Product Specification ## 7.0" TFT LCD Module | Resolution: | 800 X480 | |-------------|----------------------| | Interface: | RGB 50PIN | | Luminance: | 420cd/m ² | < >> Preliminary Specification < >> Finally Specification | CUSTOMER'S APPROVAL | | | | | | |---------------------|---------|-------|--|--|--| | CUSTOMER: | | | | | | | SIG | NATURE: | DATE: | | | | | | | | | | | | | | | | | | | APPROVED | PM | PD | PREPARED | |----------|----------|----------|----------| | ВҮ | REVIEWED | REVIEWED | BY | | | | | | | | | | | ## **Revision History** | Revision | Date | Originator | Detail | Remarks | |----------|------------|------------|--------|---------| | 1.0 | 2015.09.20 | ## **Table of Contents** | No. | lt∈ | em | Page | |-----|---------|---|------| | 1. | Gene | ral Description | 4 | | 2. | Modu | le Parameter | 4 | | 3. | Absol | ute Maximum Ratings | 4 | | 4. | DC C | haracteristics | 5 | | 5. | Backl | ight Characteristic | 5 | | | 5.1. | Backlight Characteristics | 5 | | | 5.2. | Backlighting circuit | 5 | | 6. | Optica | al Characteristics | 6 | | | 6.1. | Optical Characteristics | 6 | | | 6.2. | Definition of Response Time | 6 | | | 6.3. | Definition of Contrast Ratio. | 7 | | | 6.4. | Definition of Viewing Angles | 7 | | | 6.5. | Definition of Color Appearance | 7 | | | 6.6. | Definition of Surface Luminance, Uniformity and Transmittance | 8 | | 7. | Block | Diagram and Power Supply | 9 | | 8. | Interfa | ace Pins Definition | 10 | | 9. | Timin | g Characteristics | 12 | | | 9.1. | AC Electrical Characteristics | 12 | | | 9.2. | Input Clock and Data Timing Diagram | 12 | | | 9.3. | Timing | 13 | | | 9.4. | Data Input Format | 13 | | | 9.5. | Power Sequence | 14 | | 10. | Qualit | y Assurance | 15 | | | 10.1 | Purpose | 15 | | | 10.2 | Standard for Quality Test | 15 | | | 10.3 | Nonconforming Analysis & Disposition | 15 | | | 10.4 | Agreement Items | 16 | | | 10.5 | Standard of the Product Visual Inspection | 16 | | | 10.6 | Inspection Specification | 16 | | | 10.7 | Classification of Defects | 20 | | | 10.8 | Identification/marking criteria | 20 | | | 10.9 | Packing | 20 | | 11. | Reliat | pility Specification | 21 | | 12. | Preca | utions and Warranty | 22 | | | 12.1. | Safety | 22 | | | 12.2. | Handling | 22 | | | 12.3. | Storage | 22 | | | 12.4. | Metal Pin (Apply to Products with Metal Pins) | 22 | | | 12.5. | Operation | 23 | | | 12.6. | Static Electricity | 23 | | | 12.7. | Limited Warranty | 23 | | 13. | Outlin | e Drawing | 24 | #### 1. General Description The specification is a transmissive type color active matrix liquid crystal display (LCD) which uses amorphous thin film transistor (TFT) as switching devices. This product is composed of a TFT-LCD panel, driver ICs and a backlight unit. #### 2. Module Parameter | Features | Details | Unit | |--------------------------------|-----------------------------------|------------| | Display Size(Diagonal) | 7.0" | | | LCD type | TN TFT | | | Display Mode | Transmissive /Normal white | | | Resolution | 800 RGB x 480 | Pixels | | View Direction | 12 O'clock | Best Image | | Gray Scale Inversion Direction | 6 O'clock | | | Module Outline | 164.9(H) x100(V) x 5.7(T) (Note1) | mm | | Active Area | 154.08(H) x85.92(V) | mm | | Pixel Size | 192.6(H) x179(V) | um | | Pixel Arrangement | R.G.B Stripe | | | Polarizer Surface Treatment | Anti-glare | | | Display Colors | 16.7M | | | Interface | 24 Bit RGB | | | With or Without Touch Panel | Without | | | Operating Temperature | -20~70 | °C | | Storage Temperature | -30~80 | °C | | Weight | 150 | g | Note 1: Exclusive hooks, posts , FFC/FPC tail etc. #### 3. Absolute Maximum Ratings Vss=0V, Ta=25°C | Item | Symbol | Min. | Max. | Unit | |-----------------------|------------------|------|------|------| | Supply Voltage | VCC | -0.3 | 5.0 | V | | Storage temperature | T _{STG} | -30 | 80 | °C | | Operating temperature | Тор | -20 | 70 | °C | Note 1: If Ta below 50°C, the maximal humidity is 90%RH, if Ta over 50°C, absolute humidity should be less than 60%RH. Note 2: The response time will be extremely slow when the operating temperature is around -10 $^{\circ}$ C, and the back ground will become darker at high temperature operating. #### 4. DC Characteristics | Item | Symbol | Min. | Тур. | Max. | Unit | |----------------------------------|----------|----------|------|----------|------| | Digital Power Supply Voltage | DVDD | 3.0 | 3.3 | 3.6 | V | | Analog Power Supply Voltage | AVDD | 10.2 | 10.4 | 10.6 | V | | TFT Device on voltage | V_{GH} | 15.3 | 16.0 | 16.7 | V | | TFT Device off voltage | V_{GL} | -7.7 | -7.0 | -6.3 | V | | Common Electrode Driving Voltage | VCOM | 2.6 | 3.6 | 4.6 | V | | Low Level Input Voltage | VIL | 0 | - | 0.3*DVDD | V | | High Level Input Voltage | VIH | 0.7*DVDD | - | DVDD | V | ## 5. Backlight Characteristic #### 5.1. Backlight Characteristics | Item | Symbol | Condition | Min | Тур | Max | Unit | |------------------------|------------------|------------------------------------|------------|-----------|-------------|------| | Forward Voltage | VF | Ta=25 °C, I _F =20mA/LED | 8.4 | 9.3 | 10.2 | V | | Forward Current | lF | Ta=25 °C, V _F =3.1V/LED | - | 180 | - | mA | | Power dissipation | Po | | - | 1.674 | - | W | | Uniformity | Avg | | 70 | 75 | - | % | | LED working life(25°C) | - | | - | 30000 | - | Hrs | | Drive method | Constant current | | | | | | | LED Configuration | 27 | White LEDs (3 LEDs in one | string and | l 9groups | in parallel |) | Note1: LED life time defined as follows: The final brightness is at 50% of original brightness. The environmental conducted under ambient air flow, at $Ta=25\pm2$ °C,60%RH ±5 %, $I_F=20$ mA #### 5.2. Backlighting circuit ## 6. Optical Characteristics #### 6.1. Optical Characteristics Ta=25°C, DVDD=3.3V | | Item | | Symbol | Condition | S | pecificati | on | Unit | |----------------------------------|-------------------------------|-----------|----------|---------------|-------|------------|-------|-------| | | | | Syllibol | Condition | Min. | Тур. | Max. | Ullit | | | Luminance on | | | | | | | | | <u> </u> | $TFT(I_f \texttt{=20mA/LED})$ | | Lv | Normally | 400 | 420 | - | cd/m² | | Backlight On (Transmissive Mode) | Contrast ratio | (See 6.3) | CR | viewing angle | - | 500 | - | | | B ■ | Response | time | Tr | θx =φY =0° | - | 10 | 20 | mo | | Sive | (See 6. | .2) | TF | | - | 15 | 30 | ms | | nis | | Red | XR | | 0.524 | 0.574 | 0.624 | | | nsı | ' | Reu | YR | | 0.290 | 0.340 | 0.390 | | |
Tra | Chanamatiaita | Green | XG | | 0.272 | 0.322 | 0.372 | | |) u | Chromaticity Transmissive | Green | YG | | 0.556 | 0.606 | 0.656 | | | ht C | | Blue | Хв | | 0.091 | 0.141 | 0.191 | | | ligl | (See 6.5) | blue | YB | | 0.040 | 0.090 | 0.140 | | | ack | | White | Xw | | 0.244 | 0.294 | 0.344 | | | В | | vvriite | Yw | | 0.286 | 0.336 | 0.386 | | | | Viewing | Horizont | θx+ | | 60 | 70 | - | | | | | al | Өх- | Center CR≥10 | 60 | 70 | - | Deg. | | | Angle | Vertical | фҮ+ | Center CR210 | 40 | 50 | - | Deg. | | | (See 6.4) | vertical | φY- | | 60 | 70 | - | | #### 6.2. Definition of Response Time #### 6.2.1. Normally Black Type (Negative) Tr is the time it takes to change form non-selected stage with relative luminance 10% to selected state with relative luminance 90%; Tf is the time it takes to change from selected state with relative luminance 90% to non-selected state with relative luminance 10%. Note: Measuring machine: LCD-5100 #### 6.2.2. Normally White Type (Positive) Tr is the time it takes to change form non-selected stage with relative luminance 90% to selected state with relative luminance 10%; Tf is the time it takes to change from selected state with relative luminance 10% to non-selected state with relative luminance 90%; Note: Measuring machine: LCD-5100 or EQUI #### 6.3. Definition of Contrast Ratio Contrast is measured perpendicular to display surface in reflective and transmissive mode. The measurement condition is: | Measuring Equipment | Eldim or Equivalent | |--------------------------|--------------------------| | Measuring Point Diameter | 3mm//1mm | | Measuring Point Location | Active Area centre point | | Toot nottorn | A: All Pixels white | | Test pattern | B: All Pixel black | | Contrast setting | Maximum | Definitions: CR (Contrast) = Luminance of White Pixel / Luminance of Black Pixel #### 6.4. Definition of Viewing Angles Measuring machine: LCD-5100 or EQUI #### 6.5. Definition of Color Appearance R,G,B and W are defined by (x, y) on the IE chromaticity diagram NTSC=area of RGB triangle/area of NTSC triangleX100% Measuring picture: Red, Green, Blue and White (Measuring machine: BM-7) #### 6.6. Definition of Surface Luminance, Uniformity and Transmittance Using the transmissive mode measurement approach, measure the white screen luminance of the display panel and backlight. - 6.6.1. Surface Luminance: L_V = average (L_{P1} : L_{P9}) - 6.6.2. Uniformity = Minimal $(L_{P1}:L_{P9})$ / Maximal $(L_{P1}:L_{P9})$ * 100% - 6.6.3. Transmittance = L_V on LCD / L_V on Backlight * 100% Note: Measuring machine: BM-7 ## 7. Block Diagram and Power Supply | No. | Symbol | Function | Remark | |-----|--------|--|--------| | 1 | LEDA | Led anode | | | 2 | LEDA | Led anode | | | 3 | LEDK | Led cathode | | | 4 | LEDK | Led cathode | | | 5 | GND | Ground | | | 6 | VCOM | Common voltage input | | | 7 | DVDD | Digital power supply | | | 8 | MODE | DE/SYNC mode select. H:DE mode, L:SYNC mode | | | 9 | DE | Data enable signal, active high to enable data | | | 10 | VS | Vertical sync input, negative polarity | | | 11 | HS | Horizontal sync input, negative polarity | | | 12 | B7 | Blue data (MSB) | | | 13 | B6 | Blue data | | | 14 | B5 | Blue data | | | 15 | B4 | Blue data | | | 16 | B3 | Blue data | | | 17 | B2 | Blue data | | | 18 | B1 | Blue data | | | 19 | В0 | Blue data (LSB) | | | 20 | G7 | Green data (MSB) | | | 21 | G6 | Green data | | | 22 | G5 | Green data. | | | 23 | G4 | Green data | | | 24 | G3 | Green data | | | 25 | G2 | Green data | | | 26 | G1 | Green data. | | | 27 | G0 | Green data (LSB) | | | 28 | R7 | Red data (MSB) | | | 29 | R6 | Red data | | | 30 | R5 | Red data | | | 31 | R4 | Red data | | | 32 | R3 | Red data | | | 33 | R2 | Red data | | | 34 | R1 | Red data | | | 35 | R0 | Red data (LSB) | | | 36 | GND | Ground | | | 37 | DCLK | Clock for input data | | | 38 | GND | Ground | | | 39 | L/R | Source left or right sequence control | | | 40 | U/D | Gate up or down scan control | | | 41 | VGH | Positive power of TFT | | | 42 | VGL | Negative power of TFT | | | 43 | AVDD | Analog power supply | | | | 1 | 1 | 1 | | 44 | RESET | Global reset pin | | |----|-------|---|--| | 45 | NC | No connection | | | 46 | VCOM | Common voltage input | | | 47 | DITHB | Dithering setting. H: 6bit resolution, L: 8bit resolution | | | 48 | GND | Ground | | | 49 | NC | No connection | | | 50 | NC | No connection | | #### 8. Interface Pins Definition Note 1:DE/SYNC mode select. Normally pull high. When select DE mode, MODE="1", VS and HS must pull high. When select SYNC mode, MODE="0", DE must be grounded. Note 2:When input 18 bits RGB data, the two low bits of R,G and B data must be grounded. Note 3:Data shall be latched at the falling edge of DCLK. Note 4:Selection of scanning mode | Setting of so | an control input | Scanning direction | | | | |---------------|------------------|---------------------------|--|--|--| | U/D | L/R | Scarring direction | | | | | GND | DVDD | Up to down,left to right | | | | | DVDD | GND | Down to up,right to left | | | | | GND | GND | Up to down, right to left | | | | | DVDD | DVDD | Down to up,left to right | | | | Note 5:Definition of scanning direction. Refer to the figure as below: Note 6:Global reset pin.Active low to enter reset state. Suggest to connect with an RC reset circuit for stability. Normally pull high. Note7 :Dithering function enable control,normally pull high. When DITHB="1", Disable internal dithering function, When DITHB="0", Enable internal dithering function.` ## 9. Timing Characteristics #### 9.1. AC Electrical Characteristics | Item | Cumbal | | Values | | Unit | Remark | |-------------------------------------|--------|----------|--------------------|------|------|-----------------------------------| | item | Symbol | Min. Typ | | Max. | Unit | Remark | | HS setup time | Thst | 8 | (E s) | - | ns | 60 | | HS hold time | Thhd | 8 | 35 | 1573 | ns | | | VS setup time | Tvst | 8 | 727 | 123 | ns | | | VS hold time | Tvhd | 8 | 22) | 828 | ns | | | Data setup time | Tdsu | 8 | - | - | ns | | | Data hole time | Tdhd | 8 | 551 | 878 | ns | 8 | | DE setup time | Tesu | 8 | 5/35 | 1881 | ns | | | DE hole time | Tehd | 8 | 32 | 323 | ns | | | DV _{DD} Power On Slew rate | Tpor | - | 5 - 1 | 20 | ms | From 0 to 90%
DV _{DD} | | RESET pulse width | TRst | 1 | 32 | 12 | ms | | | DCLK cycle time | Tcoh | 20 | - | | ns | | | DCLK pulse duty | Tcwh | 40 | 50 | 60 | % | 6 | ## 9.2. Input Clock and Data Timing Diagram #### 9.3. Timing | Item | Cumbal | Values | | | Unit | Remark | |-------------------------|--------|--------|------|------|------|----------| | item | Symbol | Min. | Тур. | Max. | Onit | Kelliaik | | Horizontal Display Area | thd | - | 800 | (40) | DCLK | | | DCLK Frequency | fclk | 26.4 | 33.3 | 46.8 | MHz | | | One Horizontal Line | th | 862 | 1056 | 1200 | DCLK | | | HS pulse width | thpw | 1 | - 12 | 40 | DCLK | | | HS Blanking | thb | 46 | 46 | 46 | DCLK | | | HS Front Porch | thfp | 16 | 210 | 354 | DCLK | | | 14 | Values | | | | | | |-----------------------|--------|------|------|------|------|--------| | Item | Symbol | Min. | Тур. | Max. | Unit | Remark | | Vertical Display Area | tvd | 92 | 480 | - | TH | | | VS period time | tv | 510 | 525 | 650 | TH | | | VS pulse width | tvpw | 1 | 200 | 20 | TH | | | VS Blanking | tvb | 23 | 23 | 23 | TH | | | VS Front Porch | tvfp | 7 | 22 | 147 | TH | | #### 9.4. Data Input Format Vertical input timing diagram #### 9.5. Power Sequence #### a. Power on: #### b. Power off: $B/L \rightarrow Data \rightarrow VGH \rightarrow AVDD \rightarrow VGL \rightarrow DV_{DD}$ Note: Data include R0~R7, B0~B7, GO~G7, U/D, L/R, DCLK, HS,VS,DE. ### 10. Quality Assurance #### 10.1 Purpose This standard for Quality Assurance assures the quality of LCD module products supplied to customer. #### 10.2 Standard for Quality Test 10.2.1 Sampling Plan: GB2828.1-2012. Single sampling, normal inspection. 10.2.2 Sampling Criteria: Visual inspection: AQL 1.5% Electrical functional: AQL 0.65%. 10.2.3 Reliability Test: Detailed requirement refer to Reliability Test Specification. #### 10.3 Nonconforming Analysis & Disposition - 10.3.1 Nonconforming analysis: - 10.3.1.1 Customer should provide overall information of non-conforming sample for their complaints. - 10.3.1.2 After receipt of detailed information from customer, the analysis of nonconforming parts usually should be finished in one week. - 10.3.1.3 If can not finish the analysis on time, customer will be notified with the progress status. - 10.3.2 Disposition of nonconforming: - 10.3.2.1 Non-conforming product over PPM level will be replaced. 10.3.2.2 The cause of non-conformance will be analyzed. Corrective action will be discussed and implemented. #### 10.4 Agreement Items Shall negotiate with customer if the following situation occurs: - 10.4.1 There is any discrepancy in standard of quality assurance. - 10.4.2 Additional requirement to be added in product specification. - 10.4.3 Any other special problem. #### 10.5 Standard of the Product Visual Inspection #### 10.5.1 Appearance inspection: - 10.5.1.1 The inspection must be under illumination about 1000 1500 lx, and the distance of view must be at 30cm ± 2cm. - 10.5.1.2 The viewing angle should be 45° from the vertical line without reflection light or follows customer's viewing angle specifications. - 10.5.1.3 Definition of area: A Zone: Active Area, B Zone: Viewing Area, #### 10.5.2 Basic principle: - 10.5.2.1 A set of sample to indicate the limit of acceptable quality level must be discussed by both us and customer when there is any dispute happened. - 10.5.2.2 New item must be added on time when it is necessary. #### 10.6 Inspection Specification | No. | Item | Criteria (Unit: mm) | |-----|------|---------------------| |-----|------|---------------------| | 09 | Glass Burr:
(Minor defect) | | Leng F < 1 Glass burr don't dimension. | .0 | Acc. Qty Ignore | |----|---------------------------------------|--|--|-----------------------------------|-----------------| | 10 | FPC Defect: (Minor defect) | | 10.1 Dent, pinhole (w: circuitry width.) 10.2 Open circuit is 10.3 No oxidation, o | unacceptable | | | 11 | Bubble on Polarizer
(Minor defect) | | Diameter
φ≤0.30
0.30 <φ≤0.50
0.50 < φ | Acc. Qty Ignore N≤2 N=0 | | | 12 | Dent on Polarizer
(Minor defect) | | Diameter
φ≤0.25
0.25 <φ≤0.50
0.50 < φ | Acc. Qty
Ignore
N≤4
None | | | 13 | Bezel | 13.1 No rust, distor
13.2 No visible fing | tion on the Bezel.
erprints, stains or othe | er contaminati | on. | | | | D: Diameter W: width L: length | | | | | |----|---|--|--|--|--|--| | | | 14.1 Spot: D<0.25 is acceptable | | | | | | | | 0.25≤D≤0.4 | | | | | | | | 2dots are acceptable and the distance between defects should more than | | | | | | | | 10 mm. | | | | | | 14 | Touch Panel | D>0.4 is unacceptable | | | | | | | | 14.2 Dent: D>0.40 is unacceptable | | | | | | | | 14.3 Scratch: W≤0.03, L≤10 is acceptable, | | | | | | | | 0.03 <w≤0.10, acceptable<="" is="" l≤10="" td=""></w≤0.10,> | | | | | | | Distance between 2 defects should more than 10 mm. W>0.10 is unacceptable. | Distance between 2 defects should more than 10 mm. | | | | | | | | W>0.10 is unacceptable. | | | | | | | | 15.1 No distortion or contamination on PCB terminals. | | | | | | | | 15.2 All components on PCB must same as documented on the | | | | | | 15 | PCB | BOM/component layout. | | | | | | | 15.3 Follow IPC-A-600F. | | | | | | | | | 15.3 FOIIOW IPC-A-600F. | | | | | | 16 | Soldering | Follow IPC-A-610C standard | | | | | | | | The below defects must be rejected. | | | | | | | | 17.1 Missing vertical / horizontal segment, | | | | | | | | 17.2 Abnormal Display. | | | | | | | Electrical Defect | 17.3 No function or no display. | | | | | | 17 | (Major defect) | 17.4 Current exceeds product specifications. | | | | | | | (iviajoi delect) | 17.5 LCD viewing angle defect. | | | | | | | | 17.6 No Backlight. | | | | | | | | 17.7 Dark Backlight. | | | | | | | | 17.8 Touch Panel no function. | | | | | Remark: LCD Panel Broken shall be rejected. Defect out of LCD viewing area is acceptable. #### 10.7 Classification of Defects - 10.7.1 Visual defects (Except no / wrong label) are treated as minor defect and electrical defect is major. - 10.7.2 Two minor defects are equal to one major in lot sampling inspection. #### 10.8 Identification/marking criteria Any unit with illegible / wrong /double or no marking/ label shall be rejected. #### 10.9 Packing - 10.9.1 There should be no damage of the outside carton box, each packaging box should have one identical label. - 10.9.2 Modules inside package box should have compliant mark. - 10.9.3 All direct package materials shall offer ESD protection Note1:Bright dot is defined as the defective area of the dot is larger than 50% of one sub-pixelarea. Bright dot: The bright dot size defect at black display pattern. It can be recognized by 2% transparency of filter when the distance between eyes and panel is $350 \text{mm} \pm 50 \text{mm}$. Dark dot:Cyan,Magenta or Yellow dot size defect at white display pattern. It can be recognized by 5% transparency of filter when the distance between eyes and panel is $350 \text{mm} \pm 50 \text{mm}$. Note2: Mura on display which appears darker / brighter against background brightness on parts of display area. ## 11. Reliability Specification | No | ltem | Condition | Quantity | Criteria | |----|-----------------------------|---|----------|----------------------| | 1 | High Temperature Operating | 70 ℃, 96Hrs | 2 | GB/T2423.2
-2008 | | 2 | Low Temperature Operating | -20℃, 96Hrs | 2 | GB/T2423.1
-2008 | | 3 | High Humidity | 50℃, 90%RH, 96Hrs | 2 | GB/T2423.3
-2006 | | 4 | High Temperature Storage | 80℃, 96Hrs | 2 | GB/T2423.2
-2008 | | 5 | Low Temperature Storage | -30℃, 96Hrs | 2 | GB/T2423.1
-2008 | | 6 | Thermal Cycling Test | -30°C, 60min~80°C, 60min,
20 cycles. | 2 | GB/T2423.22
-2012 | | 7 | Packing vibration | Frequency range:10Hz~50Hz Acceleration of gravity:5G X, Y, Z 30 min for each direction. | 2 | GB/T5170.14
-2009 | | 8 | Electrical Static Discharge | Air: \pm 8KV 150pF/330 Ω 5 times | 2 | GB/T17626.2 | | | Licellical Static Discharge | Contact: ±4KV 150pF/330 Ω 5 times | | -2006 | | 9 | Drop Test
(Packaged) | Height:80 cm,1 corner, 3 edges, 6 surfaces. | 2 | GB/T2423.8
-1995 | Note1. No defection cosmetic and operational function allowable. Note2. Total current Consumption should be below double of initial value #### 12. Precautions and Warranty #### 12.1.Safety - 12.1.1 The liquid crystal in the LCD is poisonous. Do not put it in your mouth. If the liquid crystal touches your skin or clothes, wash it off immediately using soap and water. - 12.1.2 Since the liquid crystal cells are made of glass, do not apply strong impact on them. Handle with care. #### 12.2. Handling - 12.2.1 Reverse and use within ratings in order to keep performance and prevent damage. - 12.2.2 Do not wipe the polarizer with dry cloth, as it might cause scratch. If the surface of the LCD needs to be cleaned, wipe it swiftly with cotton or other soft cloth soaked with petroleum IPA, do not use other chemicals. #### 12.3.Storage - 12.3.1. Do not store the LCD module beyond the specified temperature ranges. - 12.3.2. Strong light exposure causes degradation of polarizer and color filter #### 12.4. Metal Pin (Apply to Products with Metal Pins) - 12.4.1 Pins of LCD and Backlight - 12.4.1.1 Solder tip can touch and press on the tip of Pin LEAD during the soldering - 12.4.1.2 Recommended Soldering Conditions Solder Type: Sn96.3~94-Ag3.3~4.3-Cu0.4~1.1 Maximum Solder Temperature: 370 ℃ Maximum Solder Time: 3s at the maximum temperature Recommended Soldering Temp: 350±20 ℃ Typical Soldering Time: ≤3s 12.4.1.3 Solder Wetting Solder Pin Lead Solder Pin Lead Recommended Not Recommended #### 12.4.2 Pins of EL - 12.4.1.1 Solder tip can touch and press on the tip of EL leads during soldering. - 12.4.1.2 No Solder Paste on the soldering pad on the motherboard is recommended. - 12.4.1.3 Recommended Soldering Conditions Solder type: Nippon Alimit Leadfree SR-34, size 0.5mm Recommended Solder Temperature: 270~290 ℃ Typical Soldering Time: ≤2s Minimum solder distance from EL lamp (body):2.0mm - 12.4.1.4 No horizontal press on the EL leads during soldering. - 12.4.1.5 180° bend EL leads three times is not allowed. #### 12.4.1.6 Solder Wetting Recommended Not Recommended 12.4.1.7 The type of the solder iron: Recommended Not Recommended 12.4.1.8 Solder Pad #### 12.5. Operation - 12.5.1. Do not drive LCD with DC voltage - 12.5.2. Response time will increase below lower temperature - 12.5.3. Display may change color with different temperature - 12.5.4. Mechanical disturbance during operation, such as pressing on the display area, may cause the segments to appear "fractured". - 12.5.5. Do not connect or disconnect the LCM to or from the system when power is on. - 12.5.6. Never use the LCM under abnormal condition of high temperature and high humidity. - 12.5.7. Module has high frequency circuits. Sufficient suppression to the electromagnetic interface shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference. - 12.5.8. Do not display the fixed pattern for long time (we suggest the time not longer than one hour) because it may develop image sticking due to the TFT structure. #### 12.6. Static Electricity - 12.6.1. CMOS LSIs are equipped in this unit, so care must be taken to avoid the electro-static charge, by ground human body, etc. - 12.6.2. The normal static prevention measures should be observed for work clothes and benches. - 12.6.3. The module should be kept into anti-static bags or other containers resistant to static for storage. #### 12.7.Limited Warranty - 12.7.1. Our warranty liability is limited to repair and/or replacement. We will not be responsible for any consequential loss. - 12.7.2. If possible, we suggest customer to use up all modules in six months. If the module storage time over twelve months, we suggest that recheck it before the module be used - 12.7.3. After the product shipped, any product quality issues must be feedback within three months, otherwise, we will not be responsible for the subsequent or consequential events.