
MICRIUM RTOS and Tools 3

The execution time for most of the services provided by µC/OS-II
is both constant and deterministic. This means that the execution
times do not depend on the number of tasks running in your application.

µC/OS-II has been used in hundreds of products from companies all
around the world. Many colleges and Universities worldwide are also
using µC/OS-II in curriculum teaching the subject of real-time systems.
This ensures that engineers in the workplace are trained and ready to
use µC/OS-II in your products.

µC/OS-II monitoring
Via µC/Probe, Micrium’s award-winning monitoring tool, you can use a
Windows PC to visualize your µC/OS-II-based applications. The µC/OS-II
plug-in that is provided with µC/Probe features intuitive data screens
that allow you to keep track of stack sizes, CPU usage, and other key
indicators of your application’s status. µC/Probe’s Windows application
receives such information from your embedded system via either
RS-232C, USB, TCP/IP, or even JTAG. For additional information relating
to the exciting visualization capabilities that µC/Probe offers, please turn
to page 18.

µC/OS-II KA
µC/OS-II KA (Kernel Awareness Plug-In) allows you to display µC/OS-II’s
internal data structures in a convenient series of Windows integrated
with the C-SPY Debugger within the IAR Embedded Workbench. This
provides you with information about each of the active tasks in the
target application, about each semaphore, mutex, mailbox, queue and
event flag group along with a list of all the tasks waiting on these kernel
objects, and more. This can become very useful to the embedded
developer when testing and debugging applications. Other debuggers
also provide Kernel Awareness for µC/OS-II: Lauterbach, Nohau, iSystem
and others.

FEATURES AND BENEFITS
µC/OS-II is a portable, ROMable, scalable, preemptive real-time,
deterministic, multitasking kernel for microprocessors, microcontrollers
and DSPs. µC/OS-II can manage up to 250 application tasks and
provides the following services:

Semaphores | Event Flags | Mutual Exclusion Semaphores (to reduce
priority inversions) | Message Mailboxes | Message Queues | Task Mana-
gement | Time Management | Fixed Sized Memory Block Management

µC/OS-II comes with ALL the source
code. In fact, the source code is 100%
portable ANSI C and is probably the
cleanest and most consistent code of
any kernel. The internals of µC/OS-II are
described in the book Micro µC/OS-II,
The Real-Time Kernel (ISBN 1-57820-
103-9) by Jean J. Labrosse. All services
provided by µC/OS-II start with the prefix
‘OS’. This makes it easier to know that the
functions refer to kernel services in your

application. Also, the services are neatly grouped by categories: OSTask???()
relate to task management functions, OSQ???() relate to message queue
management, OSSem???()relate to semaphore management etc.

A validation suite has been developed for µC/OS-II and provides
all the documentation necessary to prove that µC/OS-II is suitable
for Safety Critical Systems common to Aviation and Medical products.
Although this feature may not be applicable to your needs, it does prove
that µC/OS-II is a very robust Kernel.

µC/OS-II is now 99% compliant with the Motor Industry Software
Reliability Association (MISRA) C Coding Standards. These standards
were created by MISRA to improve the reliability and predictability of
C programs in critical automotive systems. A detailed µC/OS-II
compliance matrix describing all of MISRA’s 127 C Coding Rules is
available from Micrium’s website.

µC/OS-II runs on a large number of processor architectures
and ports are available (FREE download) from our web site. The vast
number of ports should convince you that µC/OS-II is truly very portable
and thus will most likely be ported to new processors as they become
available. Architectures supported by µC/OS-II include ARM7,
ARM9, Cortex-M1, Cortex-M3, AVR, AVR32, M16C, M32C, MicroBlaze,
Nios II, PIC24, dsPIC33, PIC32, and PowerPC. For a comprehensive
listing of supported devices, please consult Micrium’s Web site at
www.micrium.com/products/rtos/kernel/ports.html

µC/OS-II's footprint can be scaled to only contain the features you
need for your application. Consult the following webpage for more
details: www.micrium.com/products/rtos/kernel/benefits.html

00000h

100h

200h

F000h

FFFFh

MPU Context # 1

MPU Context # 1

Process # 1

Process # 2

Process # 0

thread # 1

thread # 3

thread # 2

Core OS
API

HARDWARE Read only Read / write

µC/OS-MPU
The MPU Add-On for µC/OS-II™
µC/OS-II now offers memory protection for CPUs that incorporate
a memory protection unit (MPU). This extension of µC/OS-II
prevents applications from accessing forbidden locations to
protect against damage to, especially important for safety-critical
applications, including medical and avionics products.

µC/OS-MPU offers a runtime environment designed to protect a task’s
memory space in order to prevent damage from unauthorized access to
system memory. µC/OS-MPU builds a system with MPU contexts
(processes); a process can contain one or more tasks (threads). Each
process has its individual read, write and execution rights. Exchanging
data between threads can be done in the same manner as µC/OS-II
tasks, but the handling across different processes is done by the core
operating system.

This system facilitates integration of third party software such as
protocol stacks, graphical modules, file system libraries, or other
components. It also simplifies debugging and error diagnosis because
an error management system provides information onthe different
processes. Additionally, the hardware protection mechanism can not be
bypassed by software. Existing µC/OS-II applications can be adapted
with minimum effort.µC/OS-MPU is available for any microcontroller
(MCU) with MPU, and certification support will be available shortly.

This µC/OS-II extension provides the user with a certified OSEK/VDX
application programming interface. The OSEK/VDX Extension supports
the OS conformance classes BCC1 and ECC1. The COM conformance
classes CCCA and CCCB are provided for internal communication.

During the standard development process in OSEK/VDX system
development, the system architect generates one or more system
description files, containing the “OSEK/VDX Implementation Language”
(OIL). The OSEK/VDX Extension includes a template based code
generation tool, which allows the automatic generation of the neces-
sary target configuration files. The code generation tool is a command
line tool, which can be integrated in any build process.

Certified environments
µC/OS-OSEK certified environments are added on a regular basis. Visit
our website for the current list of available environments:
www.micrium.com/products/rtos/osek.html

µC/OS-MMU includes a failure handling capability that identifies any
application performing incorrect actions and allows it to be stopped,
deleted or recreated. This simplifies the development of complex con-
trol units that often include applications from several vendors, since
each vendor gets its own partition that functions like its own virtual CPU.

Additionally, µC/OS-MMU guarantees runtime of the applications, since
system architects have to define time slots (phases) for the applications
during system design. These phases are managed in phase tables and
can be activated in the kernel application. Further, within a phase table,
it is possible to define multiple phases for one application and if an
application is idle, the application can forfeit this time back to the kernel.
Each phase table ensures a static timing behavior, even if applications are
activated, deactivated or removed. DO178B, 510(k) and IEC61508
certification of the source code is in progress.

µC/OS-MMU
The MMU extension for µC/OS-II™
µC/OS-II now offers memory protection for CPUs that incorporate a
memory management unit (MMU). This extension of µC/OS-II provides
a configurable solution with minimum overhead that facilitates
development of safety critical systems.

µC/OS-MMU offers a runtime environment with time and space
protection for multiple independent applications. Each application is
executed with the guarantee that no other application will influence,
disturb or interact with its execution. Applications can be designed
with different guest real time operating systems (RTOS), including
µC/OS-II, µC/OSEK, or without an RTOS, and every application within
a protected memory space (a partition) can be developed as if no other
partition existed.

