operations require an integer operand that specify the number of bits to shift or rotate. Arithmetic shift differs from logical
shift in that it saves the sign of the operand. Only right logical and arithmetic shift perform differently and only if the value
is negative.

Shift Operation Window

When you execute a shift operation, the following dialog appears:

The operation you executed is automatically selected, but you can change it if you like.

Enter the number of bits to shift or rotate.

Alignment

Non-byte size operands are always aligned.

Case Change Operations

Case change operations include Make Lowercase, Make Uppercase and Invert case. The result of an operation depends on
the current window's view type. If view type is set to Hex Words or Decimal Words, selection is treated as Unicode string,
otherwise it is treated as single-byte string. In the latter case, current window's encoding is used to perform case change.

Reverse Operations

Reverse operations include Reverse Bits and Byte Swap operations. The actual behavior of both commands depends on the
current editor window's group mode. For BYTE group mode, Byte Swap operation is not available.

When you execute a reverse operation, the following window appears:

The complexity of both commands is linear, depending on the number of ranges in a selection. For a single range selection,
the complexity is always constant, not depending on selection size.

Hex Editor Neo Documentation Definitive Guide

199

Reverse Bits

Reverse Bits operation reverses the order of bits in each byte, word, double word or quad word in a current multiple
selection.

010111012 => 101110102
01011101'111001102 => 01100111'101110102

Byte Swap

Byte Swap command reverses the order of bytes for each word, double word or quad word in a current multiple selection.
This function is not available for a BYTE group mode.

123416 => 341216
1234abcd16 => cdab341216

Customization
Hex Editor Neo is a highly customizable application. You can customize almost every feature or module. This section
describes several basic customization mechanisms.

In addition, other customizable features are described in other sections. This includes:

Editor Window Customization
You can customize the placement and layout of an editor window.

Structure Viewer Settings Page
Structure Viewer allows you to define a list of directories that are used to search for included files. It also allows you to
define an association between a structure scheme and file extension.

In addition, most interface dialogs, especially those that encapsulate a Pattern Window, allow you to change their size. The
size is then saved and restored next time you use this dialog. Most window fields also store the values you entered into
them and provide you with a list of last recently used values.

This section describes General Settings, Toolbar Customization and Keyboard Customization.

General Settings

General Settings page contains application-wide settings.

Hex Editor Neo Documentation Definitive Guide

200

All settings on this page are divided into several groups.

General Group

This group contains the following settings:

Display splash screen
If enabled, the splash screen is displayed each time you launch the Hex Editor Neo. Splash screen remains visible
during application startup and a few seconds later.

Always create backups
Tells the editor to always create backup copies of the file before saving changes to it. See the Always create backups
Option for more information.

Lowercase hexadecimal
If enabled, hexadecimal letters (‘A’ to 'F') are displayed in lower case, otherwise, in upper case.

Default byte order
Specified the default byte order used by new editor windows. Byte Order can then be changed for each individual
editor window.

Byte order change affects floating-point types
Specifies whether byte order change affects encoding of floating point types, float and double. The encoding of floating
point types may be different for different platforms and files, so Hex Editor Neo provides you both methods.

Window switching style
Specifies the window switching style. See the Window Switching section for more information.

Last recently used documents to display: N
Specify the number of last recently used documents to display in the File menu.

Close affects the current tool window only
When enabled, clicking the Close button on the tool window closes only this window, if disabled, an entire tool window
frame is closed.

Restore main window position on startup

Hex Editor Neo Documentation Definitive Guide

201

If enabled, Hex Editor Neo restores the last position of its main window on startup.
Check for updates

Can be “Every launch” (default), "Every week" or “Never”. Specifies the frequency of checking for availability of new
versions of the Hex Editor Neo.

Foreground downloading
Use all available bandwidth when downloading updates.

Check for low disk space before performing operations
Hex Editor Neo may require significant free space on one of your volumes for differnt “heavy” operations. It makes a
"best guess" on the required hard disk space amount before processing the operation and warns you if there is too
little free space. You may switch this option off, but do it on your own risk!

Editor Group

This group contains the following settings:

Single Selection mode
Change the way multiple selection works in Hex Editor Neo. See the Single Selection Mode Option for more
information.

Adjust selection on Insert operation
The current selection is shifted if you type new data with Insert Mode ON. This is a potentially slow operation and is not
performed if you have a complex selection.

Digit grouping
Affects the visualization of long numbers in decimal view types. Uses the thousands separator defined in the current
profile to increase the readability of long decimal numbers.

Display cursor address on the left
Specifies whether the cursor's address is displayed on the beginning of the current line.

Notifications Group

Hex Editor Neo has several notifications that are displayed to inform you about an important event. All these notifications
have “Do not display anymore” checkbox. If you checked this box and want to restore the default behavior, use the options
in this group to do it.

NTFS Streams

This group contains the following settings:

Open stream after creation
When enabled, the editor automatically opens a named stream after it is created (using NTFS Streams » Create
Stream… command).

Printing

This group contains the following settings:

Ignore Coloring
When switched on, the editor ignores all coloring and prints the document in black and white. All highlighting is
ignored and only selection is displayed on the paper (by inverting colors). When this option is switched off all
highlighting is printed.

Standard header
Print standard page header, which includes the document's name and current/total number of pages.

Standard footer
Print standard page footer, which includes the name of the application printed the document.

Copy&Export

This group contains the following settings:

Hex Editor Neo Documentation Definitive Guide

202

Float copy/export number of digits
Specify the number of digits to be used while exporting single-precision floating-point numbers. See Formatted Data
Format topic for more information.

Double copy/export number of digits
Specify the number of digits to be used while exporting double-precision floating-point numbers. See Formatted Data
Format topic for more information.

Toolbar Customization

Commands page lets you customize the toolbars.

Creating New Toolbar

To create a new, empty toolbar press the New… button and enter the toolbar's name. Now you can add new commands to
a created toolbar.

Deleting Toolbar

To delete a toolbar, select it in the list and click the Delete button.

Configuring a Toolbar

To remove a button from the toolbar, click on it and drag away from the toolbar.
To move a button to another location, click and drag it.
To add a button to a toolbar, click on the command in the Commands list and drag it to the toolbar.

Other Options

Hide a toolbar by unchecking the box next to its name in the Toolbars list. Change the size of the toolbar icons with the
Button size control. The Hex Editor Neo's unique vector icon technology renders command icons at any size without
artifacts.

Keyboard Customization

Hex Editor Neo Documentation Definitive Guide

203

Keyboard page allows you to customize keyboard shortcuts used by the Hex Editor Neo.

The list of all commands is displayed on the left. Select a command to see the list of shortcuts assigned to it. They are
displayed in a Current keys field. Each command may have several shortcuts, but a shortcut may not be shared between two
or more commands.

To delete a shortcut, select it in a list and press the Remove button.

To define new shortcut, activate the Press new shortcut key field and then press the key combination. Use the Assign button
to assign the combination to a selected command.

Press the Keyboard Map button to open a Keyboard Map.

Keyboard Map

The Keyboard Map window displays all currently defined keyboard shortcuts.

Hex Editor Neo Documentation Definitive Guide

204

You can change the size of the window, print it or copy its contents to the Clipboard.

Regular Expressions Settings

Regular Expressions Settings page has several global options related to regular expressions, as well as allows you to
manage named regular expression classes.

‘.’ (Dot) metacharacter does not match null character ('\0')
Specify that the . metacharacter will not match a null character.

‘.’ (Dot) metacharacter does not match newline character ('\n')
Specify that the . metacharacter will not match a newline character.

Non-escaped white-space is not significant
Specify that non-escaped white-space characters in a regular expression are ignored.

Hex Editor Neo Documentation Definitive Guide

205

See also the Creating and Managing Classes section for more information.

Proxy Settings

This page allows you to configure the proxy server used by features Check for Updates, Downloader and Crash Dump
Uploader. In most cases you don't need to make any changes, as defaults will work on majority of installations.

When Hex Editor Neo establishes a connection to remote server, it always does it over HTTP protocol over the 80 port. If
your computer must use HTTP proxy when accessing HTTP resources, you may configure the proxy settings on this page. In
addition, if your proxy server requires authentication, you may also configure credentials to use.

Server Settings

There are four options you can use to configure a proxy server:

Default
Hex Editor Neo will use the proxy server configured in your default browser. This is a default setting.

Autodetect proxy settings
Hex Editor Neo will try to automatically detect proxy server settings.

Do not use proxy
Hex Editor Neo will bypass any configured proxy.

Use the following proxy (HTTP):

Specify the address (and optionally port number) of the proxy server to use. Examples:

myserver.com

will use the HTTP proxy server myserver.com on port 80 (the default).

myserver.com:8080

will use the HTTP proxy server myserver.com on port 8080

Proxy Server Authentication

There are three authentication options you can use:

Hex Editor Neo Documentation Definitive Guide

206

Authentication is not required
Proxy Server does not require authentication.

Authenticate me as logged on user
Hex Editor Neo will use the currently logged on user to authenticate on the proxy server.

Authenticate me with the following credentials:
Enter the user name and password. You must enter the same password in both Password and Re-type password boxes.
See the Security Considerations section below.

Security Considerations

When you configure the Hex Editor Neo to use the entered credentials, it stores entered password in registry under the
HKEY_CURRENT_USER key. It uses encryption to store the password. Only the same user is able to decrypt the password.

That is, if encrypted password is copied to another computer, an attacker will not be able to get the plain text password.

Tasks

This page allows you to configure tasks displayed in the Windows 7 Jump List for the Hex Editor Neo application icon. This
list is displayed when you right-click the pinned (or running) application icon.

There is a predefined list of tasks that may be configured to appear in a jump list. You are free to select the items to be
included in the list. Remember that more tasks you select, less items will be left for recently opened documents and pinned
documents.

Select a task to view its description in the right pane. Put a checkmark next to task to enable it.

Languages

This page allows you to choose the Hex Editor Neo's interface language. The default interface language is English.

Hex Editor Neo Documentation Definitive Guide

207

Installed languages are listed in the first choice box. Select the one you want and press the OK button. Hex Editor Neo will
need to be restarted in order to apply the changes.

Online Languages

More languages may be available on-line. When this page is displayed, Hex Editor Neo contacts the HHD Software web
server and downloads a list of all available interface languages. It then allows you to download and install them. You may
also manually refresh the list by clicking the Refresh button.

We can also publish updates to language packs. If Hex Editor Neo detects an update is available for installed language pack,
Downloader's notification window is displayed with a prompt to download the update.

Hex Editor Neo Documentation Definitive Guide

208

Purchasing Hex Editor Neo
Choosing Appropriate Edition
Hex Editor Neo is shipped in one of four different editions starting from Free Edition, which includes only basic functionality,
up to Ultimate Edition, which combines all the power of advanced Hex Editor Neo features.

The detailed feature comparison chart is provided on-line.

In addition, the Hex Editor Neo has its own built-in “feature assistance” engine. Every time you try to use a feature which is
not a part of the current edition, Hex Editor Neo brings a popup window. The window contains short feature description and
displays the edition this feature is implemented in.

If you have just started using Free Edition, you may select the “Start 14-days trial” option to get an Ultimate Edition for the
next 14 days. All Hex Editor Neo features become available and you receive the full power of the Ultimate Edition. When the
trial period is over, Hex Editor Neo switches back to the Free Edition. Trial period may not be started again on this computer,
but you can always upgrade to Standard, Professional or Ultimate Edition.

Choosing Additional Options
Several additional options and services are offered for those who purchase HHD Software products.

Lifetime Upgrades Service

According to our upgrade policy, all product bug fixes and minor upgrades (upgrades that do not change the major version
number) are free for all customers. Major upgrades are available at special prices (major upgrades are free for customers
owning subscription license types).

Our exclusive Lifetime Upgrade offer allows you to automatically receive ALL future product versions for free.

Please note that purchasing a product with Lifetime Upgrades service is cheaper and much more advantageous than
upgrading product at a later time.

If you want to automatically receive all future versions of the purchased product for free, just check the Lifetime Upgrade
option for your product in the shopping cart. If you are satisfied with bug fixes and minor upgrades only, uncheck this box
during the order process.

How to Buy
Ordering On-Line

The simplest, cheapest and fastest way to purchase a product from HHD Software is to buy it on-line.

To purchase the product directly from the web site use the Quick Buy link on the right to add the product to the virtual
Shopping Cart
You can also add additional products and services to the shopping cart. We offer various discount programs, which
automatically apply when you order multiple products or multiple licenses. After you finish appending products and
services to the shopping cart, verify all the data and press the Continue button.

After completing your order, you will receive the order confirmation E-mail followed by activation information E-mail from
our order processing system. It will contain instructions and information required to register and activate the purchased
product(s).

Hex Editor Neo Documentation Purchasing Hex Editor Neo

209

https://www.hhdsoftware.com/hex-editor/compare
https://www.hhdsoftware.com/Official/upgrade-policy

Ordering on-line from HHD Software is Safe and Secure.

Ordering Off-Line

In order to purchase Hex Editor Neo by fax, you need to perform the following steps:

1. Go to the Purchase section
2. Add the products and services you are interested in to the Shopping Cart
3. Switch to the Shopping Cart
4. Select the required edition and license type for each product in the cart
5. Enter the quantity for each product in the cart
6. Check all required additional services
7. Enter coupon code(s), if you have them
8. Check “Fax Order” option
9. Press the Continue button

10. Log in, if you already have an account
11. Validate all data in the order form and enter additional information (if required).
12. Press the Next Step button
13. Follow the instructions in the received e-mail from 2Checkout, our order processing partner.

Purchase Orders

In order to purchase our products using Purchase Orders, you need to perform the following steps:

1. Go to the Purchase section
2. Add the products and services you are interested in to the Shopping Cart
3. Switch to the Shopping Cart
4. Select the required edition and license type for each product in the cart
5. Enter the quantity for each product in the cart
6. Check all required additional services
7. Enter coupon code(s), if you have them
8. Check “Purchase Order” option
9. Press the Continue button

10. Log in, if you already have an account
11. Validate all data in the order form and enter additional information (if required).
12. Press the Next Step button
13. Validate all data, read instructions and then press Finish Order button
14. Proceed to Upload form and send your Purchase Order document

My Account Web Site Section
If you have ever purchased any of HHD Software products, you already have an account. It is automatically created at the
time your shopping cart is transferred to the order processing server.

In My Account section you can get detailed information about your orders and purchased products, manage your personal
data, download license files for purchased products, upgrade your products and so on.

The Password Hint function may be used to recover lost passwords.

If you experience any difficulties logging into your personal account, please contact us. We will try to resolve your issue as
soon as we can. Providing us with your Purchase ID (Order REF#) will speed up the problem fixing.

Downloading License Files
For security reasons Hex Editor Neo license file automatically expires in about a week. This of course does not apply to an
installed license.

If you need another license file, you can always download it for free after logging into the My Account section of our web
site.

License downloading procedure:

1. Go to the Products section (https://www.hhdsoftware.com/Account/products). You'll be asked for a login and
password.

2. Click on the product name in a list.
3. Click on the “Download License…” link.

Hex Editor Neo Documentation Purchasing Hex Editor Neo

210

https://www.hhdsoftware.com/Account/products
https://www.hhdsoftware.com/Account/password-hint
https://www.hhdsoftware.com/Support/contact-us
https://www.hhdsoftware.com/Account/products

4. Click the Open button to immediately install the license or the Save button to save the license file to disc.

See the Installing License Files section for information on how to install downloaded license file.

Installing License Files
This section describes how you can install the license file stored on the disc. Before using the license file make sure you
have the most recent version of the Hex Editor Neo installed on your computer.

Locate the downloaded license file in the Windows Explorer and double-click it. This will activate your copy of the Hex Editor
Neo and unlock all features provided by the purchased license.

Alternatively, run the product, execute the Help » License Management… command and press the Install License…
button. Locate the license file and press the Open button.

Hex Editor Neo Documentation Purchasing Hex Editor Neo

211

Upgrading Hex Editor Neo
Hex Editor Neo is distributed in four different editions, including Free, Standard, Professional and Ultimate.

The powerful Hex Editor Neo functionality is flexibly divided between all these editions, allowing you to wisely choose the
one appropriate for you. Please refer to the Choosing Appropriate Edition section for more information. Nevertheless, Hex
Editor Neo may always be easily upgraded to a more powerful edition. Such upgrade is not free.

Upgrading from the Free Edition

Free Edition, as told by its name, costs nothing to install and use. Although there are a lot of features included in the Free
Edition, a number of powerful and advanced features are not, and therefore, you may find it useful to upgrade either to
Standard, Professional or Ultimate edition.

The “Upgrade” in this case corresponds to the product purchase. Product purchasing options are described in more detail in
corresponding section.

To start a purchase, you may use the Help » License Management… command to open up a License Management
Window. Click the “Upgrade…” link next to the selected edition to start the order process.

Upgrading from Standard or Professional Editions

If you currently have Hex Editor Neo Standard Edition licensed to you, you may upgrade either to the Professional or
Ultimate Edition. Licensed Professional Edition may be upgraded to the Ultimate Edition. To perform an upgrade, navigate
to the HHD Software Web Site's Upgrade Section. You will be asked to log in, using your login and password. After that you
will be able to choose the edition you want to upgrade to and proceed to the checkout.

As soon as your order is processed, the license file is e-mailed to you. Applying this license file activates the upgraded
license and unlocks all its features.

Hex Editor Neo Documentation Upgrading Hex Editor Neo

212

https://www.hhdsoftware.com/Account/upgrades

Getting Support
How to Get Support
At HHD Software, we are committed to providing quality, bug-free software. If you experience any problems with our
software or find any bugs, please don't hesitate to contact us using our contact page. Please provide a detailed description
of your problem. Be sure to include which operating system you are running and the current version of the Hex Editor Neo
(found in the Help » About).

Support can also be obtained by visiting our Support Web Site. This page contains a list of frequently asked questions
(FAQs) that might solve your problem.

If you have any other inquires, comments, ideas, or suggestions on things you would like Hex Editor Neo to do, you can
provide your feedback using the Help » Feedback… option.

Crash Dumps
We have worked hard to eliminate all possible bugs in the product. Nevertheless, as in each software product, bugs occur
from time to time. The worst of bugs are general protection faults or other types of exceptions that cause the operating
system to forcefully close the application, possibly causing user data losses.

Hex Editor Neo includes the built-in crash reporter. If application crashes, a small crash report, called minidump is
generated. You are offered to send a compressed report to HHD Software web site for analysis.

Crash Reporting Configuration

The Crash Reporting settings pages, accessible through the Tools » Settings… menu, allows you to configure the
following information:

You can optionally enter your e-mail address which will be submitted with crash dumps generated on your computer. If you
provide your e-mail address, you might be contacted to provide additional information and notified when any progress is
made concerning your report.

You can also choose the type of generated dump: minidump or full dump. Minidumps are usually very small (less than a
megabyte) and contain only essential information. They are sometimes enough to diagnose and reproduce the problem.
However for analyzing complex problems, a full dump is preferable, because it contains a copy of the whole process
memory and allows to view the values of any local and global variables. The downside of a full dump is its size, which can
easily exceed hundreds of megabytes.

Remember that the more crash dumps we receive the faster we release an update that fixes the bug.

All information is always submitted anonymously.

Hex Editor Neo Documentation Getting Support

213

https://www.hhdsoftware.com/Support

Crash Report Processing

All received crash dumps are automatically analyzed and grouped according to the problem type.

HHD Software developers browse the crash report database on a regular basis. Reports received from maximum number of
user computers receive the highest attention. They are fixed at the earliest time. Less frequent bugs may take longer to be
fixed.

The lack of full dumps for complex problems may also postpone the fix of the bug.

Having users' e-mails may actually speed up fixing particular bugs, even if they do not fall into “most frequent” category.

Hex Editor Neo Documentation Getting Support

214

Scripting
Hex Editor Neo provides a programming interface to its basic file editing features. The interface provided by the Hex Editor
Neo may be used by any code written in any automation-compatible language.

Three objects, File Document Object, Multiple Selection Object and Sequence Object are provided by the application. User
code can create these objects, call methods they expose and query/set their properties. As a result, it may achieve the same
functionality as provided by the Hex Editor Neo's user interface, with same performance characteristics. Hex Editor Neo's
window does not appear on the screen when any of exposed objects is instantiated.

File Document Object

File Document object represents a file opened for editing. It corresponds to a document in the Hex Editor Neo's user
interface. A lot of editing actions may be performed on this object.

Such concepts as operation history, patch creation, Undo and Redo are fully accessible for user code via this object.

Creating File Document Object section describes how you create a File Document object and Working with File Document
Object section illustrates the ways this created object may be used. The IFileDocument Interface section in Scripting
Reference section contains in-depth documentation for all properties and methods exposed by the File Document object.

Multiple Selection Object

Multiple Selection object represents a multiple selection in a document. This object is used by a number of File Document
object's methods to define the portion of the document on which this method operates.

Creating Multiple Selection Object section describes how you create a Multiple Selection object and Working with Multiple
Selection Object section illustrates the ways this created object may be used. The IMultiSelection Interface section in
Scripting Reference section contains in-depth documentation for all properties and methods exposed by the Multiple
Selection object.

Sequence Object

Sequence object serves as a thin layer that helps scripting languages that lack support for pointers and arrays to construct
and pass a pattern. For example, it is impossible to create pattern for a IFileDocument.Find method in JavaScript. In this
case, the Sequence object comes to help.

Creating Sequence Object section describes how you create a Sequence object and Working with Sequence Object section
illustrates the ways this object may be used.

Thread Safety

Any single object taken from the Hex Editor Neo may not be used by multiple threads at the same time. User code should
serialize access to objects' methods and properties if it needs to access the object from different threads. In such scenario,
user code may call object's methods and access object's properties from any thread, provided the access is strictly
serialized.

At the same time, user code may simultaneously access two different objects from two different threads. There is no conflict
in this situation.

Lengthy Operations Limitations

Unlike the Hex Editor Neo's user interface, File Document and Multiple Selection objects do not provide you with a way to
cancel any lengthy operation. When a thread calls a lengthy operation, it only has an option to wait until it's finished. Object
performing this operation may not be accessed from another thread until operation has finished.

Document Object
Creating Document Object

File Document object has a following class ID: FileDocument.FileDocument . Use the method provided by your language to
create an ActiveX object. For example, in JavaScript:

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
// work with fdoc object

Hex Editor Neo Documentation Scripting

215

Created object is in uninitialized state. You cannot execute any method or access any property until you call the
IFileDocument.New or IFileDocument.Open methods to initialize an object.

Working with Document Object

This section illustrates several document object usage scenarios. All examples in this section suppose that you have a valid
reference to a file document object, as described in Creating Document Object section.

All actions that lead to document modification create new operations in document's operation history.

Initializing Document Object

Before you start using the newly created document object, you must initialize it.

If you want to associate a document object with any existing file, call the IFileDocument.Open method. If you want to
associate a document object with an empty file, call the IFileDocument.New method. After that, the document object enters
the initialized state and is ready to process further requests.

To open a volume, call the IFileDocument.OpenVolume method. You may also open a physical disk
(IFileDocument.OpenPhysicalDisk), process memory (IFileDocument.OpenProcess) and physical memory
(IFileDocument.OpenPhysicalMemory).

User Interface Analogue: Creating New Documents and Opening Documents.

Closing Document Object

The IFileDocument.Close method is used to close the document object. The object enters an uninitialized state after it is
closed. All changes made to the document are silently discarded.

You don't need to explicitly call this method as it is automatically called when object is destroyed. Although, if you are going
to reuse the document object (that it, call Open or New method again), this method must be called.

Saving Changes

The IFileDocument.Modified property is TRUE if the document has been modified and FALSE otherwise. It can be used to
determine whether the document must be saved. To save a document, call the IFileDocument.Save or IFileDocument.SaveAs
methods. The first method overwrites the existing file while the second method creates a copy of the file.

If the document object was initialized with a call to IFileDocument.New method, IFileDocument.Save method cannot be
called until you call IFileDocument.SaveAs method that also updates the IFileDocument.FileName property.
IFileDocument.FileName property contains the full path to the file this document is currently representing.

User Interface Analogue: Saving Documents.

Reading and Writing Data

T h e IFileDocument.Read and IFileDocument.Write methods are used to read and write file's data. Calling the
IFileDocument.Write method creates new operation in file's operation history.

User Interface Analogue: Data Modification.

Inserting Data

Several file document object's methods are used to insert data into the file. All insert methods increase the file's size and
shift remaining data to free up space for inserted data.

IFileDocument.Insert, IFileDocument.InsertByte and IFileDocument.InsertPattern methods are used to insert data into the
document.

User Interface Analogue: Data Modification and Insert command.

Deleting Data

IFileDocument.Delete and IFileDocument.DeleteMulti methods are used to delete data from the document. After deletion,
the size of the file is decreased and remaining data is shifted.

User Interface Analogue: Delete command.

Hex Editor Neo Documentation Scripting

216

Filling Data

Unlike Insert group of methods, Fill methods overwrite original file's data with new data.

IFileDocument.Fill, IFileDocument.FillMulti, IFileDocument.FillByte and IFileDocument.FillByteMulti methods are used to fill
data.

User Interface Analogue: Fill command.

Find and Find All

Call the IFileDocument.Find method to find a pattern in a document. Call the IFileDocument.FindAll method to locate all
occurrences of a pattern in a document.

User Interface Analogue: Find and Find All commands.

Replace and Replace All

The IFileDocument.Replace method is used to replace a single occurrence of the pattern with another pattern. The powerful
IFileDocument.ReplaceAll method automatically locates all occurrences of specified pattern in a file and replace them with
another pattern.

User Interface Analogue: Replace and Replace All commands.

Calculating Statistics

T h e IFileDocument.GatherStatistics method calculates the General Statistics for the document (or selection) and
IFileDocument.PatternStatistics method calculates the Pattern Statistics for it.

User Interface Analogue: Statistics Tool Window.

Inserting Files

The IFileDocument.PutFile method is used to put the contents of a disk file to the current document.

User Interface Analogue: Insert File command.

Controlling File's Size

The read-write IFileDocument.FileSize property can be used to query or change the file's size. If you use it to change the
size, new operation in operation history is created.

User Interface Analogue: Change File Size command.

Undo and Redo

T h e IFileDocument.CanUndo and IFileDocument.CanRedo properties are TRUE if IFileDocument.Undo and
IFileDocument.Redo methods may be called for a document correspondingly. The IFileDocument.Undo method undoes the
previous operation, placing it into the operation tail. IFileDocument.Redo method makes the first operation from operation
tail a current operation.

User Interface Analogue: Edit » Undo and Edit » Redo commands.

Working with Operation History

IFileDocument.Purge, IFileDocument.SaveHistory and IFileDocument.LoadHistory methods are used to purge an operation
history, save it to a file or load from a file correspondingly.

User Interface Analogue: History » Clear History and History » Purge… commands.

##Patch Creation

The IFileDocument.CreatePatch method is used to create a patch from the current state of the document.

User Interface Analogue: File » Create Patch… command.

Clipboard Methods

Hex Editor Neo Documentation Scripting

217

File document object's IFileDocument.Copy, IFileDocument.Cut and IFileDocument.Paste2 methods are used to put file's
data to the Clipboard or paste data from the Clipboard into the document.

The IFileDocument.PasteText method is used to paste text from the Clipboard as it is, either in ANSI or UNICODE. You can
also use the IFileDocument.PasteText2 method to paste the text from the Clipboard and convert it to a given encoding.

User Interface Analogue: Edit » Copy, Edit » Merge and Copy, Edit » Cut, Edit » Merge and Cut and Edit » Paste commands.

Bitwise and Other Operations

Four methods, IFileDocument.BitwiseOp, IFileDocument.ArithmeticOp, IFileDocument.ShiftOp and IFileDocument.CaseOp,
are used to perform bitwise, arithmetic, shift and case change operations correspondingly.

Regular Expressions

The following methods accept regular expression as their parameters: IFileDocument.FindRegExp2,
IFileDocument.FindAllRegExp2, IFileDocument.ReplaceAllRegExp2 and IFileDocument.PatternStatisticsRegExp2.

Multiple Selection Object
Creating Multiple Selection Object

An empty multiple selection object is created with a call to IFileDocument.CreateEmptySelection method. This means that
you must have a valid File Document object in order to create a multiple selection object.

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();
// work with msel object

Created object is not related to the document object, may live longer that its creator and may be used in calls to methods
provided by other document objects.

Working with Multiple Selection Object

The created multiple selection object is empty. IMultiSelection.Empty property is TRUE for empty selection objects. You may
use the IMultiSelection.AddRange method to add a contiguous range to the selection, IMultiSelection.RemoveRange
method to remove (subtract) a range from the selection and IMultiSelection.ToggleRange method to “toggle” the given
range in a selection.

IMultiSelection.InsertRange and IMultiSelection.DeleteRange are used to insert and delete new ranges into the selection.
These methods differ from previously described in that the data beyond the inserted/deleted range is shifted.
IMultiSelection.DeleteRange method is not currently implemented.

Call the IMultiSelection.Invert method to invert the current selection and IMultiSelection.Clear method to clear the current
selection. Both methods perform in constant-time, not depending on the selection's complexity.

IMultiSelection.Save and IMultiSelection.Load methods may be used to save (with compression) the current selection to a
file or load it from a file correspondingly. IMultiSelection.Load method accepts the loading mode, allowing you to merge
two selection objects using different algorithms.

IMultiSelection.IsIn method checks if the given offset is located within the selection.

The IMultiSelection.TotalSize property holds the total size of all ranges in the selection. IMultiSelection.Count property holds
the total number of ranges in the selection.

Sequence Object
Creating Sequence Object

An empty sequence object is created with a call to IFileDocument.CreateSequence method. This means that you must have a
valid File Document object in order to create a sequence object.

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var seq= fdoc.CreateSequence();
// work with seq object

Hex Editor Neo Documentation Scripting

218

Created object is not related to the document object, may live longer that its creator and may be used in calls to methods
provided by other document objects.

Working with Sequence Object

The created sequence object is empty. ISequence.Empty property is TRUE for empty sequences. You may use the
ISequence.AddText and ISequence.AddData methods to add new data to a sequence, ISequence.Remove method to delete a
part of the sequence and ISequence.Clear method to clear the sequence.

A copy of the sequence may be constructed with a call to the ISequence.Copy method. The ISequence.CreateSubSequence
method, on the other hand, allows you to copy only part of the sequence.

Individual sequence bytes may be accessed and modified through the default ISequence.Value property. Current sequence
size is retrieved through the ISequence.Length property. This same property may be used to change the size of the
sequence, for example, to prepare the sequence before calling IFileDocument.Read method.

JavaScript
// Reading data from the document
var read_seq = fdoc.CreateSequence();
read_seq.Length = 1024;

fdoc.Read(read_seq.Data, 0, read_seq.Length);

// Performing Search & Replace
var find_seq = fdoc.CreateSequence(), rep_seq = fdoc.CreateSequence();

find_seq.AddData(SequenceDataBytes, 0x0d);
rep_seq.AddData(SequenceDataBytes, 0x0d, 0x0a);

var sel = fdoc.CreateEmptySelection();
sel.AddRange(0,fdoc.FileSize);

var occurrences = fdoc.ReplaceAll(find_seq.Data, find_seq.Length, rep_seq.Data, rep_seq.Length, false, sel);
alert(occurrences + " replacements made.");

Parser Object
Obtaining Parser Object

Parser object is an intrinsic object. It is provided under the name parser to the script called by the Structure Viewer. There
is no other way to obtain a reference to this object.

This object is a default global object for a running script, so its methods may be called directly, for example:

C++
alert("Message"); // equivalent to parser.alert("Message");

Working with Parser Object

Parser Object exposes a number of methods which can be used by the script function called by Structure Viewer. Consult
the IParser interface section for more information.

Reference
Document Object

IFileDocument Interface

Description

This interface is implemented by File Document Object. See the Creating File Document Object section to see how you
create the object in your code.

Declaration

TypeScript
interface IFileDocument extends IDispatch {
 // Properties
 AutoCreateBranch: boolean;

Hex Editor Neo Documentation Scripting

219

 AutoCreateBranch: boolean;
 readonly FileName: string;
 FileSize: number;
 readonly Modified: boolean;
 readonly Stream: boolean;
 readonly ReadOnly: boolean;
 RegExpSyntaxError: string;
 readonly CanRedo: boolean;
 readonly CanUndo: boolean;
 readonly CanPaste: boolean;
 // Methods
 Close(): void;
 New(): void;
 Open(Name: string, ReadOnly: boolean): void;
 OpenPhysicalDisk(PhysicalDiskName: string, FriendlyName: string, ReadOnly: boolean): void;
 OpenPhysicalMemory(): void;
 OpenProcess(ProcessId: number, Start: number, Size: number, ReadOnly: boolean): void;
 OpenVolume(VolumeName: string, FriendlyName: string, ReadOnly: boolean): void;
 Save(ForceBackup: boolean): void;
 SaveAs(FileName: string): void;
 GetModifiedSel(Selection: IMultiSelection): void;
 Decrypt(Provider: string,
 ProviderType: number,
 AlgoID: number,
 Password: string,
 Selection: IMultiSelection,
 KeyLength?: number): void;
 Delete(Offset: number, Size: number): void;
 DeleteMulti(Selection: IMultiSelection): void;
 Encrypt(Provider: string,
 ProviderType: number,
 AlgoID: number,
 Password: string,
 Selection: IMultiSelection,
 KeyLength?: number): void;
 FillByte(FillValue: number, Offset: number, Size: number): void;
 FillByteMulti(FillValue: number, Selection: IMultiSelection): void;
 InsertByte(ByteFill: number, Offset: number, Size: number): void;
 PutFile(FileName: string, Offset: , InsertMode: boolean): void;
 CreatePatch(PatchName: string, Options: PatchOptions, PathToStubFile?: string): void;
 Purge(Level: HistoryPurgeLevel): void;
 Redo(Steps?: number): void;
 Undo(Steps?: number): void;
 Copy(Selection: IMultiSelection, MergeBlocks: boolean): void;
 Cut(Selection: IMultiSelection, MergeBlocks: boolean): void;
 Paste(Offset: number, InsertMode: boolean): void;
 Paste2(Offset: number, Type: TextType, InsertMode: boolean): void;
 Paste3(Offset: number, Type: TextType, Flags: Paste3Flags): void;
 PasteText(Offset: number, Unicode: boolean, InsertMode: boolean): void;
 PasteText2(Offset: number, CodePage: number, InsertMode: boolean): void;
 FindAllRegExp(RegExp: string,
 SubExpression: number,
 Flags: RegExpFlags,
 StartFrom: number,
 Size: number,
 Found: IMultiSelection): void;
 FindAllRegExp2(RegExp: string,
 CodePage: number,
 SubExpression: number,
 Flags: RegExpFlags,
 StartFrom: number,
 Size: number,
 Found: IMultiSelection): void;
 ReplaceAllRegExpWithRegExp(RegExp: string,
 ReplacePattern: string,
 CodePage: number,
 Flags: RegExpFlags,
 StartFrom: number,
 Size: number): void;
 ArithmeticOp(Selection: IMultiSelection,
 Type: ArithmeticOpType,
 OpSize: OperandSizeType,
 Operand?: any): void;
 CaseOp(Selection: IMultiSelection,
 Type: CaseOpType,
 Unicode: boolean,
 CodePage?: number): void;
 ShiftOp(Selection: IMultiSelection, Type: ShiftOpType, OpSize: , Bits: number): void;
 ReverseOp(Selection: IMultiSelection, Type: ReverseOpType, OpSize: OperandSizeType): void;
 CreateEmptySelection(): IMultiSelection;

Hex Editor Neo Documentation Scripting

220

 CreateEmptySelection(): IMultiSelection;
 CreateSequence(): ISequence;
 BitwiseOpS(Selection: IMultiSelection, Type: BitwiseOpType, Sequence: ISequence): void;
 FillMultiS(Sequence: ISequence, Selection: IMultiSelection, Continue: boolean): void;
 FillS(Sequence: ISequence, Offset: number, Size: number): void;
 FindAllS(Sequence: ISequence,
 Selection: IMultiSelection,
 IgnoreCase: boolean,
 Found: IMultiSelection): void;
 FindS(Sequence: ISequence,
 Selection: IMultiSelection,
 StartFrom: number,
 SearchUp: boolean,
 IgnoreCase: boolean): void;
 InsertPatternS(Sequence: ISequence, Offset: number, Size: number): void;
 InsertS(Sequence: ISequence, Offset: number): void;
 ReadS(Sequence: ISequence, Offset: number): void;
 ReplaceAllRegExpS(RegExp: string,
 SubExpression: number,
 Flags: RegExpFlags,
 Sequence: ISequence,
 StartFrom: number,
 Size: number): void;
 ReplaceAllRegExp2S(RegExp: string,
 CodePage: number,
 SubExpression: number,
 Flags: RegExpFlags,
 Sequence: ISequence,
 StartFrom: number,
 Size: number): void;
 ReplaceAllS(SequenceFrom: ISequence,
 SequenceTo: ISequence,
 IgnoreCase: boolean,
 Selection: IMultiSelection): void;
 ReplaceS(Offset: number, Size: number, Sequence: ISequence): void;
 ToNumber(Value: any): number;
 WriteS(Sequence: ISequence, Offset: number): void;
}

C#
public interface IFileDocument : IDispatch
{
 // Properties
 bool AutoCreateBranch { get; set; }
 string FileName { get; }
 ulong FileSize { get; set; }
 bool Modified { get; }
 bool Stream { get; }
 bool ReadOnly { get; }
 string RegExpSyntaxError { get; set; }
 bool CanRedo { get; }
 bool CanUndo { get; }
 bool CanPaste { get; }
 // Methods
 void Close();
 void New();
 void Open(string Name, bool ReadOnly);
 void OpenPhysicalDisk(string PhysicalDiskName, string FriendlyName, bool ReadOnly);
 void OpenPhysicalMemory();
 void OpenProcess(uint ProcessId, long Start, ulong Size, bool ReadOnly);
 void OpenVolume(string VolumeName, string FriendlyName, bool ReadOnly);
 void Save(bool ForceBackup);
 void SaveAs(string FileName);
 void GetModifiedSel(IMultiSelection Selection);
 void Decrypt(string Provider,
 uint ProviderType,
 uint AlgoID,
 string Password,
 IMultiSelection Selection,
 uint KeyLength);
 void Delete(ulong Offset, ulong Size);
 void DeleteMulti(IMultiSelection Selection);
 void Encrypt(string Provider,
 uint ProviderType,
 uint AlgoID,
 string Password,
 IMultiSelection Selection,
 uint KeyLength);
 void Fill(ref byte Pattern,

Hex Editor Neo Documentation Scripting

221

 void Fill(ref byte Pattern,
 uint PatternSize,
 ulong Offset,
 ulong Size);
 void FillByte(byte FillValue, ulong Offset, ulong Size);
 void FillByteMulti(byte FillValue, IMultiSelection Selection);
 void FillMulti(ref byte Pattern, uint PatternSize, IMultiSelection Selection, Continue);
 void Insert(ref byte Data, ulong Offset, uint InsertSize);
 void InsertByte(byte ByteFill, ulong Offset, ulong Size);
 void InsertPattern(ref byte Pattern,
 uint PatternSize,
 ulong Offset,
 ulong Size);
 void PutFile(string FileName, ulong Offset, bool InsertMode);
 void Read(ref byte Data, ulong Offset, uint ReadSize);
 void Write(ref byte Data, ulong Offset, uint WriteSize);
 void CreatePatch(string PatchName, PatchOptions Options, string PathToStubFile);
 void LoadHistory(IStream Stream);
 void Purge(HistoryPurgeLevel Level);
 void Redo(uint Steps);
 void SaveHistory(IStream Stream);
 void Undo(uint Steps);
 void Copy(IMultiSelection Selection, bool MergeBlocks);
 void Cut(IMultiSelection Selection, bool MergeBlocks);
 void Paste(ulong Offset, bool InsertMode);
 void Paste2(ulong Offset, TextType Type, bool InsertMode);
 void Paste3(ulong Offset, TextType Type, Paste3Flags Flags);
 void PasteText(ulong Offset, bool Unicode, bool InsertMode);
 void PasteText2(ulong Offset, uint CodePage, bool InsertMode);
 ulong Find(ref byte DataToFind,
 uint DataSize,
 IMultiSelection Selection,
 ulong StartFrom,
 bool SearchUp,
 bool ignore_case);
 void FindRegExp(string RegExp,
 uint SubExpression,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size,
 ref ulong FoundOffset,
 ref ulong MatchSize);
 void FindRegExp2(string RegExp,
 uint CodePage,
 uint SubExpression,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size,
 ref ulong FoundOffset,
 ref ulong MatchSize);
 void FindAll(ref byte DataToFind,
 uint DataSize,
 IMultiSelection Selection,
 bool IgnoreCase,
 IMultiSelection Found);
 void FindAllRegExp(string RegExp,
 uint SubExpression,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size,
 IMultiSelection Found);
 void FindAllRegExp2(string RegExp,
 uint CodePage,
 uint SubExpression,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size,
 IMultiSelection Found);
 void Replace(ulong Offset,
 uint SizeFrom,
 ref byte To,
 uint SizeTo);
 void ReplaceAll(ref byte From,
 uint SizeFrom,
 ref byte To,
 uint SizeTo,
 bool IgnoreCase,
 IMultiSelection Selection);
 void ReplaceAllRegExp(string RegExp,
 uint SubExpression,

Hex Editor Neo Documentation Scripting

222

 uint SubExpression,
 RegExpFlags Flags,
 ref byte To,
 uint SizeTo,
 ulong StartFrom,
 ulong Size);
 void ReplaceAllRegExp2(string RegExp,
 uint CodePage,
 uint SubExpression,
 RegExpFlags Flags,
 ref byte To,
 uint SizeTo,
 ulong StartFrom,
 ulong Size);
 void ReplaceAllRegExpWithRegExp(string RegExp,
 string ReplacePattern,
 uint CodePage,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size);
 void ArithmeticOp(IMultiSelection Selection,
 ArithmeticOpType Type,
 OperandSizeType OpSize,
 object Operand);
 void BitwiseOp(IMultiSelection Selection, BitwiseOpType Type, ref byte Data, uint DataSize);
 void CaseOp(IMultiSelection Selection,
 CaseOpType Type,
 bool Unicode,
 object CodePage);
 void ShiftOp(IMultiSelection Selection, ShiftOpType Type, OpSize, uint Bits);
 void ReverseOp(IMultiSelection Selection, ReverseOpType Type, OperandSizeType OpSize);
 ulong[] GatherStatistics(IMultiSelection Selection);
 void PatternStatistics(ref byte Pattern,
 uint DataSize,
 bool IgnoreCase,
 ref ulong DataBuffer,
 uint Blocks,
 IMultiSelection Selection);
 void PatternStatisticsRegExp(string RegExp,
 uint SubExpression,
 RegExpFlags Flags,
 ref ulong DataBuffer,
 uint Blocks,
 ulong StartFrom,
 ulong Size);
 void PatternStatisticsRegExp2(string RegExp,
 uint CodePage,
 uint SubExpression,
 RegExpFlags Flags,
 ref ulong DataBuffer,
 uint Blocks,
 ulong StartFrom,
 ulong Size);
 IMultiSelection CreateEmptySelection();
 ISequence CreateSequence();
}

C++
struct IFileDocument : IDispatch
{
 // Properties
 VARIANT_BOOL AutoCreateBranch; // get set
 _bstr_t FileName; // get
 unsigned long long FileSize; // get set
 VARIANT_BOOL Modified; // get
 VARIANT_BOOL Stream; // get
 VARIANT_BOOL ReadOnly; // get
 _bstr_t RegExpSyntaxError; // get set
 VARIANT_BOOL CanRedo; // get
 VARIANT_BOOL CanUndo; // get
 VARIANT_BOOL CanPaste; // get
 // Methods
 HRESULT Close();
 HRESULT New();
 HRESULT Open(_bstr_t Name, VARIANT_BOOL ReadOnly);
 HRESULT OpenPhysicalDisk(_bstr_t PhysicalDiskName, _bstr_t FriendlyName, VARIANT_BOOL ReadOnly);
 HRESULT OpenPhysicalMemory();
 HRESULT OpenProcess(unsigned long ProcessId, long long Start, unsigned long long Size, VARIANT_BOOL ReadOnly)
 HRESULT OpenVolume(_bstr_t VolumeName, _bstr_t FriendlyName, VARIANT_BOOL ReadOnly);

Hex Editor Neo Documentation Scripting

223

 HRESULT OpenVolume(_bstr_t VolumeName, _bstr_t FriendlyName, VARIANT_BOOL ReadOnly);
 HRESULT Save(VARIANT_BOOL ForceBackup);
 HRESULT SaveAs(_bstr_t FileName);
 HRESULT GetModifiedSel(IMultiSelectionPtr Selection);
 HRESULT Decrypt(_bstr_t Provider,
 unsigned long ProviderType,
 unsigned long AlgoID,
 _bstr_t Password,
 IMultiSelectionPtr Selection,
 _variant_t KeyLength);
 HRESULT Delete(unsigned long long Offset, unsigned long long Size);
 HRESULT DeleteMulti(IMultiSelectionPtr Selection);
 HRESULT Encrypt(_bstr_t Provider,
 unsigned long ProviderType,
 unsigned long AlgoID,
 _bstr_t Password,
 IMultiSelectionPtr Selection,
 _variant_t KeyLength);
 HRESULT Fill(unsigned char * Pattern,
 unsigned long PatternSize,
 unsigned long long Offset,
 unsigned long long Size);
 HRESULT FillByte(unsigned char FillValue, unsigned long long Offset, unsigned long long Size);
 HRESULT FillByteMulti(unsigned char FillValue, IMultiSelectionPtr Selection);
 HRESULT FillMulti(unsigned char * Pattern, unsigned long PatternSize, IMultiSelectionPtr Selection, Continue)
 HRESULT Insert(unsigned char * Data, unsigned long long Offset, unsigned long InsertSize);
 HRESULT InsertByte(unsigned char ByteFill, unsigned long long Offset, unsigned long long Size);
 HRESULT InsertPattern(unsigned char * Pattern,
 unsigned long PatternSize,
 unsigned long long Offset,
 unsigned long long Size);
 HRESULT PutFile(_bstr_t FileName, unsigned long long Offset, VARIANT_BOOL InsertMode);
 HRESULT Read(unsigned char * Data, unsigned long long Offset, unsigned long ReadSize);
 HRESULT Write(unsigned char * Data, unsigned long long Offset, unsigned long WriteSize);
 HRESULT CreatePatch(_bstr_t PatchName, PatchOptions Options, _variant_t PathToStubFile);
 HRESULT LoadHistory(IStream * Stream);
 HRESULT Purge(HistoryPurgeLevel Level);
 HRESULT Redo(_variant_t Steps);
 HRESULT SaveHistory(IStream * Stream);
 HRESULT Undo(_variant_t Steps);
 HRESULT Copy(IMultiSelectionPtr Selection, VARIANT_BOOL MergeBlocks);
 HRESULT Cut(IMultiSelectionPtr Selection, VARIANT_BOOL MergeBlocks);
 HRESULT Paste(unsigned long long Offset, VARIANT_BOOL InsertMode);
 HRESULT Paste2(unsigned long long Offset, TextType Type, VARIANT_BOOL InsertMode);
 HRESULT Paste3(unsigned long long Offset, TextType Type, Paste3Flags Flags);
 HRESULT PasteText(unsigned long long Offset, VARIANT_BOOL Unicode, VARIANT_BOOL InsertMode);
 HRESULT PasteText2(unsigned long long Offset, unsigned long CodePage, VARIANT_BOOL InsertMode);
 unsigned long long Find(unsigned char * DataToFind,
 unsigned long DataSize,
 IMultiSelectionPtr Selection,
 unsigned long long StartFrom,
 VARIANT_BOOL SearchUp,
 VARIANT_BOOL ignore_case);
 HRESULT FindRegExp(_bstr_t RegExp,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size,
 unsigned long long * FoundOffset,
 unsigned long long * MatchSize);
 HRESULT FindRegExp2(_bstr_t RegExp,
 unsigned long CodePage,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size,
 unsigned long long * FoundOffset,
 unsigned long long * MatchSize);
 HRESULT FindAll(unsigned char * DataToFind,
 unsigned long DataSize,
 IMultiSelectionPtr Selection,
 VARIANT_BOOL IgnoreCase,
 IMultiSelectionPtr Found);
 HRESULT FindAllRegExp(_bstr_t RegExp,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size,
 IMultiSelectionPtr Found);
 HRESULT FindAllRegExp2(_bstr_t RegExp,

Hex Editor Neo Documentation Scripting

224

 HRESULT FindAllRegExp2(_bstr_t RegExp,
 unsigned long CodePage,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size,
 IMultiSelectionPtr Found);
 HRESULT Replace(unsigned long long Offset,
 unsigned long SizeFrom,
 unsigned char * To,
 unsigned long SizeTo);
 HRESULT ReplaceAll(unsigned char * From,
 unsigned long SizeFrom,
 unsigned char * To,
 unsigned long SizeTo,
 VARIANT_BOOL IgnoreCase,
 IMultiSelectionPtr Selection);
 HRESULT ReplaceAllRegExp(_bstr_t RegExp,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned char To,
 unsigned long SizeTo,
 unsigned long long StartFrom,
 unsigned long long Size);
 HRESULT ReplaceAllRegExp2(_bstr_t RegExp,
 unsigned long CodePage,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned char * To,
 unsigned long SizeTo,
 unsigned long long StartFrom,
 unsigned long long Size);
 HRESULT ReplaceAllRegExpWithRegExp(_bstr_t RegExp,
 _bstr_t ReplacePattern,
 unsigned long CodePage,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size);
 HRESULT ArithmeticOp(IMultiSelectionPtr Selection,
 ArithmeticOpType Type,
 OperandSizeType OpSize,
 _variant_t Operand);
 HRESULT BitwiseOp(IMultiSelectionPtr Selection, BitwiseOpType Type, unsigned char * Data, unsigned long DataSize)
 HRESULT CaseOp(IMultiSelectionPtr Selection,
 CaseOpType Type,
 VARIANT_BOOL Unicode,
 _variant_t CodePage);
 HRESULT ShiftOp(IMultiSelectionPtr Selection, ShiftOpType Type, OpSize, unsigned long Bits);
 HRESULT ReverseOp(IMultiSelectionPtr Selection, ReverseOpType Type, OperandSizeType OpSize);
 unsigned long long[256] GatherStatistics(IMultiSelectionPtr Selection);
 HRESULT PatternStatistics(unsigned char * Pattern,
 unsigned long DataSize,
 VARIANT_BOOL IgnoreCase,
 unsigned long long * DataBuffer,
 unsigned long Blocks,
 IMultiSelectionPtr Selection);
 HRESULT PatternStatisticsRegExp(_bstr_t RegExp,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long * DataBuffer,
 unsigned long Blocks,
 unsigned long long StartFrom,
 unsigned long long Size);
 HRESULT PatternStatisticsRegExp2(_bstr_t RegExp,
 unsigned long CodePage,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long * DataBuffer,
 unsigned long Blocks,
 unsigned long long StartFrom,
 unsigned long long Size);
 IMultiSelectionPtr CreateEmptySelection();
 ISequencePtr CreateSequence();
};

IFileDocument Properties

Hex Editor Neo Documentation Scripting

225

AutoCreateBranch

TypeScript
AutoCreateBranch: boolean;

C#
bool AutoCreateBranch { get; set; }

C++
VARIANT_BOOL AutoCreateBranch; // get set

Description

true if Auto Create Branches option enabled, false otherwise.

Query or set the AutoCreateBranch property value. See the History » Auto Create Branches switch description for more
information about this property.

FileN ame

TypeScript
readonly FileName: string;

C#
string FileName { get; }

C++
_bstr_t FileName; // get

Description

The full file's path name.

Example

Using the FileName property

JavaScript
var fdoc=new ActiveXObject("FileDocument.FileDocument");
fdoc.Open("c:\\temp\\file.bin");
alert("Full file name is " + fdoc.FileName);

FileSize

TypeScript
FileSize: number;

C#
ulong FileSize { get; set; }

C++
unsigned long long FileSize; // get set

Description

Retrieve or change the current file's size. When used to change the file's size, new operation is created in document's
operation history.

Complexity: constant-time.

Example

Setting file's size

Hex Editor Neo Documentation Scripting

226

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
fdoc.New(); // initialize a new, empty document
fdoc.FileSize = 1024*1024; // set the size of the file to 1 MB
fdoc.SaveAs("c:\\temp\\file.bin");

M odified

TypeScript
readonly Modified: boolean;

C#
bool Modified { get; }

C++
VARIANT_BOOL Modified; // get

Description

Returns the modified document state.

Stream

TypeScript
readonly Stream: boolean;

C#
bool Stream { get; }

C++
VARIANT_BOOL Stream; // get

Description

This property is true if document represents an NTFS stream and false otherwise.

ReadOnly

TypeScript
readonly ReadOnly: boolean;

C#
bool ReadOnly { get; }

C++
VARIANT_BOOL ReadOnly; // get

Description

Retrieves the document's ReadOnly state.

RegExpSyntaxError

TypeScript
RegExpSyntaxError: string;

C#
string RegExpSyntaxError { get; set; }

C++
_bstr_t RegExpSyntaxError; // get set

Description

Hex Editor Neo Documentation Scripting

227

Returns a textual representation (in English) of a regular expression syntax error, if any.

CanRedo

TypeScript
readonly CanRedo: boolean;

C#
bool CanRedo { get; }

C++
VARIANT_BOOL CanRedo; // get

Description

Determine if you can call the IFileDocument.Redo method.

Example

Sample implementation of the Redo method

C++
void Redo(IFileDocument *pFileDocument)
{
 VARIANT_BOOL bCanRedo;

 pFileDocument->get_CanRedo(&bCanRedo);
 if (bCanRedo == VARIANT_TRUE)
 pFileDocument->Redo();
}

Sample implementation of the Redo method

C#
public void Redo(IFileDocument fdoc)
{
 if (fdoc.CanRedo)
 fdoc.Redo();
}

CanUndo

TypeScript
readonly CanUndo: boolean;

C#
bool CanUndo { get; }

C++
VARIANT_BOOL CanUndo; // get

Description

Determine if you can call the IFileDocument.Undo method.

Example

Sample implementation of the Undo method

C++
void Undo(IFileDocument *pFileDocument)
{
 VARIANT_BOOL bCanUndo;

 pFileDocument->get_CanUndo(&bCanUndo);
 if (bCanUndo == VARIANT_TRUE)
 pFileDocument->Undo();
}

Hex Editor Neo Documentation Scripting

228

Sample implementation of the Undo method

C#
public void Undo(IFileDocument fdoc)
{
 if (fdoc.CanUndo)
 fdoc.Undo();
}

CanPaste

TypeScript
readonly CanPaste: boolean;

C#
bool CanPaste { get; }

C++
VARIANT_BOOL CanPaste; // get

Description

Determine if you can paste data from the Clipboard.

Example

C++
// pFileDocument is initialized elsewhere
VARIANT_BOOL bCanPaste;
pFileDocument->get_CanPaste(&bCanPaste);
if (bCanPaste != VARIANT_FALSE)
{
 // Clipboard contains compatible data
} else
{
 // Clipboard contains incompatible data
}

IFileDocument Methods

Close

TypeScript
Close(): void;

C#
void Close();

C++
HRESULT Close();

Description

Discard document's operation history and close the document. You may subsequently call the IFileDocument.New or
IFileDocument.Open method for this document.

Complexity: constant-time.

Example

Reusing document objects

Hex Editor Neo Documentation Scripting

229

C#
var fdoc = new FileDocumentLib.FileDocument();
fdoc.Open(@"c:\temp\file1");
// perform modifications to the file and save it
fdoc.Save(false);

// prepare the object to work with a next document
fdoc.Close();
fdoc.Open(@"c:\temp\file2");
// ...

N ew

TypeScript
New(): void;

C#
void New();

C++
HRESULT New();

Description

Creates a new, empty document.

Complexity: constant-time.

Open

TypeScript
Open(Name: string, ReadOnly: boolean): void;

C#
void Open(string Name, bool ReadOnly);

C++
HRESULT Open(_bstr_t Name, VARIANT_BOOL ReadOnly);

Parameters

Name

Full path to the opened file.
ReadOnly

Force read-only mode (the IFileDocument.Save method is disabled).

Description

Opens an existing document. Hex Editor Neo tries to get a read-only access to the file. It also denies write access to all future
open attempts, until the file is closed.

Complexity: constant-time.

If supported by the file system, the name may be actually the name of the alternate data stream. Hex Editor Neo fully
supports NTFS alternate data streams. You may use any method provided by the object after opening the file stream. Note
however, that there are few limitations that are described in the IFileDocument.Save method section.

Example

Opening a document

C#
var fdoc = new FileDocumentLib.FildDocument();
fdoc.Open(@"\\server\share\somefile.bin", false);

OpenPhysicalDisk

Hex Editor Neo Documentation Scripting

230

TypeScript
OpenPhysicalDisk(PhysicalDiskName: string, FriendlyName: string, ReadOnly: boolean): void;

C#
void OpenPhysicalDisk(string PhysicalDiskName, string FriendlyName, bool ReadOnly);

C++
HRESULT OpenPhysicalDisk(_bstr_t PhysicalDiskName, _bstr_t FriendlyName, VARIANT_BOOL ReadOnly);

Parameters

PhysicalDiskName

The string of form \\.\PhysicalDriveN , where N is a physical disk number (starting from 0).
FriendlyName

Friendly name. Used only in the editor. You may pass an empty string to this parameter.
ReadOnly

Specify true to open a disk as read-only, or false otherwise.

Description

Open physical disk.

OpenPhysicalM emory

TypeScript
OpenPhysicalMemory(): void;

C#
void OpenPhysicalMemory();

C++
HRESULT OpenPhysicalMemory();

Description

Open read only access to computer physical memory. Supported only on Windows 2000 and Windows XP.

OpenProcess

TypeScript
OpenProcess(ProcessId: number, Start: number, Size: number, ReadOnly: boolean): void;

C#
void OpenProcess(uint ProcessId, long Start, ulong Size, bool ReadOnly);

C++
HRESULT OpenProcess(unsigned long ProcessId, long long Start, unsigned long long Size, VARIANT_BOOL ReadOnly);

Parameters

ProcessId

Process Identifier
Start

Starting memory address
Size

Size of the range to open
ReadOnly

true to disable the Save command, false otherwise.

Hex Editor Neo Documentation Scripting

231

Description

Open process memory.

OpenVolume

TypeScript
OpenVolume(VolumeName: string, FriendlyName: string, ReadOnly: boolean): void;

C#
void OpenVolume(string VolumeName, string FriendlyName, bool ReadOnly);

C++
HRESULT OpenVolume(_bstr_t VolumeName, _bstr_t FriendlyName, VARIANT_BOOL ReadOnly);

Parameters

VolumeName

The name of the volume to open. May be a string of form \\.\c: to open a drive letter, or a full volume mount point
name.

FriendlyName

The friendly name. Used only in the editor. You may pass an empty string in this parameter.
ReadOnly

Specify true to open a volume as read-only, or false otherwise.

Description

Open a volume (logical disk).

Save

TypeScript
Save(ForceBackup: boolean): void;

C#
void Save(bool ForceBackup);

C++
HRESULT Save(VARIANT_BOOL ForceBackup);

Parameters

ForceBackup

Force creation of backup copy of the file.

Description

Saves all document's changes and drop document's operation history. IFileDocument.FileName property must not be
empty to successfully call this method. In particular, the Save method may not be called after the IFileDocument.New
method. IFileDocument.SaveAs method always set the IFileDocument.FileName property, so you may call the Save method
after the SaveAs method was once called for a document.

ForceBackup parameter is ignored (assumed to be false) if the current object represents the NTFS alternate data stream,
physical disk, volume, process virtual memory or physical memory.

SaveAs

TypeScript
SaveAs(FileName: string): void;

C#
void SaveAs(string FileName);

Hex Editor Neo Documentation Scripting

232

C++
HRESULT SaveAs(_bstr_t FileName);

Parameters

FileName

Full name of the file to write

Description

Saves the file with a different name. The Save As command does not drop a document's operation history. Passing the
name of an NTFS alternate data stream to this method is an error and leads to undefined behavior.

To save a document to alternate data stream, first create a stream (this function is outside the scope of this library), open
the File Document Object for created stream and use the IFileDocument.Copy and IFileDocument.Paste methods to copy the
contents. Then call the created object's IFileDocument.Save method to apply changes.

GetM odifiedSel

TypeScript
GetModifiedSel(Selection: IMultiSelection): void;

C#
void GetModifiedSel(IMultiSelection Selection);

C++
HRESULT GetModifiedSel(IMultiSelectionPtr Selection);

Parameters

Selection

Multiple Selection object to be filled with modified ranges.

Description

Fills a provided Multiple Selection object with ranges that describe the changed data in the document. The method clears
the given multiple selection object before execution.

Complexity: linear-time, depending on the number of document modifications.

Example

Using GetModifiedSel method

C#
var fdoc = new FileDocumentLib.FileDocument();
fdoc.Open(@"c:\temp\file.bin");
fdoc.FillByte(0x35, 100, 20);
fdoc.FillByte(0x36, 200, 30);
var msel = fdoc.CreateEmptySelection();
fdoc.GetModifiedSel(msel);
// msel is now: [100..120) U [200..230)

Decrypt

TypeScript
Decrypt(Provider: string,
 ProviderType: number,
 AlgoID: number,
 Password: string,
 Selection: IMultiSelection,
 KeyLength?: number): void;

Hex Editor Neo Documentation Scripting

233

C#
void Decrypt(string Provider,
 uint ProviderType,
 uint AlgoID,
 string Password,
 IMultiSelection Selection,
 uint KeyLength);

C++
HRESULT Decrypt(_bstr_t Provider,
 unsigned long ProviderType,
 unsigned long AlgoID,
 _bstr_t Password,
 IMultiSelectionPtr Selection,
 _variant_t KeyLength);

Parameters

Provider

The name of the encryption provider. Consult the Microsoft Cryptography API documentation for more information.
ProviderType

The provider type. Consult the Microsoft Cryptography API documentation for more information.
AlgoID

Algortihm identifier.
Password

String containing a password.
Selection

Multiple selection object specifying data to encrypt.
KeyLength

Key length, for supported algorithms.

Description

Decrypt the contents of the document.

Delete

TypeScript
Delete(Offset: number, Size: number): void;

C#
void Delete(ulong Offset, ulong Size);

C++
HRESULT Delete(unsigned long long Offset, unsigned long long Size);

Parameters

Offset

Range offset.
Size

Range size.

Description

Deletes the given range from the document.

Complexity: constant-time.

Example

Deleting document's data

Hex Editor Neo Documentation Scripting

234

C++
CComPtr<IFileDocument> pFileDocument;
if (SUCCEEDED(pFileDocument.CoCreateInstance(L"FileDocument.FileDocument")))
{
 if (SUCCEEDED(pFileDocument->Open(L"c:\\temp\\file.bin", VARIANT_FALSE)))
 {
 pFileDocument->Delete(0x50, 0x2a);
 pFileDocument->Save(false);
 }
}

DeleteM ulti

TypeScript
DeleteMulti(Selection: IMultiSelection): void;

C#
void DeleteMulti(IMultiSelection Selection);

C++
HRESULT DeleteMulti(IMultiSelectionPtr Selection);

Parameters

Selection

Multiple selection object, which describes the ranges to remove from the document.

Description

Deletes the given multiple selection from the document.

Complexity: linear-time, depending on the selection's complexity.

Example

Deleting document's data

C++
CComPtr<IFileDocument> pFileDocument;
if (SUCCEEDED(pFileDocument.CoCreateInstance(L"FileDocument.FileDocument")))
{
 if (SUCCEEDED(pFileDocument->Open(L"c:\\temp\\file.bin", VARIANT_FALSE)))
 {
 CComPtr<IMultiSelection> pMultiSelection;
 if (SUCCEEDED(pFileDocument->CreateEmptySelection(&pMultiSelection)))
 {
 pMultiSelection->AddRange(100, 20);
 pMultiSelection->AddRange(200, 30);
 pFileDocument->DeleteMulti(pMultiSelection);
 pFileDocument->Save(false);
 }
 }
}

Encrypt

TypeScript
Encrypt(Provider: string,
 ProviderType: number,
 AlgoID: number,
 Password: string,
 Selection: IMultiSelection,
 KeyLength?: number): void;

Hex Editor Neo Documentation Scripting

235

C#
void Encrypt(string Provider,
 uint ProviderType,
 uint AlgoID,
 string Password,
 IMultiSelection Selection,
 uint KeyLength);

C++
HRESULT Encrypt(_bstr_t Provider,
 unsigned long ProviderType,
 unsigned long AlgoID,
 _bstr_t Password,
 IMultiSelectionPtr Selection,
 _variant_t KeyLength);

Parameters

Provider

The name of the encryption provider. Consult the Microsoft Cryptography API documentation for more information.
ProviderType

The provider type. Consult the Microsoft Cryptography API documentation for more information.
AlgoID

Algortihm identifier.
Password

String containing a password.
Selection

Multiple selection object specifying data to encrypt.
KeyLength

Key length, for supported algorithms.

Description

Decrypt the contents of the document.

Fill

TypeScript
// This method is not available in scripting environment

C#
void Fill(ref byte Pattern,
 uint PatternSize,
 ulong Offset,
 ulong Size);

C++
HRESULT Fill(unsigned char * Pattern,
 unsigned long PatternSize,
 unsigned long long Offset,
 unsigned long long Size);

Parameters

Pattern

Pointer to a pattern.
PatternSize

Pattern size, in bytes.
Offset

Range starting offset.
Size

Hex Editor Neo Documentation Scripting

236

Range size.

Description

Fills a given range with a given pattern. A pattern is repeated until the required number of bytes is written to the file. If file is
shorter than the filling range, the file's size is increased.

Complexity: constant-time.

Example

Filling a range with a simple pattern

C++
// pFileDocument is initialized elsewhere
unsigned char Pattern[]="Simple Pattern";
HRESULT hRes = pFileDocument->Fill(Pattern, sizeof(Pattern) - 1, 0x10000i64, 0x10ffi64);

FillByte

TypeScript
FillByte(FillValue: number, Offset: number, Size: number): void;

C#
void FillByte(byte FillValue, ulong Offset, ulong Size);

C++
HRESULT FillByte(unsigned char FillValue, unsigned long long Offset, unsigned long long Size);

Parameters

FillValue

The byte to put in the range.
Offset

Range offset.
Size

Range size.

Description

Fills a given range with a single byte value.

Complexity: constant-time.

Example

Filling a range with a single byte

C#
// fdoc is initialized elsewhere
fdoc.FillByte(0x34, 1000, 200);

FillByteM ulti

TypeScript
FillByteMulti(FillValue: number, Selection: IMultiSelection): void;

C#
void FillByteMulti(byte FillValue, IMultiSelection Selection);

C++
HRESULT FillByteMulti(unsigned char FillValue, IMultiSelectionPtr Selection);

Parameters

Hex Editor Neo Documentation Scripting

237

FillValue

The byte to put in the selection.
Selection

The multiple selection object, which contains the ranges to fill in the document.

Description

Fills a given multiple selection with a single byte value.

Complexity: linear-time, depending on the selection's complexity.

Example

Filling a range with a single byte

C#
// fdoc is initialized elsewhere
var msel = fdoc.CreateEmptySelection();
msel.AddRange(100, 20);
msel.AddRange(200, 30);
fdoc.FillByteMulti(0x35, msel);

FillM ulti

TypeScript
// This method is not available in scripting environment

C#
void FillMulti(ref byte Pattern, uint PatternSize, IMultiSelection Selection, Continue);

C++
HRESULT FillMulti(unsigned char * Pattern, unsigned long PatternSize, IMultiSelectionPtr Selection, Continue)

Parameters

Pattern

Pointer to a pattern
PatternSize

Pattern Size
Selection

The multiple selection object, which contains the ranges to fill in the document.
Continue

True to continue filling in a new range and False to start from the beginning of the pattern. See the description of the
“Transparent fill” flag in the Fill user-interface command for more information.

Description

Fills a given multiple selection with a specified pattern. The pattern is repeated until all given range(s) are filled. bCont
parameter specifies whether to continue filling a new range from the previous range, or from the beginning of the pattern.

Complexity: linear-time, depending on the selection's complexity.

Example

Filling a range with a single byte

C#
// fdoc is initialized elsewhere
var msel = fdoc.CreateEmptySelection();
msel.AddRange(100, 20);
msel.AddRange(200, 30);
byte[] pattern = new byte[] { 0x31, 0x32, 0x33 };
fdoc.FillMulti(ref pattern[0], pattern.Length, msel, false);

Hex Editor Neo Documentation Scripting

238

Insert

TypeScript
// This method is not available in scripting environment

C#
void Insert(ref byte Data, ulong Offset, uint InsertSize);

C++
HRESULT Insert(unsigned char * Data, unsigned long long Offset, unsigned long InsertSize);

Parameters

Data

Pointer to a pattern.
Offset

Insert offset.
InsertSize

Pattern size.

Description

Inserts a pattern into the document. Insert command shifts file's data to free up the space to fit an inserted pattern.

Complexity: constant-time.

Example

Inserting a pattern

C#
// fdoc is initialized elsewhere
byte[] pattern = new byte[] { 0x0d, 0x0a };
fdoc.Insert(ref pattern[0], 100, pattern.Length); // insert a given pattern at the offset 100

InsertByte

TypeScript
InsertByte(ByteFill: number, Offset: number, Size: number): void;

C#
void InsertByte(byte ByteFill, ulong Offset, ulong Size);

C++
HRESULT InsertByte(unsigned char ByteFill, unsigned long long Offset, unsigned long long Size);

Parameters

ByteFill

The byte value to insert.
Offset

Insert offset.
Size

Insert size.

Description

Inserts a block of a given size into the document and fill it with a given byte value.

Complexity: constant-time.

Example

Hex Editor Neo Documentation Scripting

239

Inserting a pattern

C#
// fdoc is initialized elsewhere
fdoc.InsertByte('#', 100, 10000);

InsertPattern

TypeScript
// This method is not available in scripting environment

C#
void InsertPattern(ref byte Pattern,
 uint PatternSize,
 ulong Offset,
 ulong Size);

C++
HRESULT InsertPattern(unsigned char * Pattern,
 unsigned long PatternSize,
 unsigned long long Offset,
 unsigned long long Size);

Parameters

Pattern

Pointer to a pattern.
PatternSize

Pattern Size.
Offset

Insert offset.
Size

Insert size.

Description

Inserts a given pattern into the document, repeating it to fill the given size. Insert command shifts file's data to free up the
space to fit an inserted pattern.

Complexity: constant-time.

Example

Inserting a pattern

C#
// fdoc is initialized elsewhere
byte[] pattern = new byte[] { 0x0d, 0x0a };
fdoc.InsertPattern(ref pattern[0], pattern.Length, 100, 1000);

PutFile

TypeScript
PutFile(FileName: string, Offset: , InsertMode: boolean): void;

C#
void PutFile(string FileName, ulong Offset, bool InsertMode);

C++
HRESULT PutFile(_bstr_t FileName, unsigned long long Offset, VARIANT_BOOL InsertMode);

Parameters

FileName

Hex Editor Neo Documentation Scripting

240

The full path name of the file.
Offset

Insert offset.
InsertMode

true to insert a file's contents, false to overwrite the current document's data with data from the file.

Description

Writes or inserts the contents of the file into the current document. InsertMode parameter governs the behavior of the
function.

Complexity: constant-time.

Example

Concatenating Files

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
fdoc.Open("c:\\temp\\file1.bin");
fdoc.PutFile("c:\\temp\\file2.bin", fdoc.FileSize, false);
fdoc.Save(false);

Read

TypeScript
// This method is not available in scripting environment

C#
void Read(ref byte Data, ulong Offset, uint ReadSize);

C++
HRESULT Read(unsigned char * Data, unsigned long long Offset, unsigned long ReadSize);

Parameters

Data

A pointer to the buffer that receives the data read from a file
Offset

Read offset.
ReadSize

Total number of bytes to read.

Description

Reads data from a document. If requested data exceeds the current document's size, any excess bytes are filled with zeros.

Complexity: constant-time.

Example

Reading Data

C++
// pFileDocument is initialized elsewhere
unsigned char data[256];
pFileDocument->Read(data, 1000, 256);

Write

TypeScript
// This method is not available in scripting environment

Hex Editor Neo Documentation Scripting

241

C#
void Write(ref byte Data, ulong Offset, uint WriteSize);

C++
HRESULT Write(unsigned char * Data, unsigned long long Offset, unsigned long WriteSize);

Parameters

Data

Pointer to the buffer containing the data to be written to the file.
Offset

Write offset.
WriteSize

Total number of bytes to write.

Description

Writes data to a document. The written data overwrites document's existing data and may also increase the file's size if it
overlaps the current file's size. Write always creates a new operation in document's operation history.

Complexity: constant-time.

Example

Writing Data

C++
// pFileDocument is initialized elsewhere
unsigned char data[256];
pFileDocument->Write(data, 1000, 256);

CreatePatch

TypeScript
CreatePatch(PatchName: string, Options: PatchOptions, PathToStubFile?: string): void;

C#
void CreatePatch(string PatchName, PatchOptions Options, string PathToStubFile);

C++
HRESULT CreatePatch(_bstr_t PatchName, PatchOptions Options, _variant_t PathToStubFile);

Parameters

PatchName

The full path of the patch file. If file already exists, it is overwritten.
Options

Patch options. See [PatchOptions] enumeration for possible values.
PathToStubFile

An optional path to an executable stub file. Should be a full path to either PatchApply32.exe or PatchApply64.exe
application, installed with the Hex Editor Neo.

Description

Creates a patch file. See the Patch Creation section for more information on patches.

Complexity: linear-time, depending on the number and complexity of operations in document's operation history.

Example

Creating patch

Hex Editor Neo Documentation Scripting

242

C#
// fdoc is initialized elsewhere
// Perform a modification to the file
fdoc.FillByte(0, 100, 20);
fdoc.CreatePatch(@"c:\patch.hexpatch", FileDocumentLib.PatchOptions.PatchCalculateHash | FileDocumentLib.PatchOptions.PatchSaveFileName,

LoadHistory

TypeScript
// This method is not available in scripting environment

C#
void LoadHistory(IStream Stream);

C++
HRESULT LoadHistory(IStream * Stream);

Parameters

Stream

Pointer to a stream object from which to load history.

Description

Loads a document's operation history from a file.

Complexity: linear-time, depending on the saved history's complexity.

Purge

TypeScript
Purge(Level: HistoryPurgeLevel): void;

C#
void Purge(HistoryPurgeLevel Level);

C++
HRESULT Purge(HistoryPurgeLevel Level);

Parameters

Level

Purge level. Can be one of the values described in the HistoryPurgeLevel topic.

Description

Purges a document's operation history. See Purging History section for more information.

Complexity: constant-time for all purge levels except HistoryPurgeAllButCurrent and linear-time for
HistoryPurgeAllButCurrent .

Example

Purging history

C#
// fdoc is initialized elsewhere
fdoc.FillByte(0x35, 100, 40);
// ...
fdoc.Purge(FileDocumentLib.HistoryPurgeLevel.HistoryPurgeAll); // discard all operations

Redo

Hex Editor Neo Documentation Scripting

243

TypeScript
Redo(Steps?: number): void;

C#
void Redo(uint Steps);

C++
HRESULT Redo(_variant_t Steps);

Parameters

Steps

Optional number of operations to redo. If omitted, one operation is redone.

Description

Redoes Steps recently undone operations.

Complexity: constant-time.

SaveHistory

TypeScript
// This method is not available in scripting environment

C#
void SaveHistory(IStream Stream);

C++
HRESULT SaveHistory(IStream * Stream);

Parameters

Stream

Pointer to a stream object to write history to.

Description

Saves the document's operation history to a given stream object.

Complexity: linear-time, depending on the history's complexity.

Undo

TypeScript
Undo(Steps?: number): void;

C#
void Undo(uint Steps);

C++
HRESULT Undo(_variant_t Steps);

Parameters

Steps

Optional number of operations to undo. If omitted, one operation is undone.

Description

Undoes last Steps operations.

Complexity: constant-time.

Copy

Hex Editor Neo Documentation Scripting

244

TypeScript
Copy(Selection: IMultiSelection, MergeBlocks: boolean): void;

C#
void Copy(IMultiSelection Selection, bool MergeBlocks);

C++
HRESULT Copy(IMultiSelectionPtr Selection, VARIANT_BOOL MergeBlocks);

Parameters

Selection

The multiple selection object.
MergeBlocks

true to merge selection blocks, false to leave them as is

Description

Copies the given selection to the Clipboard.

Complexity: linear-time, depending on the selection's complexity.

Example

Placing document's data to the Clipboard

C#
// fdoc is defined and obtained elsewhere
var msel = fdoc.CreateEmptySelection(); // create an empty selection object
msel.AddRange(100, 20); // add a first range to the selection
msel.AddRange(200, 20); // add a second range to the selection
fdoc.Copy(msel, false); // place data to the clipboard

Cut

TypeScript
Cut(Selection: IMultiSelection, MergeBlocks: boolean): void;

C#
void Cut(IMultiSelection Selection, bool MergeBlocks);

C++
HRESULT Cut(IMultiSelectionPtr Selection, VARIANT_BOOL MergeBlocks);

Parameters

Selection

The multiple selection object.
MergeBlocks

true to merge selection blocks, false to leave them as is

Description

Copies the given selection to the Clipboard and removes it from the document.

Complexity: linear-time, depending on the selection's complexity.

Example

Cutting document's data to the Clipboard

Hex Editor Neo Documentation Scripting

245

C#
// fdoc is defined and obtained elsewhere
var msel = fdoc.CreateEmptySelection(); // create an empty selection object
msel.AddRange(100, 20); // add a first range to the selection
msel.AddRange(200, 20); // add a second range to the selection
fdoc.Cut(msel, false); // place data to the clipboard

Paste

TypeScript
Paste(Offset: number, InsertMode: boolean): void;

C#
void Paste(ulong Offset, bool InsertMode);

C++
HRESULT Paste(unsigned long long Offset, VARIANT_BOOL InsertMode);

Parameters

Offset

Paste offset
InsertMode

true to insert data, false to overwrite data.

Description

Pastes data from the Clipboard to the given position. Pasted data either overwrites the current document's data, or is
inserted into the document, shifting existing data forward, depending on the InsertMode parameter.

This method is superseded by IFileDocument.Paste2 method, but is still supported.

Example

Using Paste

C#
var fdoc = new FileDocumentLib.FileDocument();
var msel = fdoc.CreateEmptySelection();

msel.AddRange(0, 10);
fdoc.Copy(msel, false);

fdoc.Paste(20, true); // Equivalent to fdoc.Paste2(20, TypeHexByte, true);
fdoc.Paste(100, false); // Equivalent to fdoc.Paste2(100, TypeHexByte, false);

Paste2

TypeScript
Paste2(Offset: number, Type: TextType, InsertMode: boolean): void;

C#
void Paste2(ulong Offset, TextType Type, bool InsertMode);

C++
HRESULT Paste2(unsigned long long Offset, TextType Type, VARIANT_BOOL InsertMode);

Parameters

Offset

Paste offset
Type

Type of text in the Clipboard. Used only if Clipboard contains textual data, otherwise ignored. Can be one of the values
from TextType enumeration. A number may be prefixed by the 0x prefix which forces it to be in base 16.

Hex Editor Neo Documentation Scripting

246

InsertMode

true to insert data, false to overwrite data.

Description

Pastes data from the Clipboard to the given position. Pasted data either overwrites the current document's data, or is
inserted into the document, shifting existing data forward, depending on the InsertMode parameter.

Example

Using Paste

C#
var fdoc = new FileDocumentLib.FileDocument();
var msel = fdoc.CreateEmptySelection();

msel.AddRange(0, 10);
fdoc.Copy(msel, false);

fdoc.Paste2(20, TextType.TypeHexByte, true);
fdoc.Paste2(100, TextType.TypeHexByte, false);

Paste3

TypeScript
Paste3(Offset: number, Type: TextType, Flags: Paste3Flags): void;

C#
void Paste3(ulong Offset, TextType Type, Paste3Flags Flags);

C++
HRESULT Paste3(unsigned long long Offset, TextType Type, Paste3Flags Flags);

Parameters

Offset

Paste offset
Type

Type of text in the Clipboard. Used only if Clipboard contains textual data, otherwise ignored. Can be one of the values
from TextType enumeration. A number may be prefixed by the 0x prefix which forces it to be in base 16.

Flags

Pasting flags. Can be one or more values from the Paste3Flags enumeration.

Description

Pastes data from the Clipboard to the given position. Pasted data either overwrites the current document's data, or is
inserted into the document, shifting existing data forward, depending on the InsertMode flag in Flags parameter.

PasteText

TypeScript
PasteText(Offset: number, Unicode: boolean, InsertMode: boolean): void;

C#
void PasteText(ulong Offset, bool Unicode, bool InsertMode);

C++
HRESULT PasteText(unsigned long long Offset, VARIANT_BOOL Unicode, VARIANT_BOOL InsertMode);

Parameters

Offset

Paste offset

Hex Editor Neo Documentation Scripting

247

Unicode

Paste text as Unicode (true) or ANSI (false).
InsertMode

true to insert data, false to overwrite data.

Description

Pastes text from the Clipboard to the given position. Pasted data either overwrites the current document's data, or is
inserted into the document, shifting existing data forward, depending on the InsertMode parameter.

Unicode parameter tells the Hex Editor Neo to interpret the text in the Clipboard as UNICODE or ANSI. If Unicode is true ,
each character occupies two bytes, otherwise, it occupies a single byte.

PasteText2

TypeScript
PasteText2(Offset: number, CodePage: number, InsertMode: boolean): void;

C#
void PasteText2(ulong Offset, uint CodePage, bool InsertMode);

C++
HRESULT PasteText2(unsigned long long Offset, unsigned long CodePage, VARIANT_BOOL InsertMode);

Parameters

Offset

Paste offset
CodePage

The code page to convert text to. Set to CP_UNICODE (hardcoded as -5) to specify UTF-16 encoding.
InsertMode

True to insert data, False to overwrite data.

Description

Pastes text from the Clipboard to the given position. Pasted data either overwrites the current document's data, or is
inserted into the document, shifting existing data forward, depending on the InsertMode parameter.

Hex Editor Neo uses the CodePage to convert the text in the Clipboard. Pass the CP_UNICODE (hardcoded as -5) to specify
the UTF-16 encoding.

This method requires the CF_UNICODETEXT format to be present in the Clipboard in order to convert to the given encoding.
If only CF_TEXT is available, than it operates exactly like the IFileDocument.PasteText method.

Find

TypeScript
// This method is not available in scripting environment

C#
ulong Find(ref byte DataToFind,
 uint DataSize,
 IMultiSelection Selection,
 ulong StartFrom,
 bool SearchUp,
 bool ignore_case);

C++
unsigned long long Find(unsigned char * DataToFind,
 unsigned long DataSize,
 IMultiSelectionPtr Selection,
 unsigned long long StartFrom,
 VARIANT_BOOL SearchUp,
 VARIANT_BOOL ignore_case);

Hex Editor Neo Documentation Scripting

248

Parameters

DataToFind

Pointer to a pattern.
DataSize

Pattern size.
Selection

Multiple selection object, which contains ranges in which you want to locate a pattern.
StartFrom

Offset from which you want to start searching.
SearchUp

true to search backwards and false to search forward.
ignore_case

true to ignore case and false to perform exact matching.

Return Value

Offset of the located pattern or -1 if pattern was not found.

Description

Searches for a pattern within a given selection. This method returns the offset of the matched pattern. To continue
searching, call this method again, adjusting StartFrom parameter appropriately. If pattern is not found in the specified
range, -1 is returned.

Complexity: linear-time, depending on the file's size and selection's complexity.

Example

Searching for a pattern

C#
var fdoc = new FileDocumentLib.FileDocument();
var msec = fdoc.CreateEmptySelection();

fdoc.Open(@"c:\temp\file.txt");
msec.AddRange(0, fdoc.FileSize); // We'll be searching in a whole file

byte[] pattern = new byte[] { 0x0d, 0x0a }; // EOL pattern
ulong EOL_Offset = fdoc.Find(ref pattern[0], pattern.Length, msel, 0, false, false);
// ...
// continue searching
EOL_Offset = fdoc.Find(ref pattern[0], pattern.Length, msel, EOL_Offset + 1, false, false);

FindRegExp

TypeScript
// This method is not available in scripting environment

C#
void FindRegExp(string RegExp,
 uint SubExpression,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size,
 ref ulong FoundOffset,
 ref ulong MatchSize);

Hex Editor Neo Documentation Scripting

249

C++
HRESULT FindRegExp(_bstr_t RegExp,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size,
 unsigned long long * FoundOffset,
 unsigned long long * MatchSize);

Parameters

RegExp

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
SubExpression

The number of sub-match to search for. 0 means the entire expression.
Flags

Flags that change the behavior of the function. May be one or more of values from RegExpFlags enumeration.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpTypeUNICODE flag is specified.
FoundOffset

On output, the found offset is stored in this parameter.
MatchSize

On output, the match's size is stored in this parameter.

Description

Searches for an occurrence of a regular expression within a given range. To continue searching, call this method again,
adjusting StartFrom field appropriately. If a pattern is not found in the specified range, this method returns an error.

Complexity: depends on the range's size and regular expression complexity.

I f regular expression syntax is invalid, the method returns (or throws) an error E_INVALIDARG . A
IFileDocument.RegExpSyntaxError property contains the description of the syntax error.

When match is not found, the method returns (or throws) a NOT_FOUND error.

This function is obsolete. Use the IFileDocument.FindRegExp2 instead.

FindRegExp2

TypeScript
// This method is not available in scripting environment

C#
void FindRegExp2(string RegExp,
 uint CodePage,
 uint SubExpression,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size,
 ref ulong FoundOffset,
 ref ulong MatchSize);

Hex Editor Neo Documentation Scripting

250

C++
HRESULT FindRegExp2(_bstr_t RegExp,
 unsigned long CodePage,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size,
 unsigned long long * FoundOffset,
 unsigned long long * MatchSize);

Parameters

RegExp

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
CodePage

Code page for regular expression pattern encoding or CP_UNICODE (-5) for UTF-16.
SubExpression

The number of sub-match to search for. 0 means the entire expression.
Flags

Flags that change the behavior of the function. May be a combination of values from the RegExpFlags enumeration.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpTypeUNICODE flag is specified.
FoundOffset

On output, the found offset is stored in this parameter.
MatchSize

On output, the match's size is stored in this parameter.

Description

Searches for an occurrence of a regular expression within a given range. To continue searching, call this method again,
adjusting StartFrom field appropriately. If a pattern is not found in the specified range, this method returns an error.

Complexity: depends on the range's size and regular expression complexity.

I f regular expression syntax is invalid, the method returns (or throws) an error E_INVALIDARG . A
IFileDocument.RegExpSyntaxError property contains the description of the syntax error.

When match is not found, the method returns (or throws) a NOT_FOUND error.

FindAll

TypeScript
// This method is not available in scripting environment

C#
void FindAll(ref byte DataToFind,
 uint DataSize,
 IMultiSelection Selection,
 bool IgnoreCase,
 IMultiSelection Found);

C++
HRESULT FindAll(unsigned char * DataToFind,
 unsigned long DataSize,
 IMultiSelectionPtr Selection,
 VARIANT_BOOL IgnoreCase,
 IMultiSelectionPtr Found);

Parameters

Hex Editor Neo Documentation Scripting

251

DataToFind

Pointer to a pattern.
DataSize

Pattern size
Selection

Multiple Selection object, which contains ranges in which a pattern need to be located.
IgnoreCase

true to ignore case, false to perform exact matching.
Found

Multiple Selection object, which contains, on method's return, all located ranges.

Description

Locates all occurrences of a given pattern within a given multiple selection. You provide the function with an output
Multiple Selection Object Found , in which it stores all located ranges. This object is automatically cleared before the
operation begins. When the method returns, check the IMultiSelection.Empty property to see if there were any pattern
occurrences.

Complexity: linear-time, depending on the file's size and selection's complexity.

Example

Searching all pattern occurrences

C#
var fdoc = new FileDocumentLib.FileDocument();
var msel = fdoc.CreateEmptySelection();
var mselOutput = fdoc.CreateEmptySelection();

fdoc.Open(@"c:\temp\file.txt");
msel.AddRange(0, fdoc.FileSize); // We'll be searching in a whole file

byte[] pattern = new byte[] { 0x0d, 0x0a }; // EOL pattern
fdoc.FindAll(ref pattern[0], pattern.Length, msel, false, mselOutput);
if (!mselOutput.Empty) // check if there are any matches
 fdoc.Copy(mselOutput,false); // copy them to the Clipboard

FindAllRegExp

TypeScript
FindAllRegExp(RegExp: string,
 SubExpression: number,
 Flags: RegExpFlags,
 StartFrom: number,
 Size: number,
 Found: IMultiSelection): void;

C#
void FindAllRegExp(string RegExp,
 uint SubExpression,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size,
 IMultiSelection Found);

C++
HRESULT FindAllRegExp(_bstr_t RegExp,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size,
 IMultiSelectionPtr Found);

Parameters

RegExp

Hex Editor Neo Documentation Scripting

252

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
SubExpression

The number of sub-match to search for. 0 means the entire expression.
Flags

Flags that change the behavior of the function. May be one or more values from the RegExpFlags enumeration.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpTypeUNICODE flag is specified.
Found

Multiple Selection object, which contains, on method's return, all located ranges.

Return Value

A number of occurrences

Description

Locates all matches of a given regular expression in a given range. You provide the function with an output Multiple
Selection Object Found , in which it stores all located ranges. This object is automatically cleared before the operation
begins. When the method returns, check the IMultiSelection.Empty property to see if there were any pattern occurrences.

Complexity: depends on the range's size and regular expression complexity.

This method is obsolete. Use the IFileDocument.FindAllRegExp2 instead.

FindAllRegExp2

TypeScript
FindAllRegExp2(RegExp: string,
 CodePage: number,
 SubExpression: number,
 Flags: RegExpFlags,
 StartFrom: number,
 Size: number,
 Found: IMultiSelection): void;

C#
void FindAllRegExp2(string RegExp,
 uint CodePage,
 uint SubExpression,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size,
 IMultiSelection Found);

C++
HRESULT FindAllRegExp2(_bstr_t RegExp,
 unsigned long CodePage,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size,
 IMultiSelectionPtr Found);

Parameters

RegExp

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
CodePage

Code page for regular expression pattern encoding or CP_UNICODE (-5) for UTF-16.
SubExpression

The number of sub-match to search for. 0 means the entire expression.

Hex Editor Neo Documentation Scripting

253

Flags

Flags that change the behavior of the function. May be one or more values from the RegExpFlags enumeration.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpTypeUNICODE flag is specified.
Found

Multiple Selection object, which contains, on method's return, all located ranges.

Return Value

A number of occurrences.

Description

Locates all matches of a given regular expression in a given range. You provide the function with an output Multiple
Selection Object Found , in which it stores all located ranges. This object is automatically cleared before the operation
begins. When the method returns, check the IMultiSelection.Empty property to see if there were any pattern occurrences.

Complexity: depends on the range's size and regular expression complexity.

Replace

TypeScript
// This method is not available in scripting environment

C#
void Replace(ulong Offset,
 uint SizeFrom,
 ref byte To,
 uint SizeTo);

C++
HRESULT Replace(unsigned long long Offset,
 unsigned long SizeFrom,
 unsigned char * To,
 unsigned long SizeTo);

Parameters

Offset

Replace offset.
SizeFrom

Size of the original pattern.
To

Pointer to a replace pattern.
SizeTo

Size of the replace pattern

Description

Replaces the given block with a pattern. This method replaces a range described by Offset and SizeFrom parameters with
a pattern.

Complexity: constant-time.

Example

Replacing a pattern

Hex Editor Neo Documentation Scripting

254

C#
var fdoc = new FileDocumentLib.FileDocument();
var msec = fdoc.CreateEmptySelection();

fdoc.Open(@"c:\temp\file.txt");
msec.AddRange(0, fdoc.FileSize); // We'll be searching in a whole file

byte[] pattern1 = new byte[] { 0x0d, 0x0a }; // EOL pattern
byte[] pattern2 = new byte[] { 0x0d, 0x0a, 0x0d, 0x0a }; // Double-EOL pattern
ulong EOL_Offset = fdoc.Find(ref pattern1[0], pattern1.Length, msel, 0, false, false);
if (EOL_Offset != -1)
 fdoc.Replace(EOL_Offset, pattern1.Length, ref pattern2[0], pattern2.Length);

ReplaceAll

TypeScript
// This method is not available in scripting environment

C#
void ReplaceAll(ref byte From,
 uint SizeFrom,
 ref byte To,
 uint SizeTo,
 bool IgnoreCase,
 IMultiSelection Selection);

C++
HRESULT ReplaceAll(unsigned char * From,
 unsigned long SizeFrom,
 unsigned char * To,
 unsigned long SizeTo,
 VARIANT_BOOL IgnoreCase,
 IMultiSelectionPtr Selection);

Parameters

From

Pointer to a search pattern.
SizeFrom

Search pattern size.
To

Pointer to a replace pattern.
SizeTo

Replace pattern size.
IgnoreCase

true to ignore case, false to perform exact matching.
Selection

Multiple Selection Object, describing the ranges in which to perform search and replace.

Return Value

A number of replacements done.

Description

Finds and replaces all occurrences of the given pattern with another pattern.

Complexity: varying.

Example

Searching all pattern occurrences

Hex Editor Neo Documentation Scripting

255

C#
var fdoc = new FileDocumentLib.FileDocument();
var msel = fdoc.CreateEmptySelection();

fdoc.Open(@"c:\temp\file.txt");
msel.AddRange(0, fdoc.FileSize); // We'll be searching in a whole file

byte[] pattern1 = new byte[] { 0x0d, 0x0a }; // EOL pattern
byte[] pattern2 = new byte[] { 0x0d, 0x0a, 0x0d, 0x0a }; // Double-EOL pattern
ulong nReplacements = fdoc.ReplaceAll(ref pattern1[0], pattern1.Length, ref pattern2[0], pattern2.Length, false

ReplaceAllRegExp

TypeScript
// This method is not available in scripting environment

C#
void ReplaceAllRegExp(string RegExp,
 uint SubExpression,
 RegExpFlags Flags,
 ref byte To,
 uint SizeTo,
 ulong StartFrom,
 ulong Size);

C++
HRESULT ReplaceAllRegExp(_bstr_t RegExp,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned char To,
 unsigned long SizeTo,
 unsigned long long StartFrom,
 unsigned long long Size);

Parameters

RegExp

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
SubExpression

The number of sub-match to search for. 0 means the entire expression.
Flags

Flags that change the behavior of the function. May be one or more of the values from RegExpFlags enumeration.
To

Pointer to a replace pattern.
SizeTo

Replace pattern size.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.

Return Value

A number of occurrences.

Description

Finds and replaces all occurrences of regular expression matches with a given pattern.

Complexity: varying.

This method is obsolete. Use the IFileDocument.ReplaceAllRegExp2 instead.

Hex Editor Neo Documentation Scripting

256

ReplaceAllRegExp2

TypeScript
// This method is not available in scripting environment

C#
void ReplaceAllRegExp2(string RegExp,
 uint CodePage,
 uint SubExpression,
 RegExpFlags Flags,
 ref byte To,
 uint SizeTo,
 ulong StartFrom,
 ulong Size);

C++
HRESULT ReplaceAllRegExp2(_bstr_t RegExp,
 unsigned long CodePage,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned char * To,
 unsigned long SizeTo,
 unsigned long long StartFrom,
 unsigned long long Size);

Parameters

RegExp

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
CodePage

Code page for regular expression pattern encoding or CP_UNICODE (-5) for UTF-16.
SubExpression

The number of sub-match to search for. 0 means the entire expression.
Flags

Flags that change the behavior of the function. May be one or more of the values from the RegExpFlags enumeration.
To

Pointer to a replace pattern.
SizeTo

Replace pattern size.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.

Return Value

A number of occurrences.

Description

Finds and replaces all occurrences of regular expression matches with a given pattern.

Complexity: varying.

ReplaceAllRegExpWithRegExp

TypeScript
ReplaceAllRegExpWithRegExp(RegExp: string,
 ReplacePattern: string,
 CodePage: number,
 Flags: RegExpFlags,
 StartFrom: number,
 Size: number): void;

Hex Editor Neo Documentation Scripting

257

C#
void ReplaceAllRegExpWithRegExp(string RegExp,
 string ReplacePattern,
 uint CodePage,
 RegExpFlags Flags,
 ulong StartFrom,
 ulong Size);

C++
HRESULT ReplaceAllRegExpWithRegExp(_bstr_t RegExp,
 _bstr_t ReplacePattern,
 unsigned long CodePage,
 RegExpFlags Flags,
 unsigned long long StartFrom,
 unsigned long long Size);

Parameters

RegExp

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
ReplacePattern

A string that contains a replace regular expression.
CodePage

Code page for both regular expression patterns encoding or CP_UNICODE (-5) for UTF-16.
Flags

Flags that change the behavior of the function. May be one or more of the values from RegExpFlags enumeration.
StartFrom

A start offset of the range. Must be a multiple of 2 if UTF-16 encoding is used.
Size

Range's size. Must be a multiply of 2 if UTF-16 encoding is used.

Return Value

A number of occurrences.

Description

Finds and replaces all occurrences of regular expression matches with a given regular expression pattern.

Complexity: varying.

ArithmeticOp

TypeScript
ArithmeticOp(Selection: IMultiSelection,
 Type: ArithmeticOpType,
 OpSize: OperandSizeType,
 Operand?: any): void;

C#
void ArithmeticOp(IMultiSelection Selection,
 ArithmeticOpType Type,
 OperandSizeType OpSize,
 object Operand);

C++
HRESULT ArithmeticOp(IMultiSelectionPtr Selection,
 ArithmeticOpType Type,
 OperandSizeType OpSize,
 _variant_t Operand);

Parameters

Selection

Hex Editor Neo Documentation Scripting

258

The multiple selection object which contains ranges for this operation to work on.
Type

The operation to perform. Can be one of the values from the ArithmeticOpType enumeration.
OpSize

Specifies the operand size. Can be one of the values from the OperandSizeType enumeration.
Operand

Second operand. Ignored for ArithmeticOpNegation operation type.

Description

Performs an arithmetic operation on a given selection.

Complexity: linear-time, depending on selection's complexity.

BitwiseOp

TypeScript
// This method is not available in scripting environment

C#
void BitwiseOp(IMultiSelection Selection, BitwiseOpType Type, ref byte Data, uint DataSize);

C++
HRESULT BitwiseOp(IMultiSelectionPtr Selection, BitwiseOpType Type, unsigned char * Data, unsigned long DataSize)

Parameters

Selection

The multiple selection object which contains ranges for this operation to work on.
Type

The operation to perform. Can be one of the values from the BitwiseOpType enumeration.
Data

Pointer to an operand pattern.
DataSize

Operand pattern size in bytes. Must be zero for BitwiseOpNOT operation type.

Description

Performs a bitwise operation on a given selection.

Complexity: linear-time, depending on selection's complexity.

CaseOp

TypeScript
CaseOp(Selection: IMultiSelection,
 Type: CaseOpType,
 Unicode: boolean,
 CodePage?: number): void;

C#
void CaseOp(IMultiSelection Selection,
 CaseOpType Type,
 bool Unicode,
 object CodePage);

Hex Editor Neo Documentation Scripting

259

C++
HRESULT CaseOp(IMultiSelectionPtr Selection,
 CaseOpType Type,
 VARIANT_BOOL Unicode,
 _variant_t CodePage);

Parameters

Selection

The multiple selection object which contains ranges for this operation to work on.
Type

The operation to perform. Can be one of the values from CaseOpType enumeration.
Unicode

true to treat selection data as UNICODE, false otherwise. If this parameter is true , all blocks in a given selection
must have alignment of 2 bytes.

CodePage

Optional code page that describes the encoding used in the selection. Ignored if Unicode parameter is True.

Description

Performs a case change operation on a given selection.

Complexity: linear-time, depending on selection's complexity.

ShiftOp

TypeScript
ShiftOp(Selection: IMultiSelection, Type: ShiftOpType, OpSize: , Bits: number): void;

C#
void ShiftOp(IMultiSelection Selection, ShiftOpType Type, OpSize, uint Bits);

C++
HRESULT ShiftOp(IMultiSelectionPtr Selection, ShiftOpType Type, OpSize, unsigned long Bits);

Parameters

Selection

The multiple selection object which contains ranges for this operation to work on.
Type

The operation to perform. Can be one of the values from ShiftOpType enumeration.
OpSize

Specifies the operand size. Can be one of the values from OperandSizeType enumeration.
Bits

The number of bits to shift.

Description

Performs a shift operation on a given selection.

Complexity: linear-time, depending on selection's complexity.

ReverseOp

TypeScript
ReverseOp(Selection: IMultiSelection, Type: ReverseOpType, OpSize: OperandSizeType): void;

C#
void ReverseOp(IMultiSelection Selection, ReverseOpType Type, OperandSizeType OpSize);

Hex Editor Neo Documentation Scripting

260

C++
HRESULT ReverseOp(IMultiSelectionPtr Selection, ReverseOpType Type, OperandSizeType OpSize);

Parameters

Selection

The multiple selection object which contains ranges for this operation to work on.
Type

The operation to perform. Can be one of the values from ReverseOpType enumeration.
OpSize

Specifies the operand size. Can be one of the values from OperandSizeType enumeration.

Description

Performs a bit or byte reverse operation on a given selection.

Complexity: linear-time, depending on selection's complexity.

GatherStatistics

TypeScript
// This method is not available in scripting environment

C#
ulong[] GatherStatistics(IMultiSelection Selection);

C++
unsigned long long[256] GatherStatistics(IMultiSelectionPtr Selection);

Parameters

Selection

Multiple Selection object that describing ranges, in which you want to calculate statistics.

Return Value

Statistics array.

Description

Calculates file statistics. See the General Statistics section for more information. On method return, each of 256 elements in
an array contains the number of corresponding byte occurrences.

Complexity: linear-time, depending on the file's size.

Example

Calculating General Statistics

C++
// pFileDocument and pMultiSelection are initialized elsewhere
unsigned long long data[256];
pFileDocument->GatherStatistics(pMultiSelection, data);

PatternStatistics

TypeScript
// This method is not available in scripting environment

Hex Editor Neo Documentation Scripting

261

C#
void PatternStatistics(ref byte Pattern,
 uint DataSize,
 bool IgnoreCase,
 ref ulong DataBuffer,
 uint Blocks,
 IMultiSelection Selection);

C++
HRESULT PatternStatistics(unsigned char * Pattern,
 unsigned long DataSize,
 VARIANT_BOOL IgnoreCase,
 unsigned long long * DataBuffer,
 unsigned long Blocks,
 IMultiSelectionPtr Selection);

Parameters

Pattern

Pointer to a pattern.
DataSize

Pattern Size.
IgnoreCase

true to ignore case, false to perform exact matching.
DataBuffer

Pointer to the statistics buffer.
Blocks

Number of blocks.
Selection

Multiple Selection Object, containing ranges in which you want to calculate statistics.

Description

Calculates file statistics. See the Pattern Statistics section for more information. On method return, the DataBuffer buffer is
filled with calculated statistics values.

Complexity: linear-time, depending on the file's size.

Example

Calculating Pattern Statistics

C++
// pFileDocument and pMultiSelection are initialized elsewhere
unsigned __int64 data[1024];
unsigned char pattern[] = { 0x0d, 0x0a };
pFileDocument->PatternStatistics(pattern, sizeof(pattern), false, data, 1024, pMultiSelection);

PatternStatisticsRegExp

TypeScript
// This method is not available in scripting environment

C#
void PatternStatisticsRegExp(string RegExp,
 uint SubExpression,
 RegExpFlags Flags,
 ref ulong DataBuffer,
 uint Blocks,
 ulong StartFrom,
 ulong Size);

Hex Editor Neo Documentation Scripting

262

C++
HRESULT PatternStatisticsRegExp(_bstr_t RegExp,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long * DataBuffer,
 unsigned long Blocks,
 unsigned long long StartFrom,
 unsigned long long Size);

Parameters

RegExp

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
SubExpression

The number of sub-match to search for. 0 means the entire expression.
Flags

Flags that change the behavior of the function. May be one or more of the values from the RegExpFlags enumeration.
DataBuffer

Pointer to the statistics buffer.
Blocks

Number of blocks.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.

Description

Calculates file statistics for a given regular expression. See the Pattern Statistics section for more information. On method
return, the DataBuffer buffer is filled with calculated statistics values.

Complexity: linear-time, depending on the file's size and regular expression complexity.

This method is obsolete. Use the IFileDocument.PatternStatisticsRegExp2 instead.

PatternStatisticsRegExp2

TypeScript
// This method is not available in scripting environment

C#
void PatternStatisticsRegExp2(string RegExp,
 uint CodePage,
 uint SubExpression,
 RegExpFlags Flags,
 ref ulong DataBuffer,
 uint Blocks,
 ulong StartFrom,
 ulong Size);

C++
HRESULT PatternStatisticsRegExp2(_bstr_t RegExp,
 unsigned long CodePage,
 unsigned long SubExpression,
 RegExpFlags Flags,
 unsigned long long * DataBuffer,
 unsigned long Blocks,
 unsigned long long StartFrom,
 unsigned long long Size);

Parameters

RegExp

Hex Editor Neo Documentation Scripting

263

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
CodePage

Code page for regular expression pattern encoding or CP_UNICODE (-5) for UTF-16.
SubExpression

The number of sub-match to search for. 0 means the entire expression.
Flags

Flags that change the behavior of the function. May be one or more of the values from RegExpFlags enumeration.
DataBuffer

Pointer to the statistics buffer.
Blocks

Number of blocks.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.

Description

Calculates file statistics for a given regular expression. See the Pattern Statistics section for more information. On method
return, the DataBuffer buffer is filled with calculated statistics values.

Complexity: linear-time, depending on the file's size and regular expression complexity.

CreateEmptySelection

TypeScript
CreateEmptySelection(): IMultiSelection;

C#
IMultiSelection CreateEmptySelection();

C++
IMultiSelectionPtr CreateEmptySelection();

Return Value

Returns the newly created Multiple Selection Object.

Description

Sel Pointer to a variable that receives a pointer to the IMultiSelection interface of created multiple selection object.

Creates an empty selection object. Complexity: constant-time.

Example

Creating an empty selection object

C++
// pFileDocument is obtained elsewhere
IMultiSelection *pMultiSelection {};
if (SUCCEEDED(pFileDocument->CreateEmptySelection(&pMultiSelection)))
{
 // work with a selection
 pMultiSelection->Release(); // release object
}

CreateSequence

TypeScript
CreateSequence(): ISequence;

Hex Editor Neo Documentation Scripting

264

C#
ISequence CreateSequence();

C++
ISequencePtr CreateSequence();

Description

Create an empty Sequence Object.

BitwiseOpS

TypeScript
BitwiseOpS(Selection: IMultiSelection, Type: BitwiseOpType, Sequence: ISequence): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Selection

The multiple selection object which contains ranges for this operation to work on.
Type

The operation to perform. Can be one of the values from BitwiseOpType enumeration.
Sequence

Sequence object containing operand.

Description

Performs a bitwise operation on a given selection.

Complexity: linear-time, depending on selection's complexity.

This method is a replacement for IFileDocument.BitwiseOp when used in scripting languages.

FillM ultiS

TypeScript
FillMultiS(Sequence: ISequence, Selection: IMultiSelection, Continue: boolean): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Sequence

Sequence object containing the data to fill.
Selection

The multiple selection object, which contains the ranges to fill in the document.
Continue

True to continue filling in a new range and False to start from the beginning of the pattern. See the description of the
“Transparent fill” flag in the Fill user-interface command for more information.

Description

Hex Editor Neo Documentation Scripting

265

Fills a given multiple selection with a specified pattern. The pattern is repeated until all given range(s) are filled. Continue
parameter specifies whether to continue filling a new range from the previous range, or from the beginning of the pattern.

Complexity: linear-time, depending on the selection's complexity.

This method is a replacement for IFileDocument.FillMulti when used in scripting languages.

Example

Filling a range with a single byte

JavaScript
// fdoc is initialized elsewhere
var msel = fdoc.CreateEmptySelection();
msel.AddRange(100, 20);
msel.AddRange(200, 30);
var pattern = fdoc.CreateSequence();
pattern.AddData(HexBytes, 0x31, 0x32, 0x33);
fdoc.FillMultiS(pattern, msel, false);

FillS

TypeScript
FillS(Sequence: ISequence, Offset: number, Size: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Sequence

Sequence containing data to fill.
Offset

Range starting offset
Size

Range size

Description

Fills a given range with a given pattern. A pattern is repeated until the required number of bytes is written to the file. If file is
shorter than the filling range, the file's size is increased.

Complexity: constant-time.

This method is a replacement for IFileDocument.Fill when used in scripting languages.

Example

Filling a range with a simple pattern

JavaScript
// fdoc is initialized elsewhere
var pattern = fdoc.CreateSequence();
pattern.AddText("Simple Pattern", false);
fdoc.FillS(pattern, 0x10000, 0x10ff);

FindAllS

TypeScript
FindAllS(Sequence: ISequence,
 Selection: IMultiSelection,
 IgnoreCase: boolean,
 Found: IMultiSelection): void;

Hex Editor Neo Documentation Scripting

266

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Sequence

Sequence object containing a find pattern.
Selection

Multiple Selection object, which contains ranges in which a pattern need to be located
IgnoreCase

true to ignore case, false to perform exact matching.
Found

Multiple Selection Object, which contains, on method's return, all located ranges.

Description

Locates all occurrences of a given pattern within a given multiple selection. You provide the function with an output
Multiple Selection Object Found , in which it stores all located ranges. This object is automatically cleared before the
operation begins. When the method returns, check the IMultiSelection.Empty property to see if there were any pattern
occurrences.

Complexity: linear-time, depending on the file's size and selection's complexity.

This method is a replacement for IFileDocument.FindAll when used in scripting languages.

Example

Searching all pattern occurrences

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();
var mselOutput = fdoc.CreateEmptySelection();

fdoc.Open("c:\\temp\\file.txt");
msel.AddRange(0, fdoc.FileSize); // We'll be searching in a whole file

var pattern = fdoc.CreateSequence();
pattern.AddData(HexBytes, 0x0d, 0x0a); // EOL pattern
fdoc.FindAllS(pattern, msel, false, mselOutput);
if (!mselOutput.Empty) // check if there are any matches
 fdoc.Copy(mselOutput,false); // copy them to the Clipboard

FindS

TypeScript
FindS(Sequence: ISequence,
 Selection: IMultiSelection,
 StartFrom: number,
 SearchUp: boolean,
 IgnoreCase: boolean): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Sequence

Sequence object containing a find pattern.

Hex Editor Neo Documentation Scripting

267

Selection

Multiple selection object, which contains ranges in which you want to locate a pattern.
StartFrom

Offset from which you want to start searching.
SearchUp

true to search backwards and false to search forward.
IgnoreCase

true to ignore case and false to perform exact matching.

Return Value

Offset of the located pattern or -1 if pattern was not found.

Description

Searches for a pattern within a given selection. This method returns the offset of the matched pattern. To continue
searching, call this method again, adjusting StartFrom field appropriately. If pattern is not found in the specified range, -1 is
returned.

Complexity: linear-time, depending on the file's size and selection's complexity.

This method is a replacement for IFileDocument.Find when used in scripting languages.

Example

Searching for a pattern

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msec = fdoc.CreateEmptySelection();

fdoc.Open("c:\\temp\\file.txt");
msec.AddRange(0, fdoc.FileSize); // We'll be searching in a whole file

var pattern = fdoc.CreateSequence();
pattern.AddData(HexBytes, 0x0d, 0x0a); // EOL pattern
var EOL_Offset = fdoc.ToNumber(fdoc.FindS(pattern, msel, 0, false, false));
// ...
// continue searching
EOL_Offset = fdoc.ToNumber(fdoc.FindS(pattern, msel, EOL_Offset + 1, false, false));

InsertPatternS

TypeScript
InsertPatternS(Sequence: ISequence, Offset: number, Size: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Sequence

Sequence object containing data to insert.
Offset

Insert offset.
Size

Insert size.

Description

Hex Editor Neo Documentation Scripting

268

Inserts a given pattern into the document, repeating it to fill the given size. Insert command shifts file's data to free up the
space to fit an inserted pattern.

Complexity: constant-time.

This method is a replacement for IFileDocument.InsertPattern when used in scripting languages.

Example

Inserting a pattern

JavaScript
// fdoc is initialized elsewhere
var pattern = fdoc.CreateSequence();
pattern.AddData(HexBytes, 0x0d, 0x0a);
fdoc.InsertPatternS(pattern, 100, 1000);

InsertS

TypeScript
InsertS(Sequence: ISequence, Offset: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Sequence

Sequence object containing the data to insert.
Offset

Insert offset.

Description

Inserts a pattern into the document. Insert command shifts file's data to free up the space to fit an inserted pattern.

Complexity: constant-time.

This method is a replacement for IFileDocument.Insert when used in scripting languages.

Example

Inserting a pattern

JavaScript
// fdoc is initialized elsewhere
var pattern = fdoc.CreateSequence();
pattern.AddData(HexBytes, 0x0d, 0x0a);
fdoc.InsertS(pattern, 100); // insert a given pattern at the offset 100

ReadS

TypeScript
ReadS(Sequence: ISequence, Offset: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Hex Editor Neo Documentation Scripting

269

Sequence

Sequence object into which data is read.
Offset

Read offset

Description

Reads data from a document. If requested data exceeds the current document's size, any excess bytes are filled with zeros.

Complexity: constant-time.

This method is a replacement for IFileDocument.Read when used in scripting languages.

Example

Reading Data

JavaScript
// fdoc is initialized elsewhere
var seq = fdoc.CreateSequence();
fdoc.Length = 256;
fdoc.ReadS(seq, 1000);

ReplaceAllRegExpS

TypeScript
ReplaceAllRegExpS(RegExp: string,
 SubExpression: number,
 Flags: RegExpFlags,
 Sequence: ISequence,
 StartFrom: number,
 Size: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

RegExp

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
SubExpression

The number of sub-match to search for. 0 means the entire expression.
Flags

Flags that change the behavior of the function. May be one or more of the values from the RegExpFlags enumeration.
Sequence

Sequence object containing replace pattern.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.

Return Value

A number of occurrences.

Description

Finds and replaces all occurrences of regular expression matches with a given pattern.

Hex Editor Neo Documentation Scripting

270

Complexity: varying.

This method is a replacement for IFileDocument.ReplaceAllRegExp when used in scripting languages. This method is
obsolete. Use the IFileDocument.ReplaceAllRegExp2S instead.

ReplaceAllRegExp2S

TypeScript
ReplaceAllRegExp2S(RegExp: string,
 CodePage: number,
 SubExpression: number,
 Flags: RegExpFlags,
 Sequence: ISequence,
 StartFrom: number,
 Size: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

RegExp

A string that contains a regular expression. A regular expression must by in ECMAScript syntax.
CodePage

Code page for regular expression pattern encoding or CP_UNICODE (-5) for UTF-16.
SubExpression

The number of sub-match to search for. 0 means the entire expression.
Flags

Flags that change the behavior of the function. May be one or more of the values from the RegExpFlags enumeration.
Sequence

Sequence object containing replace pattern.
StartFrom

A start offset of the range. Must be a multiple of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.
Size

Range's size. Must be a multiply of 2 if RegExpFlags.RegExpTypeUNICODE flag is specified.

Return Value

A number of occurrences.

Description

Finds and replaces all occurrences of regular expression matches with a given pattern.

Complexity: varying.

This method is a replacement for IFileDocument.ReplaceAllRegExp2 when used in scripting languages.

ReplaceAllS

TypeScript
ReplaceAllS(SequenceFrom: ISequence,
 SequenceTo: ISequence,
 IgnoreCase: boolean,
 Selection: IMultiSelection): void;

C#
// This method is not available in managed environment

Hex Editor Neo Documentation Scripting

271

C++
// This method is not available in native environment

Parameters

SequenceFrom

Sequence object containing a find pattern.
SequenceTo

Sequence object containing a replace pattern.
IgnoreCase

true to ignore case, false to perform exact matching.
Selection

Multiple Selection object, describing the ranges in which to perform search and replace

Return Value

A number of replacements done.

Description

Finds and replaces all occurrences of the given pattern with another pattern.

Complexity: varying.

This method is a replacement for IFileDocument.ReplaceAll when used in scripting languages.

Example

Searching all pattern occurrences

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();

fdoc.Open("c:\\temp\\file.txt");
msel.AddRange(0, fdoc.FileSize); // We'll be searching in a whole file

var pattern1 = fdoc.CreateSequence();
var pattern2 = fdoc.CreateSequence();
pattern1.AddData(HexBytes, 0x0d, 0x0a); // EOL pattern
pattern2.AddData(HexBytes, 0x0d, 0x0a, 0x0d, 0x0a); // Double-EOL pattern
var nReplacements = fdoc.ToNumber(fdoc.ReplaceAllS(pattern1, pattern2, false, msel);

ReplaceS

TypeScript
ReplaceS(Offset: number, Size: number, Sequence: ISequence): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Offset

Replace offset.
Size

Size of the original pattern.
Sequence

Sequence object containing the pattern to replace.

Hex Editor Neo Documentation Scripting

272

Description

Replaces the given block with a pattern. This method replaces a range described by Offset and Size parameters with a
pattern.

Complexity: constant-time.

This method is a replacement for IFileDocument.Replace when used in scripting languages.

Example

Replacing a pattern

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msec = fdoc.CreateEmptySelection();

fdoc.Open("c:\\temp\\file.txt");
msec.AddRange(0, fdoc.FileSize); // We'll be searching in a whole file

var pattern1 = fdoc.CreateSequence();
var pattern2 = fdoc.CreateSequence();

pattern1.AddData(HexBytes,0x0d,0x0a); // EOL pattern
pattern2.AddDate(HexBytes,0x0d,0x0a,0x0d,0x0a); // Double-EOL pattern
var EOL_Offset = fdoc.ToNumber(fdoc.FindS(pattern1, msel, 0, false, false));
if (EOL_Offset != -1)
 fdoc.ReplaceS(EOL_Offset, pattern1.Length, pattern2);

ToN umber

TypeScript
ToNumber(Value: any): number;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Value

A value to convert.

Return Value

Value, converted to decimal type.

@xample

Value conversion

JavaScript
// document1 and document2 are defined elsewhere
document1.FileSize = document2.FileSize; // valid, no processing in Javascript.
// Passing 64-bit integers is supported

document1.FileSize = document2.FileSize / 2; // invalid, "Not a Number" exception is thrown
document1.FileSize = document2.ToNumber(document2.FileSize) / 2; // valid

Description

Converts 64-bit integer into scripting compatible integer. Hex Editor Neo extensively uses 64-bit integer numbers. Scripting
languages do not directly support such values, so this method may be used to convert them to supported decimal type.

WriteS

Hex Editor Neo Documentation Scripting

273

TypeScript
WriteS(Sequence: ISequence, Offset: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Sequence

Sequence object that contains the data to write.
Offset

Write offset

Description

Writes data to a document. The written data overwrites document's existing data and may also increase the file's size if it
overlaps the current file's size. Write always creates a new operation in document's operation history.

Complexity: constant-time.

This method is a replacement for IFileDocument.Write when used in scripting languages.

Example

Writing Data

JavaScript
// fdoc is initialized elsewhere
var seq = fdoc.CreateSequence();
fdoc.AddData(HexBytes, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9);
fdoc.WriteS(seq, 1000);

PatchOptions Enumeration

Symbol Value Description
PatchNoOptions 0x00000000 No options specified.
PatchSaveFileName 0x00000001 Save file's name for later verification.
PatchCalculateHash 0x00000002 Calculate and save file's hash.
PatchRemoveReferences 0x00000004 Remove external references (currently not implemented).
PatchExecutable 0x00000008 Create a self-installing patch. PathToStubFile parameter

in IFileDocument.CreatePatch method is required if this
option is used.

HistoryPurgeLevel Enumeration

Symbol Value Description
HistoryPurgeTail 0 All phantom operations (or operation tail) are dropped and

removed.
HistoryPurgeBranches 1 All branches except the current one are dropped and

removed.
HistoryPurgeAllButCurrent 2 All operations in a history are deleted. The document state

is NOT changed, all modifications are “merged” into the
single operation, which becomes an operation list root.

HistoryPurgeAll 3 Remove all operations except the very first one.

TextType Enumeration

Hex Editor Neo Documentation Scripting

274

Symbol Value Description
TextTypeHexByte 0 Hexadecimal numbers (from 0 to 0xFF)
TextTypeHexWord 1 Hexadecimal numbers (from 0 to 0xFFFF)
TextTypeHexDword 2 Hexadecimal numbers (from 0 to 0xFFFF FFFF)
TextTypeHexQword 3 Hexadecimal numbers (from 0 to 0xFFFF FFFF FFFF FFFF)
TextTypeDecByte 4 Decimal numbers (from 0 to 255)
TextTypeDecWord 5 Decimal numbers (from 0 to 65535)
TextTypeDecDword 6 Decimal numbers (from 0 to 4,294,967,295)
TextTypeDecQword 7 Decimal numbers (from 0 to 18,446,744,073,709,551,615)

Paste3Flags Enumeration

Symbol Value Description
Paste3OverwriteMode 0x00000000 Overwrite existing document data with data from the

Clipboard. May not be combined with Paste3InsertMode .
Paste3InsertMode 0x00000001 Insert Clipboard data at the given position, extending

document's size. May not be combined with
Paste3OverwriteMode .

Paste3LittleEndian 0x00000000 Treat text in Clipboard as integers that have little-endian byte
order. Used only if Clipboard contains textual data. May not
be combined with Paste3BigEndian .

Paste3BigEndian 0x00000002 Treat text in Clipboard as integers that have big-endian byte
order. Used only if Clipboard contains textual data. May not
be combined with Paste3LittleEndian .

RegExpFlags Enumeration

Symbol Value Description
RegExpTypeANSI 0x00000000 Treat the given range as a stream of single-byte characters.

May not be used with RegExpTypeUNICODE flag.
RegExpTypeUNICODE 0x00000001 Treat the given range as a stream of 16-bit unicode characters.

May not be used with RegExpTypeANSI flag.
RegExpIgnoreCase 0x00000002 If this flag is specified, ignore case during search operation.

ArithmeticOpType Enumeration

Symbol Value Description
ArithmeticOpNegation 0 Arithmetic negation (change sign): x[i] = - x[i] ;
ArithmeticOpAddition 1 Arithmetic addition: x[i] += operand ;
ArithmeticOpSubrtaction 2 Arithmetic subtraction: x[i] -= operand ;
ArithmeticOpMultiplication 3 Arithmetic multiplication: x[i] *= operand ;
ArithmeticOpDivision 4 Arithmetic division: x[i] /= operand ;
ArithmeticOpRemainder 5 Arithmetic division remainder: x[i] %= operand ;

OperandSizeType Enumeration

Symbol Value Description
OperandSizeByte 0 8-bit integer (BYTE)
OperandSizeWord 1 16-bit integer (WORD)
OperandSizeDword 2 32-bit integer (DWORD)
OperandSizeQword 3 64-bit integer (QWORD)

BitwiseOpType Enumeration

Hex Editor Neo Documentation Scripting

275

Symbol Value Description
BitwiseOpNOT 0 Bitwise NOT: x[i] = ~x[i];
BitwiseOpOR 1 Bitwise OR: x[i] |= operand[i % DataSize];
BitwiseOpAND 2 Bitwise AND: x[i] &= operand[i % DataSize];
BitwiseOpXOR 3 Bitwise XOR: x[i] ^= operand[i % DataSize];

CaseOpType Enumeration

Symbol Value Description
CaseOpLower 0 Make selection lowercase
CaseOpUpper 1 Make selection uppercase
CaseOpToggle 2 Invert selection

ShiftOpType Enumeration

Symbol Value Description
ShiftOpLogicalLeft 0 Logical left shift: x[i] <<= operand;
ShiftOpLogicalRight 1 Logical right shift: x[i] >>= operand;
ShiftOpArithmeticLeft 2 Arithmetic left shift (equivalent to ShiftOpLogicalLeft):

x[i] <<= operand;

ShiftOpArithemticRight 3 Arithmetic right shift: x[i] >>= operand; // performs sign
extension

ShiftOpRotateLeft 4 Rotate left.
ShiftOpRotateRight 5 Rotate right.

ReverseOpType Enumeration

Symbol Value Description
ReverseOpBits 0 Reverse bits in a selection
ReverseOpBytes 1 Reverse bytes in a selection

Multiple Selection Object

IMultiSelection Interface

Description

This interface is implemented by the Multiple Selection Object. Its methods and properties are directly accessed by the low-
level (native) languages like C++ and indirectly by automation-compatible languages, such as JavaScript and managed
languages. Refer to Creating Multiple Selection Object and Working with Multiple Selection Object sections for usage
information.

Declaration

TypeScript
interface IMultiSelection extends IDispatch {
 // Properties
 readonly Count: number;
 readonly Empty: boolean;
 readonly TotalSize: number;
 // Methods
 AddRange(Offset: number, Size: number): void;
 Clear(): void;
 DeleteRange(Offset: number, Size: number): void;
 InsertRange(Offset: number, Size: number): void;
 Invert(Size: number): void;
 IsIn(Offset: number): void;
 RemoveRange(Offset: number, Size: number): void;
 ToggleRange(Offset: number, Size: number): void;
}

Hex Editor Neo Documentation Scripting

276

C#
public interface IMultiSelection : IDispatch
{
 // Properties
 ulong Count { get; }
 bool Empty { get; }
 ulong TotalSize { get; }
 // Methods
 void AddRange(ulong Offset, ulong Size);
 void Clear();
 void DeleteRange(ulong Offset, ulong Size);
 void InsertRange(ulong Offset, ulong Size);
 void Invert(ulong Size);
 void IsIn(ulong Offset);
 void Load(IStream Stream, LoadMode LoadMode);
 void RemoveRange(ulong Offset, ulong Size);
 void Save(IStream Stream);
 void ToggleRange(ulong Offset, ulong Size);
}

C++
struct IMultiSelection : IDispatch
{
 // Properties
 unsigned long long Count; // get
 VARIANT_BOOL Empty; // get
 unsigned long long TotalSize; // get
 // Methods
 HRESULT AddRange(unsigned long long Offset, unsigned long long Size);
 HRESULT Clear();
 HRESULT DeleteRange(unsigned long long Offset, unsigned long long Size);
 HRESULT InsertRange(unsigned long long Offset, unsigned long long Size);
 HRESULT Invert(unsigned long long Size);
 HRESULT IsIn(unsigned long long Offset);
 HRESULT Load(IStream * Stream, LoadMode LoadMode);
 HRESULT RemoveRange(unsigned long long Offset, unsigned long long Size);
 HRESULT Save(IStream * Stream);
 HRESULT ToggleRange(unsigned long long Offset, unsigned long long Size);
};

IMultiSelection Properties

Count

TypeScript
readonly Count: number;

C#
ulong Count { get; }

C++
unsigned long long Count; // get

Description

Returns the number of ranges in a selection object.

Complexity: constant-time.

Example

Using the Count property

Hex Editor Neo Documentation Scripting

277

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();
alert(msel.Count); // displays "0"
msel.AddRange(100, 20); // selection: [100..120)
alert(msel.Count); // displays "1"
msel.AddRange(150, 20); // selection: [100..120) U [150..170)
alert(msel.Count); // displays "2"
msel.AddRange(80, 80); // selection: [80..170)
alert(msel.Count); // displays "1"

Empty

TypeScript
readonly Empty: boolean;

C#
bool Empty { get; }

C++
VARIANT_BOOL Empty; // get

Description

This property is true if the selection object is empty.

Example

Using the Empty property

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();
alert(msel.Empty); // displays "true"
msel.AddRange(100, 20); // selection: [100..120)
alert(msel.Empty); // displays "false"
msel.Clear();
alert(msel.Empty); // displays "true"

TotalSize

TypeScript
readonly TotalSize: number;

C#
ulong TotalSize { get; }

C++
unsigned long long TotalSize; // get

Description

Returns the total selection size. This is a sum of sizes of all selection ranges.

Complexity: constant-time.

Example

Using TotalSize property

Hex Editor Neo Documentation Scripting

278

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();

msel.ToggleRange(100, 50); // selection: [100..150)
alert(msel.TotalSize); // displays "50"
msel.ToggleRange(100, 10); // selection: [110..150)
alert(msel.TotalSize); // displays "40"
msel.ToggleRange(0, 10); // selection: [0..10) U [110..150)
alert(msel.TotalSize); // displays "50"
msel.ToggleRange(140, 20); // selection: [0..10) U [110..140) U [150..160)
alert(msel.TotalSize); // displays "50"
msel.ToggleRange(10, 100); // selection: [0..140) U [150..160)
alert(msel.TotalSize); // displays "150"

IMultiSelection Methods

AddRange

TypeScript
AddRange(Offset: number, Size: number): void;

C#
void AddRange(ulong Offset, ulong Size);

C++
HRESULT AddRange(unsigned long long Offset, unsigned long long Size);

Parameters

Offset

Starting offset
Size

Range size

Description

Adds a given range to a selection. If the range intersects any existing ranges, they are combined with a given range. A
number of ranges in a selection may change after adding a new range.

Complexity: linear-time, depending on the current selection configuration.

Example

Adding ranges to a selection

C#
// msel is initialized elsewhere and is currently empty
msel.AddRange(100, 20); // selection: [100..120)
msel.AddRange(150, 20); // selection: [100..120) U [150..170)
msel.AddRange(80, 80); // selection: [80..170)

Clear

TypeScript
Clear(): void;

C#
void Clear();

C++
HRESULT Clear();

Description

Clears the selection. After this function returns, selection object contains no ranges.

Hex Editor Neo Documentation Scripting

279

Complexity: constant-time.

DeleteRange

TypeScript
DeleteRange(Offset: number, Size: number): void;

C#
void DeleteRange(ulong Offset, ulong Size);

C++
HRESULT DeleteRange(unsigned long long Offset, unsigned long long Size);

Parameters

Offset

N/A
Size

N/A

Description

This method is not currently implemented.

InsertRange

TypeScript
InsertRange(Offset: number, Size: number): void;

C#
void InsertRange(ulong Offset, ulong Size);

C++
HRESULT InsertRange(unsigned long long Offset, unsigned long long Size);

Parameters

Offset

Insert offset.
Size

Insert size.

Description

Inserts a range into the selection object. As a result of this operation, existing ranges with offsets larger than Offset are
shifted forward by Size bytes.

Complexity: linear-time, depending on the number of ranges to shift.

Example

Using the InsertRange method

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();
msel.AddRange(100, 20); // selection: [100..120)
msel.AddRange(150, 20); // selection: [100..120) U [150..170)
msel.InsertRange(130, 10); // selection: [100..120) U [160..180)
msel.InsertRange(0, 20); // selection: [120..140) U [180..200)

Invert

Hex Editor Neo Documentation Scripting

280

TypeScript
Invert(Size: number): void;

C#
void Invert(ulong Size);

C++
HRESULT Invert(unsigned long long Size);

Parameters

Size

The total size of an object. Used to properly invert selection.

Description

Inverts the current selection. All defined ranges become gaps and all gaps become ranges. This method accepts the total
size which is usually the current file's size. Calling Invert method two times with a same Size value will leave the selection
object intact.

Complexity: constant-time.

Example

Using the Invert method

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();
msel.AddRange(100, 20); // selection: [100..120)
msel.Invert(200); // selection: [0..100) U [120..200)
msel.Invert(200); // selection: [100..120)

IsIn

TypeScript
IsIn(Offset: number): void;

C#
void IsIn(ulong Offset);

C++
HRESULT IsIn(unsigned long long Offset);

Parameters

Offset

Offset to check.

Return Value

A boolean value indicating whether the given offset lies within one of the selection's ranges.

Description

Check if the given offset lies within the selection. Returns true if the offset is inside of selection's ranges or false
otherwise.

Complexity: constant-time.

Example

Using the IsIn method

Hex Editor Neo Documentation Scripting

281

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();
msel.AddRange(100, 20); // selection: [100..120)
alert(msel.IsIn(0)); // displays "false"
alert(msel.IsIn(100)); // displays "true"
alert(msel.IsIn(110)); // displays "true"
alert(msel.IsIn(120)); // displays "false"

Load

TypeScript
// This method is not available in scripting environment

C#
void Load(IStream Stream, LoadMode LoadMode);

C++
HRESULT Load(IStream * Stream, LoadMode LoadMode);

Parameters

Stream

Pointer to a stream object
LoadMode

Load mode. Can be one of the values from LoadMode enumeration.

Description

Loads the selection from a file. This method may be instructed to merge the loaded selection with a current one, using one
of supported algorithms. Due to implementation details, the Load method usually tries to read more data from the stream
object, than Save method wrote to it. This is not a problem if nothing is written beyond the selection's data in a stream.
Otherwise, you should prepend the selection's data in a stream with a size value and adjust the stream pointer
appropriately.

Complexity: linear-time, depending on current and loaded selections complexity.

Example

Loading and Saving selection

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var msel = fdoc.CreateEmptySelection();

msel.AddRange(100, 50); // selection: [100..150)
// create a file and obtain a stream object for it
msel.Save(stream);
msel.Clear(); // selection: empty
msel.AddRange(50, 50); // selection: [50..100)
// open a previously created selection file and obtain a stream object for it
msel.Load(stream, SelectionAdd); // selection: [50..150)

RemoveRange

TypeScript
RemoveRange(Offset: number, Size: number): void;

C#
void RemoveRange(ulong Offset, ulong Size);

C++
HRESULT RemoveRange(unsigned long long Offset, unsigned long long Size);

Parameters

Hex Editor Neo Documentation Scripting

282

Offset

Starting offset
Size

Range size

Description

Removes a given range from the selection. The specified range is “subtracted” from any intersected selection's ranges. If it
does not intersect any range, nothing happens. The number of ranges in selection object may change after this method
returns.

Complexity: linear-time, depending on the current selection configuration.

Example

Removing ranges from a selection

C#
// msel is initialized elsewhere and is currently empty
msel.AddRange(100, 50); // selection: [100..150)
msel.RemoveRange(100, 10); // selection: [110..150)
msel.RemoveRange(0, 10); // selection: [110..150) - nothing changed
msel.RemoveRange(150, 20); // selection: [110..150) - nothing changed
msel.RemoveRange(120, 10); // selection: [110..120) U [130..150)

Save

TypeScript
// This method is not available in scripting environment

C#
void Save(IStream Stream);

C++
HRESULT Save(IStream * Stream);

Parameters

Stream

Pointer to a stream object

Description

Compresses and saves the selection object to a given stream.

Complexity: linear-time, depending on number of ranges in a selection object.

ToggleRange

TypeScript
ToggleRange(Offset: number, Size: number): void;

C#
void ToggleRange(ulong Offset, ulong Size);

C++
HRESULT ToggleRange(unsigned long long Offset, unsigned long long Size);

Parameters

Offset

Starting offset.
Size

Range size.

Hex Editor Neo Documentation Scripting

283

Description

Current selection ranges are intersected with a specified range. Those portions of the specified range that fall onto gaps are
appended to the selection, and those portions that fall to existing ranges, are subtracted from the selection.

Complexity: linear-time, depending on the current selection configuration.

Complexity of this method is not worse than that of IMultiSelection.AddRange and IMultiSelection.RemoveRange.

Example

Using ToggleRange method

C#
// msel is initialized elsewhere and is currently empty
msel.ToggleRange(100, 50); // selection: [100..150)
msel.ToggleRange(100, 10); // selection: [110..150)
msel.ToggleRange(0, 10); // selection: [0..10) U [110..150)
msel.ToggleRange(140, 20); // selection: [0..10) U [110..140) U [150..160)
msel.ToggleRange(10, 100); // selection: [0..140) U [150..160)

LoadMode Enumeration

Symbol Value Description
SelectionNew 0 Replaces the current selection with a one loaded from a file.
SelectionAdd 1 Combines the loaded selection with a current one.
SelectionSubtract 2 Subtracts the loaded selection from a current one.

Sequence Object

ISequence Interface

Description

This interface is implemented by a sequence object created through a File Document object. Use the methods of this
interface from a scripting languages to construct a pattern to be passed to various methods of the IFileDocument interface.

Declaration

TypeScript
interface ISequence extends IDispatch {
 // Properties
 readonly Empty: boolean;
 Length: number;
 [Value: number]: number;
 // Methods
 AddData(Type: SequenceDataType, Values: number[]): void;
 AddText(Text: , Unicode:): void;
 Clear(): void;
 Copy(): ISequence;
 CreateSubSequence(Index: number, Length: number): ISequence;
 Remove(Index: number, Length: number): void;
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

ISequence Properties

Empty

TypeScript
readonly Empty: boolean;

Hex Editor Neo Documentation Scripting

284

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

true if the sequence is empty or false otherwise.

Length

TypeScript
Length: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Retrieve or change the current sequence length. Sequence length is expressed in bytes. When you change the sequence
length, it is either truncated or extended. If the sequence was extended, it may contain garbage.

Value

TypeScript
[Value: number]: number;

C#
// This property is not available in managed environment

C++
// This property is not available in native environment

Description

Retrieve the byte from sequence.

ISequence Methods

AddData

TypeScript
AddData(Type: SequenceDataType, Values: number[]): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Type

Type of the data to add. See SequenceDataType enumeration for more information.
Values

Any number of additional parameters which are added to a sequence. The type parameter describes the way they are
interpreted.

Description

Hex Editor Neo Documentation Scripting

285

Add numeric data to a sequence. This method is used to add bytes, words, double words, quad words, floats and doubles to
a sequence. Data is added to the end of the sequence.

Example

Adding values

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var seq = fdoc.CreateSequence();

seq.AddData(SequenceDataBytes, 0x0d, 0x0a); // add two bytes to a sequence
seq.AddData(SequenceDataDwords | SequenceDataBigEndian,
 0x12345678, 0xfedcba98, 0, 70000); // add a number of big-endian double words to a sequence

AddText

TypeScript
AddText(Text: , Unicode:): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Text

A string to be added.
Unicode

true to treat string characters as UNICODE or false to treat them as ANSI.

Description

Add textual data to a sequence. New data is appended to the end of the sequence.

Example

Adding text

JavaScript
var fdoc = new ActiveXObject("FileDocument.FileDocument");
var seq = fdoc.CreateSequence();

seq.AddText("<p>", false);

Clear

TypeScript
Clear(): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Clear the sequence.

Copy

Hex Editor Neo Documentation Scripting

286

TypeScript
Copy(): ISequence;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Description

Create a copy of the sequence.

CreateSubSequence

TypeScript
CreateSubSequence(Index: number, Length: number): ISequence;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Index

Starting index of a sub-sequence.
Length

Length of the sub-sequence.

Description

Create a sub-sequence of this sequence.

Remove

TypeScript
Remove(Index: number, Length: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Index

Index of the starting byte to remove.
Length

The number of bytes to remove.

Description

Remove a part of the sequence.

SequenceDataType Enumeration

Hex Editor Neo Documentation Scripting

287

Symbol Value Description
SequenceDataBytes 0 Treat subsequent method parameters as bytes.
SequenceDataWords 1 Treat subsequent method parameters as words.
SequenceDataDwords 2 Treat subsequent method parameters as double words.
SequenceDataQwords 3 Treat subsequent method parameters as quad words.
SequenceDataFloats 4 Treat subsequent method parameters as floats (single

precision floating-point numbers).
SequenceDataDoubles 5 Treat subsequent method parameters as doubles

(double precision floating-point numbers).
SequenceDataLittleEndian 0x00000000 Treat numbers as having little-endian byte order. This

option is on by default.
SequenceDataBigEndian 0x00010000 Treat numbers as having big-endian byte order. May

be combined with other values. Ignored when
SequenceDataBytes is specified.

Parser Object

IParser Interface

Description

This interface is implemented by the intrinsic parser object, provided to scripts running as part of the Structure Viewer
structure binding under the name parser . The name may be omitted and the methods below may be called directly.

Declaration

TypeScript
interface IParser {
 // Methods
 abort(message: string): void;
 alert(message: string): void;
 bind(typeName: string, varName: string, offset: number): void;
 eval(Expression: string): boolean | number | string;
 print(varName: string, varValue: string): void;
 add_coloring_scheme(name: string, frontColor: object, backColor: object, outlineColor: object, roundEdges:
}

C#
// This interface is not available in managed environment

C++
// This interface is not available in native environment

IParser Methods

abort

TypeScript
abort(message: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

message

A message to be displayed in the Structure Viewer Tool Window.

Description

Hex Editor Neo Documentation Scripting

288

Abort current binding. Behaves like the $assert directive.

alert

TypeScript
alert(message: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

message

String to display

Description

Display informational message in a popup message box. Should be used only for debugging purposes.

Example

Expression evaluation

JavaScript
function f()
{
 var a = eval("pe_header.e_lfanew.sections[0].Name");
 alert("First PE file section name is \"" + a + "\"");
 return 0;
}

bind

TypeScript
bind(typeName: string, varName: string, offset: number): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

typeName

The name of the user-defined type. The type must be fully defined.
varName

The name of the variable. Must be unique.
offset

Structure starting address (absolute value).

Description

Bind a given structure to a given address. Hex Editor Neo performs delayed binding, that is, a new structure is bound only
after the current one is successfully finished binding.

Example

Binding a structure

Hex Editor Neo Documentation Scripting

289

JavaScript
function f()
{
 bind("struct A","a",0);
}

eval

TypeScript
eval(Expression: string): boolean | number | string;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

Expression

The expression to evaluate.

Return Value

Expression evaluation result.

Description

Calculate expression value. You may reference global constants, enumerations, field values of already bound types and so
on.

Example

Expression evaluation

JavaScript
function f()
{
 var a = eval("pe_header.e_lfanew.sections[0].Name");
 alert("First PE file section name is \"" + a + "\"");
 return 0;
}

print

TypeScript
print(varName: string, varValue: string): void;

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

varName

Name of the variable. Must be unique in the current scope.
varValue

Variable's value, as string.

Description

Add a virtual field to the output.

Hex Editor Neo Documentation Scripting

290

Example

Adding virtual fields

JavaScript
function f()
{
 print("var1",10);
 print("var2","Hello, World");
}

add_coloring_scheme

TypeScript
add_coloring_scheme(name: string, frontColor: object, backColor: object, outlineColor: object, roundEdges: boolean

C#
// This method is not available in managed environment

C++
// This method is not available in native environment

Parameters

name

Scheme's name. Must not match any of existing coloring schemes.
frontColor

An object that specifies the font color. See Remarks for details.
backColor

An object that specifies the background color. See Remarks for details.
outlineColor

An object that specifies the outline color. See Remarks for details.
roundEdges

true to round outline edges, false otherwise.

Description

Create new binding-local coloring scheme. FrontColor , BackColor and OutlineColor must be JavaScript objects with r ,
g , b and a properties. If any of the property is omitted, its value is defaulted to 0, except for a , which value is defaulted to
255. All values must be within [0..255] range.

Example

Creating new color scheme

JavaScript
function f()
{
// Create a coloring scheme Red on Blue, no outline (0 alpha = full transparent), no round edges
 parser.add_coloring_scheme("my scheme",{ r:255, g:0, b:0, a:255 },
 { r:0, g:0, b:255, a:255 }, { a:0 }, false);
}

Hex Editor Neo Documentation Scripting

291

Built-In Updater
Hex Editor Neo includes the built-in updating mechanism. It can automatically detect new product versions, as well as new
language packs and their updates.

By default, the updater is configured to check for updates on each run. It downloads about 500 bytes from the HHD
Software's web server and does not send any private information. You can change the frequency of update checks as well
as completely disable it.

You can also always manually check for updates using the Help » Check for Updates command.

Component Updates Window
This window is displayed when there new versions of product or installed language packs.

It lists all detected updates, with their currently installed version number and new version number. You can download
selected updates, view changes or discard them. If you choose to discard updates, Hex Editor Neo will no longer notify you
about those updates. It will, however, notify you of any future updates.

This window also allows you to change the default frequency of update checking. Please note that this option is also
available on the General Settings page.

Hex Editor Neo Documentation Built-In Updater

292

Settings Manager
Settings Manager centralizes application settings storage and management. Starting from version 6.20, it stores settings for
all Hex Editor Neo components. It supports the following storage locations:

Registry Settings Storage

This mode is the default one for all installations except portable installations. In this mode, all settings are stored in per-
user location in system registry.

Default folder for downloaded languages is %LOCALAPPDATA%\HHD Software\Hex Editor Neo\Localization (with
backup folder %INSTALLDIR%\Localization).

Portable Settings Storage

This mode is the default one for portable installations. All settings are stored in portable.hexset file, located in
program startup folder. The presence of this file indicates the portable mode. Hex Editor Neo does not use or even
access registry storage if started in portable mode.

Downloaded languages location is %LAUNCHDIR%\Localization where %LAUNCHDIR% is program startup folder.

External File Settings Storage

This mode is similar to portable mode, but uses any given external file for storing application storage. In this mode,
location of external file is still stored in per-user registry location (no other settings are stored in registry). The main
purpose of this mode is to put external settings storage file into shared location, like OneDrive or Dropbox shared
folder and have Hex Editor Neo automatically share its settings across all user's devices.

Default folder for downloaded languages is %LOCALAPPDATA%\HHD Software\Hex Editor Neo\Localization (with
backup folder %INSTALLDIR%\Localization).

Exporting & Importing Settings

In addition to different storage locations, Settings Manager allows the user to manually export a subset of application
settings to a given file and import the settings from a file. This may be used to copy application settings from one
installation to another.

During export, the user is asked to select what components he wants to have in exported file. During import, the user is able
to select either all or only a subset of component settings from an imported file.

See the Settings Page topic for more information.

Settings Page
This page allows the user to configure and use the Settings Manager.

Hex Editor Neo Documentation Settings Manager

293

The upper half of the window allows the user to select the settings storage location. See the Settings Manager topic for in-
depth description of each location. For External File location mode a path to external file must be specified.

Settings Management

Press the Export Settings… button to export application settings. The Select Components Window appears, allowing the
user to select which components settings he wants to export.

Press the Import Settings… button to import application settings from a file. The Select Components Window appears,
allowing the user to select which components settings he wants to import. It is recommended to restart the application after
importing settings.

Press the Reset Settings… button to reset application settings. The Select Components Window appears, allowing the
user to select which components settings he wants to reset. Application restart is required to complete settings reset. If all
settings are reset, default settings will automatically be applied upon restart.

Hex Editor Neo Documentation Settings Manager

294

	Table of Contents
	Getting Started
	Road Map
	Supported Document Types
	File Editing
	Usage Comfort and Environment Customization

	Main Window Details
	Data Processing Engine
	Operation History
	Multiple Selection
	Operation Efficiency
	Multi-Document & Multi-Editor Environment
	Encodings Support
	Native Support of x64 Platform
	Parallel Operation
	Programming Access

	Features
	What's New
	Version 6.25
	Version 6.20
	Version 6.12
	Version 6.01
	Version 5.14
	Version 5.13
	Version 5.12
	Version 5.11
	Version 5.10
	Version 5.01
	Version 4.97
	Version 4.96
	Version 4.95
	Version 4.94
	Portable Installations Improvements

	Version 4.93
	Version 4.92
	General Bug Fixes
	General
	Structure Viewer

	Version 4.91
	Transactional Installation
	Restart Manager Support
	Per-User Installation
	Portable Installation
	Command-line Parameters

	Version 4.85
	Version 4.83
	Version 4.82
	Version 4.81
	Version 4.76
	Version 4.75
	Version 4.73
	Version 4.72
	Version 4.71
	Version 4.64
	Version 4.51
	Version 4.41
	Version 4.33
	Version 4.32
	Version 4.21
	Version 4.11
	Version 4.01

	Definitive Guide
	User Interface Elements
	Commands
	Main Menu
	Toolbars
	Keyboard Shortcuts
	Tool Windows
	Location
	Tool Window Visibility
	Tool Window Configuration

	Window Switching
	Other Window-Switching methods

	Default Layout
	Choosing Another Default Layout

	Documents
	Supported Document Types
	Files and Streams
	Working with Files in Shared Mode
	Volumes
	Disks
	Process Memory
	Computer Physical Memory (RAM)

	Opening Documents
	Errors Opening Files
	Opening Files
	Opening Files in Shared Mode
	Opening Encoded Hex Files
	Opening Volumes
	Opening Disks
	Opening Processes
	Opening Physical Memory

	Creating New Documents
	Closing Documents
	Saving Documents
	Save All Command
	Always Create Backups Option
	Requirements

	Working with Shared Files
	Supporting Scenarios
	Limitations
	Solving File Conflicts

	Editor Windows
	Basic Elements
	Encodings
	Working with Encodings
	UTF-8 Support

	Byte Order
	Effect on Floating-Point Types
	Data Inspector and Structure Viewer

	Simple Editing
	Cursor Movement and Navigation
	Insert Mode
	Data Modification

	Editor Windows List
	Customization
	Editor Windows Placement
	Layout and Color Schemes
	Default Editor Windows Settings

	Selection
	Multiple Selection
	Single Selection Mode Option

	Selecting with Keyboard
	Selecting with Mouse
	Selection Tool Window
	Information
	Details

	Working with Selection
	Performance Considerations

	Editor Commands
	Pattern Window
	Byte Order
	Regular Expressions

	Fill
	Insert
	Delete
	Insert File
	Insert Hex
	Go to Offset
	Selection

	Go to Offset (Process)
	Change File Size
	Encrypt
	Decrypt
	Modify Bits

	Printing Documents
	Printing Options
	Page Setup
	Printing
	Printing Selection

	Find and Replace
	Find & Find All
	Find Window
	Find
	Find All

	Replace & Replace All
	Find & Replace Window
	Replace
	Replace All

	Find in Files & Replace in Files
	Scalability
	Safety
	Regular Expressions
	Find in Files Window
	Folder List Window
	Find in Files Tool Window
	Find in Files
	Replace in Files

	Regular Expressions
	Capturing Sub-expressions
	Usage Tips and Performance Considerations
	Regular Expressions Syntax
	Replace Pattern Syntax
	Examples
	Named Classes
	Recursive Grammars
	Creating and Managing Classes
	Example

	Clipboard
	Supported Formats
	Internal Format
	Windows Explorer Format
	Text

	Copying, Cutting and Merge Modifier
	Important Considerations
	Advanced Copy & Export
	Limitations

	Pasting Data
	Paste Command Complexity

	Pasting Text
	Pasting Raw Text
	Pasting Formatted Numbers

	Advanced Copy & Export
	Copy & Export Tool Window
	Raw Text Format
	Formatted Data Format
	Encoded Data Format

	NTFS Streams
	Streams Support in Hex Editor Neo
	NTFS Streams Tool Window
	Find Stream Mode

	Searching for Streams
	Search Process and Results

	Operation History
	Organization
	Branches
	Pinned Branches

	History Tool Window
	Operation Tree Actions

	History Commands
	Purging History
	Saving and Loading History
	Saving History
	Loading History

	Operation History Tree Window
	Full Mode
	Forks Only Mode
	Navigation
	Legend
	Shortcut Menu

	File Comparison
	Compare Files Window
	File Comparison Tool Window
	Comparison Algorithms
	Simple Comparison Algorithm
	Difference Algorithm

	Patches
	Distribution
	Limitations
	Creating Patches
	Applying Patches
	PatchApply.exe
	Command Line Interface

	Patch API

	Pattern Coloring
	Pattern Coloring Tool Window
	Creating and Editing Rules
	Rule Schemes
	Regular Expressions

	Structure Viewer
	What's New in Structure Viewer
	What's New in Structure Viewer (version 6.31)
	What's New in Structure Viewer (version 6.25)
	What's New in Structure Viewer (version 6.01)
	What's New in Structure Viewer (version 5.12)
	What's New in Structure Viewer (version 5.01)
	What's New in Structure Viewer (version 4.96)
	What's New in Structure Viewer (version 4.92)
	What's New in Structure Viewer (version 4.71)

	Structure Library Tool Window
	Library Management
	Compilation

	Structure Editor
	Find
	Replace
	Go to Line
	Structure Editor Coloring
	Licenses

	Structure Binding
	Structure Viewer Tool Window
	Managing Bound Structures
	Working with Schemes

	Structure Viewer Settings Page
	Include Directories
	File Associations

	Language Reference
	Workflow
	Tokenization
	Comments
	Preprocessor
	Built-in Types
	Expressions
	Functions
	Statements
	Scopes
	Constants and Constant Arrays
	Variables and Variable Arrays
	Enumerations
	User-Defined Types
	Typedefs
	Directives
	Format String Syntax
	Errors

	Examples

	Disassembler
	Example
	Supported Instruction Sets
	Definitions
	Starting Disassembler
	Disassembler Window

	Symbols Window
	Disassembler View
	View Refresh
	Positioning within a Document
	Searching for a Text
	Exporting and Copying to Clipboard

	Bookmarks
	Bookmarks Tool Window
	Active vs. Selected Bookmark Group
	Creating and Deleting Bookmarks Groups

	Working with Bookmarks
	Working with Active Bookmarks Group
	Working with Selected Bookmarks Group
	Other Commands

	Statistics
	Statistics Tool Window
	Histogram View
	Table View

	General Statistics
	Pattern Statistics
	Edit Pattern Window
	Regular Expressions

	Descriptive Statistics and Entropy Analysis
	Descriptive Statistics
	Entropy Analysis

	Attributes
	Attributes Tool Window

	Base Converter
	Base Converter Tool Window

	Data Inspector
	Fields
	Data Modification
	Byte Order
	Creating New Format

	Checksum Calculation
	Checksum Tool Window
	Displaying Results
	Adding, Removing and Restoring Algorithms
	Performance Considerations

	Configuring Custom CRC

	Volume Navigator
	Features
	Volume Navigator Tool Window
	Volume Navigator Commands

	Built-In Explorer
	Explorer Tool Window

	Data Operations
	Bitwise Operations
	Bitwise Operation Window
	Using Patterns as Operands
	Alignment

	Arithmetic Operations
	Arithmetic Operation Window
	Alignment

	Shift Operations
	Shift Operation Window
	Alignment

	Case Change Operations
	Reverse Operations
	Reverse Bits
	Byte Swap

	Customization
	General Settings
	General Group
	Editor Group
	Notifications Group
	NTFS Streams
	Printing
	Copy&Export

	Toolbar Customization
	Creating New Toolbar
	Deleting Toolbar
	Configuring a Toolbar
	Other Options

	Keyboard Customization
	Keyboard Map

	Regular Expressions Settings
	Proxy Settings
	Server Settings
	Proxy Server Authentication
	Security Considerations

	Tasks
	Languages
	Online Languages

	Purchasing Hex Editor Neo
	Choosing Appropriate Edition
	Choosing Additional Options
	Lifetime Upgrades Service

	How to Buy
	Ordering On-Line
	Ordering Off-Line
	Purchase Orders

	My Account Web Site Section
	Downloading License Files
	Installing License Files

	Upgrading Hex Editor Neo
	Upgrading from the Free Edition
	Upgrading from Standard or Professional Editions

	Getting Support
	How to Get Support
	Crash Dumps
	Crash Reporting Configuration
	Crash Report Processing

	Scripting
	File Document Object
	Multiple Selection Object
	Sequence Object
	Thread Safety
	Lengthy Operations Limitations
	Document Object
	Creating Document Object
	Working with Document Object
	Initializing Document Object
	Closing Document Object
	Saving Changes
	Reading and Writing Data
	Inserting Data
	Deleting Data
	Filling Data
	Find and Find All
	Replace and Replace All
	Calculating Statistics
	Inserting Files
	Controlling File's Size
	Undo and Redo
	Working with Operation History
	Clipboard Methods
	Bitwise and Other Operations
	Regular Expressions

	Multiple Selection Object
	Creating Multiple Selection Object
	Working with Multiple Selection Object

	Sequence Object
	Creating Sequence Object
	Working with Sequence Object

	Parser Object
	Obtaining Parser Object
	Working with Parser Object

	Reference
	Document Object
	IFileDocument Interface
	PatchOptions Enumeration
	HistoryPurgeLevel Enumeration
	TextType Enumeration
	Paste3Flags Enumeration
	RegExpFlags Enumeration
	ArithmeticOpType Enumeration
	OperandSizeType Enumeration
	BitwiseOpType Enumeration
	CaseOpType Enumeration
	ShiftOpType Enumeration
	ReverseOpType Enumeration

	Multiple Selection Object
	IMultiSelection Interface
	LoadMode Enumeration

	Sequence Object
	ISequence Interface
	SequenceDataType Enumeration

	Parser Object
	IParser Interface

	Built-In Updater
	Component Updates Window

	Settings Manager
	Exporting & Importing Settings
	Settings Page
	Settings Management

