
HIGH POWER SWITCHING USE INSULATED PACKAGE

APPLICATION

AC motor control of forklift (battery power source), UPS

HIGH POWER SWITCHING USE INSULATED PACKAGE

ABSOLUTE MAXIMUM RATINGS (Tj = 25°C unless otherwise specified.)

Symbol	Item	Conditions	Rating	Unit
VDSS	Drain-source voltage	G-S Short	75	V
Vgss	Gate-source voltage	D-S Short	±20	V
ID	Drain current	$Tc' = 139^{\circ}C^{*3}$	300	Α
IDM	Drain current	Pulse*2	600	Α
IDA	Avalanche current	$L = 10\mu H \text{ Pulse}^{*2}$	300	Α
Is*1	Source current		300	Α
Ism*1	Source current	Pulse*2	600	Α
Po*4	Maximum namer dissinction	Tc = 25°C	960	W
Po*4	Maximum power dissipation	$Tc' = 25^{\circ}C^{*3}$	1300	W
Tch	Channel temperature		-40 ~ +150	°C
Tstg	Storage temperature		− 40 ~ +125	°C
Visol	Isolation voltage	Main terminal to base plate, AC 1 min, f=60Hz, RMS	2500	V
_	Mounting torque	Main Terminal M6	3.5 ~ 4.5	N∙m
		Mounting to heat sink M6	3.5 ~ 4.5	N∙m
_	Weight	Typical value	600	g

ELECTRICAL CHARACTERISTICS (Tj = 25° C unless otherwise specified.)

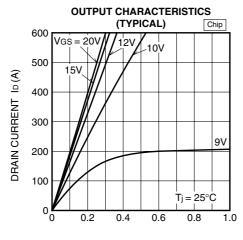
Cumahad	Item	Conditions		Limits			Unit
Symbol				Min.	Тур.	Max.	Unit
IDSS	Drain cutoff current	VDS = VDSS, VGS = 0V		_	_	1	mA
VGS(th)	Gate-source threshold voltage	ID = 30mA, VDS = 10V		4.7	6	7.3	V
Igss	Gate leakage current	VGS = VGSS, VDS = 0V		_	_	1.5	μΑ
rDS(on)	Static drain-source	ID = 300A Tj = 25°C		_	0.53	0.73	
(chip)	On-state resistance	VGS = 15V	Tj = 125°C	_	0.87	_	mΩ
VDS(on)	Static drain-source	ID = 300A	Tj = 25°C	_	0.16	0.22	V
(chip)	On-state voltage	VGS = 15V	Tj = 125°C	_	0.26	_	
RDD'-SS'	Internal lead resistance	ID = 300A	Tj = 25°C	_	0.7	_	mΩ
		terminal-chip	Tj = 125°C	_	1.0	_	
Ciss	Input capacitance	VDS = 10V VGS = 0V VDD = 48V, ID = 300A, VGS = 15V		_	_	110	nF
Coss	Output capacitance			_	_	15	
Crss	Reverse transfer capacitance			_	_	10	
QG	Total gate charge			_	1650	_	nC
td(on)	Turn-on delay time	$VDD = 48V, \ ID = 300A, \ VGS1 = VGS2 = 15V$ $RG = 4.2\Omega, \ Inductive \ load \ switching \ operation$ $IS = 300A$		_	_	450	ns
tr	Rise time			_	_	600	
td(off)	Turn-off delay time			_	_	600	
tf	Fall time			_	_	600	
trr*1	Reverse recovery time			_	_	200	ns
Qrr*1	Reverse recovery charge			_	4.8	_	μС
Vsp*1	Source-drain voltage	Is = 300A, VGS = 0V		_	_	1.3	V
Rth(j-c)	The survey of the same of	MOSFET part (1/6 module)*7 MOSFET part (1/6 module)*3		_	_	0.13	K/W
Rth(j-c')	Thermal resistance			_	_	0.096	
Rth(c-s)	0	Case to fin, Thermal grease Applied*8 (1/6 module)		_	0.1	_	
Rth(c'-s')	Contact thermal resistance Case to fin, Thermal grease Applied *3, *8 (1/6 module)		_	0.09	_	1	

NTC THERMISTOR PART

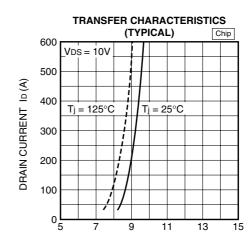
Symbol	Parameter	Conditions	Limits			Llmit
			Min.	Тур.	Max.	Unit
R25*6	Resistance	$TTH = 25^{\circ}C^{*5}$	_	100	_	kΩ
B*6	B Constant	Resistance at TTH = 25°C, 50°C*5	_	4000	_	K

^{*7:} To measured point is shown in page OUTLINE DRAWING. *8: Typical value is measured by using thermally conductive grease of λ =0.9 W/(m·K).

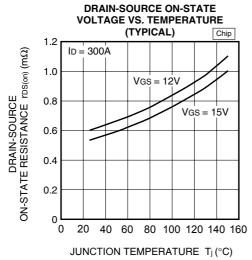
^{*1:} It is characteristics of the anti-parallel, source to drain free-wheel diode (FWDi).
*2: Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tj max rating.

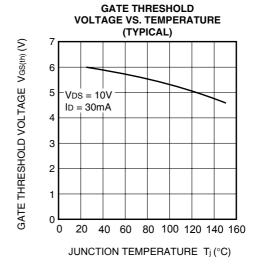

^{*3:} Tc' measured point is just under the chips. If use this value, Rth(s-a) should be measured just under the chips. *4: Pulse width and repetition rate should be such as to cause negligible temperature rise.

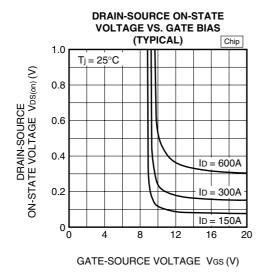
^{*5:} TTH is thermistor temperature.


^{*6:} B = (InR1-InR2)/(1/T1-1/T2) R1: Resistance at T1(K), R2: Resistance at T2(K)

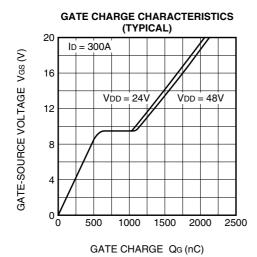
HIGH POWER SWITCHING USE **INSULATED PACKAGE**


PERFORMANCE CURVES



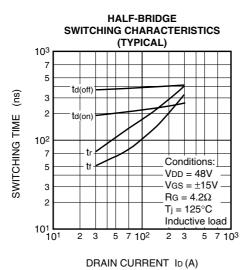

DRAIN-SOURCE VOLTAGE VDS (V)

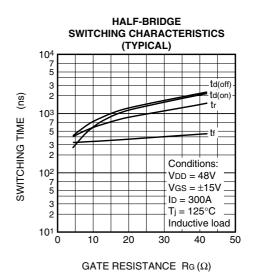
GATE-SOURCE VOLTAGE Vgs (V)

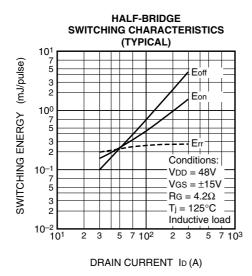


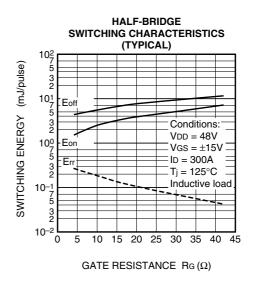
CAPACITANCE VS. **DRAIN-SOURCE VOLTAGE** (TYPICAL) 102 5 3 (nF 2 CAPACITANCE 10¹ 5 VGS = 0V10⁰ 10⁻¹ 2 3 5 7 10⁰ 2 3 5 7 10¹ 2 3

DRAIN-SOURCE VOLTAGE VDS (V)

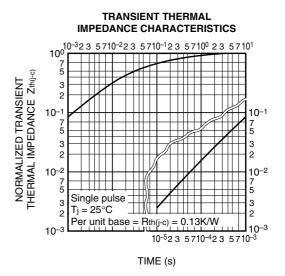


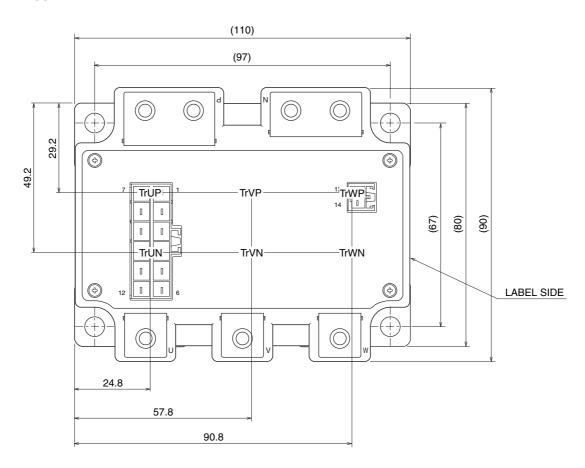

HIGH POWER SWITCHING USE INSULATED PACKAGE





SOURCE-DRAIN VOLTAGE VSD (V)





HIGH POWER SWITCHING USE INSULATED PACKAGE

REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 10³ 5 3 trr 10² Irr (A), trr (ns) 5 3 Conditions: 10<u>1</u> VDD = 48V $VGS = \pm 15V$ 5 $R\mathsf{G}=4.2\Omega$ 3 $T_j = 25^{\circ}C$ Inductive load 100 L 2 3 5 7 102 2 5 7 10³ SOURCE CURRENT Is (A)

CHIP LAYOUT

The company name and product names herein are the trademarks and registered trademarks of the respective companies.

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- •These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- •Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- •All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).

- •When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- •Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- •The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- •If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- •Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

© 2013 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.