MORNSUN®

QP12W05S-37A Hybrid Integrated IGBT Driver

QP12W05S-37A is a hybrid integrated IGBT driver designed for driving IGBT modules. This device is a fully isolated gate drive circuit consisting of an optimally isolated gate drive amplifier and an isolated DC-to-DC converter. The gate driver provides an over-current protection function based on desaturation detection and fault output.

RoHS

Features

- I Built in high CMRR opto-coupler (CMR: Typical: 30kV/µs, Min.: 15kV/µs)
- I Single supply drive topology
- I Built in the isolated type DC/DC converter for gate drive
- I SIP package
- I CMOS&TTL compatible
- I Electrical isolation voltage between input and output is 3750VRMS (for 1 minute)
- I Built in short circuit protection circuit with a pin for fault output
- I Soft turn-off time is adjustable
- I The drive signal is ignored in the blocking time and the protection circuit reset at the end of it
- I Controlled time detect short circuit is adjustable
- I Switching frequency up to 20kHz

Application

- I General-purpose Inverter
- I AC Servo Systems
- I Uninterruptable Power Supplies(UPS)
- I Welding Machines

Recommended modules

- I 600V Series IGBT(up to 600A)
- I 1200V Series IGBT(up to 400A)
- I 1700V Series IGBT(up to 200A)

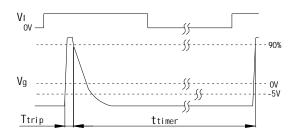
MORNSUN Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou.P.R.China.

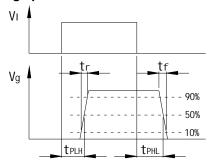
Tel: 86-20-38601850 Fax:86-20-38601272

Http://www.mornsun-power.com

Item		Test Conditions	Ratings	Units
Supply Voltage	VD	DC	13	V
Input Current	lin	Between pin3 and pin4	25	mA
Out Voltage	Vo	When the Output voltage "H"	V _{CC}	V
Output Current	lg on	Pulse width 2µs Frequency f=20kHz	+5	Α
	Ig off		-5	Α
Isolation Voltage	Viso	Sine wave voltage 50Hz/60 Hz,1 min.	3750	V
Operation Temperature	Top		-40 ~ +70	°C
Storage Temperature	T _{st}		-50 ~ +125	°C
Fault Output Current	IFO	Pin15 input current	20	mA
Input Voltage	V _{R1}	Applied pin13	50	V


		T . O . I'''		Limit		Units
Characteristics		Test Conditions		Тур.	Max	
Supply Voltage	V _D	Recommended Range	11.6	12	12.4	V
"H" input current	I _{IH}	Recommended Range	10	16	20	mA
Switching frequency	f	Recommended Range	0		20	kHz
Gate resistant	Rg	Recommended Range	2			Ω
Cata aunaly valtage	Vcc	V _D =12V	14.5		18.0	V
Gate supply voltage	V _{EE}	V _D =12V	-7		-10	V
"H" output voltage	V _{OH}	10KΩconnected between pin9-11	13.5	15.3	17.0	V
"L" output voltage	V _{OL}	10KΩconnected between pin9-11	-6		-10	V
"L-H" propagation delay time	t _{PLH}	I _{IH} =10mA		0.5	1	μs
"L-H" rise time	t _r	I _{IH} =10mA		0.3	1	μs
"H-L" propagation delay time	t _{PHL}	I _{IH} =10mA		1	1.3	μs
"H-L" fall time	t _f	I _{IH} =10mA		0.3	1	μs
Protection threshold voltage	V _{OCP}	V _D =12V		9.5	15	V
Protection reset time	t _{timer}	Between start and cancel	1	1.4	2	ms
Fault output current	I _{FO}	Pin15 input current,R=4.7K		5		mA
Short-circuit detection time delay	T _{trip1}	Pin 13: ≥15V,Pin 16:open		1.6		μs
Soft turn-off time	T _{cf}	PIN 13≥15V, Pin 14:open		4.5		μs
SC detect voltage	V _{SC}	Collector voltage of module	15			V

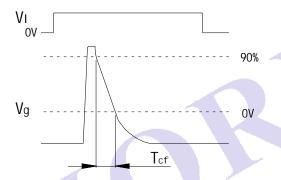
Notes: 1. Ta=25°C, V_D=12V,Rg=5Ω. unless otherwise specified


2. " H " represents high level; " L " represents low level.

Definition of Characteristics

1) Operation of short circuit protection

2) Switching operation

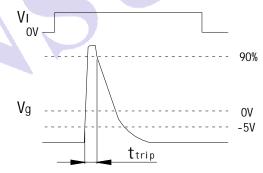


Definition of Adjustment

1) Adjustment of soft turn-off time:

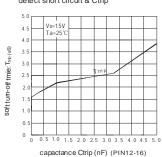
(Operation of short circuit protection)

When a desaturation is detected the hybrid gate driver performs a soft shutdown of the IGBT. The Soft turn-off time is 4.5µS. You can connect an Rf or Cf to adjust the Soft turn-off time. (Connecting Rf will decrease the soft turn-off time and connecting Cf will increase the soft turn-off time.) The soft turn-off time must be set 2.5 μ S< T_{cf} <10 μ S. Please refer to the below table.

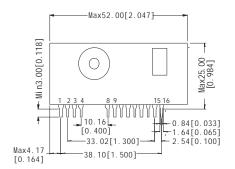

	The soft turn-o	off time & R _f ,C _f	
$R_f(\Omega)$	T _{cf} (µS)	C _f (nF)	$T_{cf}(\mu S)$
-	4.5	_	4.5
1500	4.0	1	4.9
500	3.5	3.3	5.3
300	3.0	10	6.5
110	2.5	22	9.3

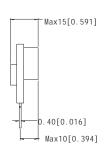
The reference curve of The reference curve of soft turn-off time & Rf soft turn-off time & Cf 18 16 Soft turn-off time:Tcf (uS) 3. 5 Soft turn-off time:Tcf (uS) 3. 0 12 10 8 Resistor Rf (K \Omega) (PIN:14-15) Capactiance Cf (pF) (PIN:10-14)

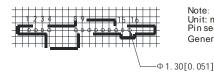
2) Adjustment of short-circuit detection time delay (Operation of short circuit protection)


The short-circuit detection time delay is defined between the time in which a desaturation is detected and the time in which the gate voltage fall down to 90% of extent. This diver have a minimum short-circuit detection time delay, and you can adjust the short-circuit detection time delay by connecting the capacitor (Ctrip) between PIN12 and 16. But the short-circuit detection time delay must be set less than 3.5µS.

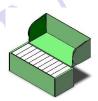
Please refer to below table.(the data only for refer)




The short-circuit detection time delay & capacitor Ctrip	
Ctrip (nF)	Ttrip(µS)
-	1.6
0.33	1.8
1.0	2.2
2.2	2.4
3.3	2.6


The reference curve of Controlled time detect short circuit & Ctrip

Outline Dimensions


Unit: mm[inch] Pin seciton tolerances:±0.10mm[±0.004inch] General tolerances±0.30mm[±0.012inch]

Pin Function

Pin	Description
1	Power supply (+)
2	Power supply (-)
3	Drive signal input (+)
4	Drive signal input (-)
8	DC/DC converter output (+)
9	DC/DC converter output (COM)
10	DC/DC converter output (-)
11	Drive output
12	Collector of internal power tube
13	Detect of short circuit
14	Adjustment of Soft turn-off time
15	Fault signal output
16	Adjustment of short-circuit
	detection time delay

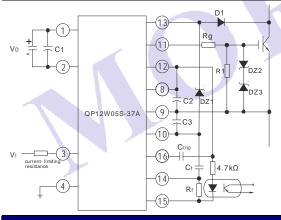
Package diagram

(small white box)

(inner packaging box)

Small white box dimensions: L*W*H=163*150*35mm

Packaging quantity: 10PCS


Inner packaging box dimensions: L*W*H=430*175*160mm

Packaging quantity: 100PCS

Outer packaging carton dimensions: L*W*H=560*450*520mm

Packaging quantity: 900PCS

Application Examples

 $V_D=12V$ V₁=5V±5%

C1:100µF (Low impedance)

C2:100µF (Low impedance) C3:100µF (Low impedance)

Ctrip: Depend on need. Cf: Depend on need Rf: Depend on need

Rg:5Ω (Adjustable) R1: 10KΩ 0.25W

DZ1:30V DZ2、DZ3:18V

D1:Fast recovery diode (trr $\leq 0.2 \, ms$)

Application Notes

- 1. The isolated DC/DC converter is only for the gate drive;
- 2. The IGBT gate-emitter drive loop wiring must be shorter than 1 meter;
- 3. The IGBT gate-emitter drive loop wiring should be twisted;
- 4. If large voltage spike is generated at the collector of the IGBT, the IGBT gate resistor should be increased;
- The external C_f or R_f should be set as close as possible to the Hybrid IC, and the value can not exceed the recommended maximum; 5.
- 6. The voltage compensate capacitors should be low impedance and be located as close as possible to the Hybrid IC;
- 7. The peak reverse voltage of the diode D1(to connect PIN13) must be higher than the peak value of the IGBT collector voltage;
- When recovery current flow in D1, PIN13 is applied high voltage. In the case, counterplan for protection which insert a zener diode between PIN10 and 13 are necessary like above diagram(DZ1);
- When the built in short-circuit protection circuit need not be used, please connect resistance of 4.7kΩ between PIN9 and 13(D1and DZ1are not required.)
- 10. The input signal voltage must be less than 5.25V. The higher input signal voltage, the higher input signal current. It will result in more dissipation. The input port is a circuit composed of a high-speed optocoupler series with a 150ohm resistor. Practically, a current-limiting resistor is inserted, which value can be obtained according to the following equation:

 $R = \frac{Vin - 1.7V}{1.500} - 1500hm$