
MCP2515 Module

Arduino MCP2515 CAN Bus Interface Tutorial

In this project, we will learn about the MCP2515 CAN Controller
Module, how to interface the MCP2515 CAN Bus Controller with
Arduino and finally how to enable communication between two
Arduino board with the help of two MCP2515 CAN Controllers and the
CAN Protocol.

Table of Contents
 Introduction
 A Brief Note on MCP2515 CAN Bus Controller Module
 Schematic of MCP2515 CAN Bus Module
 Circuit Diagram for Interfacing MCP2515 with Arduino

o Components Required
o Circuit Design

 Code
o Transmitter Code
o Receiver Code

 Working

 Applications

Introduction

Controlled Area Network of simple CAN is a bus standard that allows
a Microcontroller and its peripheral devices to communicate without
the need of a host device or a computer.

Developed by Robert Bosch GmbH, CAN is protocol is main used in
automobiles for communication between a control unit and its
components.

For example, the Engine Control Unit is a major control using in a car.
This unit is connected to many sensors and actuators like air flow,
pressure, temperature, valve control, motors for air control etc. The
communication between these modules and the control unit is through
CAN Bus.

In order to understand a little bit more about CAN Bus, CAN Controller
and other important aspects, the MCP2515 CAN Bus Controller
Module is very helpful.

A Brief Note on MCP2515 CAN Bus

Controller Module

The MCP2515 CAN Bus Controller is a simple Module that supports
CAN Protocol version 2.0B and can be used for communication at
1Mbps. In order to setup a complete communication system, you will
need two CAN Bus Module.

The module used in the project is shown in the image below.

This particular module is based on MCP2515 CAN Controller IC and
TJA1050 CAN Transceiver IC. The MCP2515 IC is a standalone CAN
Controller and has integrated SPI Interface for communication with
microcontrollers.

Coming to the TJA1050 IC, it acts as an interface between the
MCP2515 CAN Controller IC and the Physical CAN Bus.

The following image shows the components and pins on a typical
MCP2515 Module.

Schematic of MCP2515 CAN Bus Module

Before seeing the schematic of the module, you need to understand a
couple of things about both the ICs i.e. MCP2515 and TJA1050.

MCP2515 IC is the main controller that internally consists of three
main subcomponents: The CAN Module, the Control Logic and the
SPI Block.

CAN Module is responsible for transmitting and receiving messages
on the CAN Bus. Control Logic handles the setup and operation of the
MCP2515 by interfacing all the blocks. The SPI Block is responsible
for the SPI Communication interface.

Coming to the TJA1050 IC, since it acts as an interface between
MCP2515 CAN Controller and the physical CAN Bus, this IC is
responsible for taking the data from the controller and relaying it on to
the bus.

The following image shows the schematic of the MCP2515 CAN
Module and it shows how MCP2515 IC and TJA1050 IC are
connected on the Module.

Circuit Diagram for Interfacing MCP2515

with Arduino

The following image shows the circuit diagram of interfacing MCP2515
CAN Module with Arduino and possible communication between two
Arduino over CAN Protocol.

If the pins of the MCP2515 Module are not clear, the following image
might be useful.

Components Required

 Arduino UNO x 2
 MCP2515 x 2
 USB Cable x 2
 Connecting Wires

Circuit Design

As mentioned earlier, the CAN Controller IC facilitates SPI
Communication Protocol for interfacing with any Microcontroller.
Hence, connect the SPI Pin i.e. SCK, MOSI (SI), MISO (SO) and CS
of the MCP2515 Module to corresponding SPI Pins of Arduino (see
circuit diagram).

Make two such connections: one pair acts as a transmitter and the
other as a receiver. Now for the communication between this
transmitter and receiver, connect CANH and CANL pins of each
MCP2515 Module.

Code

Before going into the code, you need to download a library for the
MCP2515 Module. There are many libraries but I have
used this particular one.

Download it and place the extracted contents in the libraries directory
of Arduino.

Since the communication involves a Transmitter Module and a
Receiver Module, the code is also divided into Transmitter Code and
Receiver Code.

Transmitter Code

#include <SPI.h>

#include <mcp_can.h>

const int spiCSPin = 10;

int ledHIGH = 1;

int ledLOW = 0;

MCP_CAN CAN(spiCSPin);

void setup()

{

 Serial.begin(115200);

 while (CAN_OK != CAN.begin(CAN_500KBPS))

 {

 Serial.println("CAN BUS init Failed");

 delay(100);

 }

 Serial.println("CAN BUS Shield Init OK!");

}

unsigned char stmp[8] = {ledHIGH, 1, 2, 3, ledLOW, 5, 6, 7};

void loop()

{

 Serial.println("In loop");

 CAN.sendMsgBuf(0x43, 0, 8, stmp);

 delay(1000);

}

view rawArduino_MCP_2515_CAN_Tutorial_Tran.ino hosted with by GitHub

Receiver Code

#include <SPI.h>

#include "mcp_can.h"

const int spiCSPin = 10;

const int ledPin = 2;

boolean ledON = 1;

MCP_CAN CAN(spiCSPin);

void setup()

{

 Serial.begin(115200);

 pinMode(ledPin,OUTPUT);

 while (CAN_OK != CAN.begin(CAN_500KBPS))

 {

 Serial.println("CAN BUS Init Failed");

 delay(100);

 }

 Serial.println("CAN BUS Init OK!");

}

void loop()

{

 unsigned char len = 0;

 unsigned char buf[8];

 if(CAN_MSGAVAIL == CAN.checkReceive())

 {

 CAN.readMsgBuf(&len, buf);

 unsigned long canId = CAN.getCanId();

 Serial.println("-----------------------------");

 Serial.print("Data from ID: 0x");

 Serial.println(canId, HEX);

 for(int i = 0; i<len; i++)

 {

 Serial.print(buf[i]);

 Serial.print("\t");

 if(ledON && i==0)

 {

 digitalWrite(ledPin, buf[i]);

 ledON = 0;

 delay(500);

 }

 else if((!(ledON)) && i==4)

 {

 digitalWrite(ledPin, buf[i]);

 ledON = 1;

 }

 }

 Serial.println();

 }

}

view rawArduino_MCP_2515_CAN_Tutorial_Recv.ino hosted with by GitHub

Working

Working of this project is very simple as all the work is done by the
libraries (SPI and CAN). Since CAN is message-based
communication, you need to send a message anywhere between 0
and 8 bytes.

In this project, the transmitter is sending a message as 1 1 2 3 0 5 6 7.
This message is transmitted over CAN Bus and the receiver receives
this message and is displayed on its serial monitor.

Additionally, the 0th and 4th bit i.e. 1 and 0 in the above sequence are
extracted separately by the receiver and turns ON and OFF the LED
connected to Pin 2 of Arduino.

Applications

As mentioned in the introduction, CAN is widely used in the field of
automobiles. Some of the applications include:

 Electronic Gear Shift System
 Main Interface in Automation (like industrial)
 Medical Equipment
 Robotics
 Auto Start/Stop of Car Engine

