LESD8LH5.0CT5G
 Transient Voltage Suppressors

ESD Protection Diodes with Ultra-Low Capacitance

The ESD8L is designed to protect voltage sensitive components that require ultra-low capacitance from ESD and transient voltage events. Excellent clamping capability, low capacitance, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. B ecause of its low capacitance, it is suited for use in high frequency designs such as USB 2.0 high speed and antenna line applications.

Specification Features:

- Ultra Low Capacitance 3 pF

LESD8LH5.0CT5G S-LESD8LH5.0CT5G

- Low Clamping Voltage
- Small Body Outline Dimensions: $0.039^{\prime \prime} \times 0.024^{\prime \prime}(1.00 \mathrm{~mm} \times 0.60 \mathrm{~mm})$

- L ow Body Height: $0.020^{\prime \prime}$ (0.5 mm)
- Stand-off Voltage: 5 V
- Low Leakage
- Response Time is Typically < 1.0 ns
- IEC61000-4-2 Level 4 ESD Protection
- This is a Pb-Free Device
- S- Prefix for A utomotive and Other A pplications Requiring Unique Site and Control Change Requirements;A EC-Q 101 Qualified and PPA P Capable.

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

Ordering information

Device	Marking	Shipping
LESD8LH5.0CT1G	A	5000/Tape\&Reel
LESD8LH5.0CT3G	A	8000/Tape\&Reel
LESD8LH5.0CT5G	A	$10000 /$ Tape\&Reel

LEAD FINISH: 100\% M atte Sn (Tin)
QUALIFIED MAX REFLOW TEMPERATURE: $260^{\circ} \mathrm{C}$
Device M eets MSL 1 Requirements

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IEC 61000-4-2 (ESD)Contact Air		± 10 ± 15	kV
Total Power Dissipation on FR-5 Board (Note 1) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	150	mW
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature Range	T_{J}	-55 to +125	${ }^{\circ} \mathrm{C}$
Lead Solder Temperature (10 Second Duration)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. $F R-5=1.0 \times 0.75 \times 0.62 \mathrm{in}$.

LESHAN RADIO COMPANY, LTD.

LESD8LH5.0CT5G,S-LESD8LH5.0CT5G

ELECTRICAL CHARACTERISTICS
($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Symbol	Parameter
I_{PP}	Maximum Reverse Peak Pulse Current
V_{C}	Clamping Voltage @ IPP
$\mathrm{V}_{\mathrm{RWM}}$	Working Peak Reverse Voltage
I_{R}	Maximum Reverse Leakage Current @ $\mathrm{V}_{\mathrm{RWM}}$
V_{BR}	Breakdown Voltage @ I_{T}
I_{T}	Test Current
P_{pk}	Peak Power Dissipation
C	Capacitance @ $\mathrm{V}_{\mathrm{R}}=0$ and $\mathrm{f}=1.0 \mathrm{MHz}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

	Device Marking	$V_{\text {RWM }}$ (V)	$\begin{gathered} I_{R}(\mu A) \\ @ V_{R W M} \end{gathered}$	$\begin{aligned} & \mathbf{V}_{B R}(V) @ I_{T} \\ & (\text { Note 2) } \end{aligned}$	$\mathrm{I}_{\mathbf{T}}$	C (pF)	$v_{C}(V)$ @ $I_{\text {Pp }}=1 \mathrm{~A}$ (Note 3)	V_{C}
Device		Max	Max	Min	mA	Max	Max	$\begin{aligned} & \text { Per IEC61000-4-2 } \\ & \text { (Note 4) } \end{aligned}$
LESD8LH5.0CT5G	A	5.0	1.0	5.5	1.0	3.5	9.8	Figures 1 and 2 See Below

2. $\mathrm{V}_{B R}$ is measured with a pulse test current I_{T} at an ambient temperature of $25^{\circ} \mathrm{C}$.
3. Surge current waveform per Figure 4.
4. For test procedure see Figures 3.

Figure 1. ESD Clamping Voltage Screenshot Positive 8 kV Contact per IEC61000-4-2

Figure 2. ESD Clamping Voltage Screenshot Negative 8 kV Contact per IEC61000-4-2

LESD8LH5.0CT5G,S-LESD8LH5.0CT5G

IEC 61000-4-2 Spec.

Level	Test (kV)	First Peak Current (A)	Current at $\mathbf{3 0}$ ns (A)	Current at $\mathbf{6 0}$ ns (A)
1	2	7.5	4	2
2	4	15	8	4
3	6	22.5	12	6
4	8	30	16	8

Figure 3. IEC 61000-4-2 Spec

Figure 4. $\mathbf{8 \times 2 0} \boldsymbol{\mu s}$ Pulse Waveform

LESD8LH5.0CT5G,S-LESD8LH5.0CT5G

SOD882

DIMENSION OUTLINE:

