
SystemC

SystemC is a set of C++ classes and macros which provide an event-driven simulation interface
(see also discrete event simulation). These facilities enable a designer to simulate concurrent
processes, each described using plain C++ syntax. SystemC processes can communicate in a
simulated real-time environment, using signals of all the datatypes offered by C++, some
additional ones offered by the SystemC library, as well as user defined. In certain respects,
SystemC deliberately mimics the hardware description languages VHDL and Verilog, but is
more aptly described as a system-level modeling language.

SystemC is applied to system-level modeling, architectural exploration, performance modeling,
software development, functional verification, and high-level synthesis. SystemC is often
associated with electronic system-level (ESL) design, and with transaction-level modeling
(TLM).

Contents

 1 Language specification
 2 Language features

o 2.1 Modules
o 2.2 Ports
o 2.3 Signals
o 2.4 Exports
o 2.5 Processes
o 2.6 Channels
o 2.7 Interfaces
o 2.8 Events
o 2.9 Data types

 3 History
 4 Example code
 5 Power/Energy estimation in SystemC
 6 See also
 7 Notes
 8 References
 9 External links

Language specification

SystemC is defined and promoted by the Open SystemC Initiative (OSCI — now Accellera), and
has been approved by the IEEE Standards Association as IEEE 1666-2011[1] - the SystemC
Language Reference Manual (LRM). The LRM provides the definitive statement of the
semantics of SystemC. OSCI also provide an open-source proof-of-concept simulator

(sometimes incorrectly referred to as the reference simulator), which can be downloaded from
the OSCI website.[2] Although it was the intent of OSCI that commercial vendors and academia
could create original software compliant to IEEE 1666, in practice most SystemC
implementations have been at least partly based on the OSCI proof-of-concept simulator.

SystemC has semantic similarities to VHDL and Verilog, but may be said to have a syntactical
overhead compared to these when used as a hardware description language. On the other hand, it
offers a greater range of expression, similar to object-oriented design partitioning and template
classes. Although strictly a C++ class library, SystemC is sometimes viewed as being a language
in its own right. Source code can be compiled with the SystemC library (which includes a
simulation kernel) to give an executable. The performance of the OSCI open-source
implementation is typically less optimal than commercial VHDL/Verilog simulators when used
for register transfer level simulation.

SystemC version 1 included common hardware-description language features such as structural
hierarchy and connectivity, clock-cycle accuracy, delta cycles, four-valued logic (0, 1, X, Z), and
bus-resolution functions. From version 2 onward, the focus of SystemC has moved to
communication abstraction, transaction-level modeling, and virtual-platform modeling. SystemC
version 2 added abstract ports, dynamic processes, and timed event notifications.

Language features

Modules

SystemC has a notion of a container class called a module. This is a hierarchical entity that can
have other modules or processes contained in it.

Modules are the basic building blocks of a SystemC design hierarchy. A SystemC model usually
consists of several modules which communicate via ports. The modules can be thought of as a
building block of SystemC.

Ports

Ports allow communication from inside a module to the outside (usually to other modules) via
channels.

Signals

SystemC supports resolved and unresolved signals. Resolved signals can have more than one
driver (a bus) while unresolved signals can have only one driver.

Exports

Modules have ports through which they connect to other modules. SystemC supports single-
direction and bidirectional ports.

Exports incorporate channels and allow communication from inside a module to the outside
(usually to other modules).

Processes

Processes are used to describe functionality. Processes are contained inside modules. SystemC
provides three different process abstractions[which?] to be used by hardware and software
designers. Processes are the main computation elements. They are concurrent.

Channels

Channels are the communication elements of SystemC. They can be either simple wires or
complex communication mechanisms like FIFOs or bus channels.

Elementary channels:

 signal: the equivalent of a wire
 buffer
 fifo
 mutex
 semaphore

Interfaces

Ports use interfaces to communicate with channels.

Events

Events allow synchronization between processes and must be defined during initialization.

Data types

SystemC introduces several data types which support the modeling of hardware.

Extended standard types:

 sc_int<n> n-bit signed integer
 sc_uint<n> n-bit unsigned integer
 sc_bigint<n> n-bit signed integer for n > 64
 sc_biguint<n> n-bit unsigned integer for n > 64

Logic types:

 sc_bit 2-valued single bit
 sc_logic 4-valued single bit
 sc_bv<n> vector of length n of sc_bit

 sc_lv<n> vector of length n of sc_logic

Fixed point types:

 sc_fixed<> templated signed fixed point
 sc_ufixed<> templated unsigned fixed point
 sc_fix untemplated signed fixed point
 sc_ufix untemplated unsigned fixed point

History

 1999-09-27 Open SystemC Initiative announced
 2000-03-01 SystemC V0.91 released
 2000-03-28 SystemC V1.0 released
 2001-02-01 SystemC V2.0 specification and V1.2 Beta source code released
 2003-06-03 SystemC 2.0.1 LRM (language reference manual) released
 2005-06-06 SystemC 2.1 LRM and TLM 1.0 transaction-level modeling standard released
 2005-12-12 IEEE approves the IEEE 1666–2005 standard for SystemC
 2007-04-13 SystemC v2.2 released
 2008-06-09 TLM-2.0.0 library released
 2009-07-27 TLM-2.0 LRM released, accompanied by TLM-2.0.1 library
 2010-03-08 SystemC AMS extensions 1.0 LRM released
 2011-11-10 IEEE approves the IEEE 1666–2011 standard for SystemC[3]
 2016-04-06 IEEE approves the IEEE 1666.1–2016 standard for SystemC AMS

SystemC traces its origins to work on Scenic programming language described in a DAC 1997
paper.[4]

ARM Ltd., CoWare, Synopsys and CynApps teamed up to develop SystemC (CynApps later
became Forte Design Systems) to launch it first draft version in 1999.[5][6] The chief competitor
at the time was SpecC another C based open source package developed by UC Irvine personnel
and some Japanese companies.

In June 2000, a standards group known as the Open SystemC Initiative was formed to provide an
industry neutral organization to host SystemC activities and to allow Synopsys' largest
competitors, Cadence and Mentor Graphics, democratic representation in SystemC development.

Example code

Example code of an adder:

#include "systemc.h"

SC_MODULE(adder) // module (class) declaration
{
 sc_in<int> a, b; // ports
 sc_out<int> sum;

 void do_add() // process
 {
 sum.write(a.read() + b.read()); //or just sum = a + b
 }

 SC_CTOR(adder) // constructor
 {
 SC_METHOD(do_add); // register do_add to kernel
 sensitive << a << b; // sensitivity list of do_add
 }
};

Power/Energy estimation in SystemC

The Power/Energy estimation can be accomplished in SystemC by means of simulations.
Powersim[7] is a SystemC class library aimed to the calculation of power and energy
consumption of hardware described at system level. To this end, C++ operators are monitored
and different energy models can be used for each SystemC data type. Simulations with Powersim
do not require any change in the application source code.

See also

 Accellera
 SpecC
 SystemVerilog
 SystemRDL

Notes

1.

 "Browse Standards". standards.ieee.org.

  www.systemc.org, the Open SystemC Initiative website Archived 2008-10-06 at the Wayback

Machine

  IEEE Approves Revised IEEE 1666™ “SystemC Language” Standard for Electronic System-Level

Design, Adding Support for Transaction-level Modeling --

http://www.businesswire.com/news/home/20111109006054/en/IEEE-Approves-Revised-IEEE-

1666%E2%84%A2-%E2%80%9CSystemC-Language%E2%80%9D

  "ScenicDAC1997". CiteSeerX 10.1.1.56.6483.

  Synopsys and Co-Ware Inc., which did much of the work behind the SystemC --

http://www.electronicsweekly.com/Articles/1999/12/07/13906/stm-synopsys-in-3-year-rampd-

deal.htm

  "ARM is pleased that Synopsys, CoWare and other companies have come together on SystemC,

because if it is taken up by the industry, it simplifies our world," said Tudor Brown, chief technology

officer of ARM Ltd" in Babel of languages competing for role in SoC -

http://www.eetimes.com/ip99/ip99story1.html

 http://sourceforge.net/projects/powersim/

