

 13-Jan-2008

 Compiler Manual

EEE---LLLAAABBB AAAVVVRRRcccooo
Pascal Multi-Tasking for Single Chips

Version for

AAVVRR

© Copyright 1996-2008 by E-LAB Computers

Blaise Pascal Mathematician 1623-1662

The contents of this user guide is copyright protected by E-LAB Computers.

 Autor Rolf Hofmann
 Editor Gunter Baab

E-LAB
Computers

Mikroprozessor-Technik
Industrie-Elektronik
Hard + Software
8-Bit  16-Bit  32-Bit

E-LAB Computers
Grombacherstr. 27

D74906 Bad Rappenau
Tel 07268/9124-0

Fax 07268/9124-24
http://www.e-lab.de

info@e-lab.de

Important information

Everybody tries to write Software without bugs. The emphasis is on tries, because everybody knows that the
more complex a Software is, the more likely it is to produce bugs.

We have the opinion, that this shouldn’t have to be norm, and that we do not have to live with the problems
and mistakes (although some Software giants think like that ).

If you should find any errors, we would be thankful for any information. We will try to solve any problems
as quickly as possible.

It is also a normal international agreement that the software producer does not accept liability for any costs
arising out of errors in software, unless otherwise agreed.

E-LAB Computers do not accept liability for costs resulting out of errors in the software. It is a condition of
use of this Software you agree with these terms. If you do not agree, you are not permitted to use the
software.

As we have said, before this exclusion of liability is international standard.

This user guide and the software is intellectual property from E-LAB Computers and therefore copyright
protected.

This document and the software it relates to are solely for the use of the purchaser. The purchaser is not
permitted to give give, sell or distribute these products. Distributing copies of these products to a third party
is strictly prohibited.

We like to think that you as user of the software can make money from it and therefore also expect
maintenance of the product. Illegal copies would make it impossible for us to be able to maintain this service.

As you see it is also in the interest of you, the user, to observe the copyright.

That´s it the author

 AVRco Compiler-Manual

E-LAB Computers Table of Content - I

Table of Contents

1 Introduction .. 13
1.1 Every Toaster its Processor! .. 13

2 Overview...14
2.1 AVRco Versions ..14
2.2 Manual Versions..14
2.3 Structure of the Documentation ... 14
2.4 Known Limitations ..15

3 Basic AVRco Language Elements ... 16
3.1 Basic Symbols...16
3.2 Reserved Words ..16
3.3 Standard Identifier...16
3.4 Delimiters... 16
3.5 Program Lines ...16

4 Language Reference ..17
4.1 Types ... 17

4.1.1 Standard scalar Types.. 17
4.1.2 Type Conversion ..17
4.1.3 Variable Overlay...18
4.1.4 BOOLEAN..19
4.1.5 BIT ... 20
4.1.6 BITSET .. 20
4.1.7 BYTE ... 22
4.1.8 CHAR... 22
4.1.9 STRING ... 22
4.1.10 ARRAY... 25
4.1.11 TABLE.. 26
4.1.12 RECORD ...27

4.1.12.1 WITH Statement for Access to Records... 28
4.1.13 PROCEDURE ..29
4.1.14 WORD.. 29
4.1.15 INT8 or ShortInt..29
4.1.16 INTEGER...29
4.1.17 POINTER...30

4.1.17.1 Pointer AutoIncrement... 32
4.1.18 LONGWORD..33
4.1.19 WORD64 (*4*)(*P*) ..33
4.1.20 LONGINT ...33
4.1.21 INT64 (*4*)(*P*)..34
4.1.22 FLOAT ... 34
4.1.23 DOUBLE (*4*)(*P*) ...34
4.1.24 ENUM .. 34
4.1.25 SEMAPHORE ..35
4.1.26 PIPE... 35

4.1.26.1 Pipe for ordinal Types.. 35
4.1.26.2 Pipe of Bit ...36
4.1.26.3 Pipe for complex Types... 36

4.1.27 SYSTIMER...36
4.1.28 SYSTIMER8...37

AVRco Compiler-Manual

II – Table of Content E-LAB Computers

4.1.29 SYSTIMER32...37
4.1.30 PIDCONTROL..38

4.2 Operators... 39
4.2.1 NOT ... 39
4.2.2 DIV... 39
4.2.3 MOD .. 39
4.2.4 AND ... 39
4.2.5 OR ... 39
4.2.6 XOR... 39
4.2.7 SHL.. 40
4.2.8 SHLA ... 40
4.2.9 SHR ... 40
4.2.10 SHRA... 40
4.2.11 ROL ... 40
4.2.12 ROR... 40
4.2.13 IN ... 41
4.2.14 +...41
4.2.15 - ...41
4.2.16 /..41
4.2.17 * ...41

4.3 Pseudo Operators ...42
4.3.1 @... 42
4.3.2 ^...42
4.3.3 #...42
4.3.4 $...42
4.3.5 % ... 42

4.4 User Defined Language Elements ..43
4.4.1 Identifier ... 43
4.4.2 Numbers ..43
4.4.3 Strings.. 43
4.4.4 Control Characters ...44
4.4.5 Comments..44

4.5 Expressions... 45
4.5.1 Operators ...45

4.5.1.1 Unary Minus..45
4.5.1.2 Not Operator ...45
4.5.1.3 Multiplying Operators .. 45
4.5.1.4 Adding Operators .. 46
4.5.1.5 Relational Operators ... 46

4.5.2 Function Designators..46
4.6 Keywords... 47

4.6.1 PROGRAM...47
4.6.2 DEVICE.. 48
4.6.3 IMPORT... 49
4.6.4 FROM .. 49
4.6.5 DEFINE.. 49
4.6.6 Hardware Imports within Units ..50
4.6.7 DEFINE_USR...51
4.6.8 DEFINE_FUSES ..51
4.6.9 IMPLEMENTATION..52
4.6.10 TYPE ... 53
4.6.11 CONST .. 53

4.6.11.1 Predefined Constants.. 54
4.6.11.2 Type Specification with Constant Declaration .. 54
4.6.11.3 Constant Load from File .. 55
4.6.11.4 Constant Located in Flash...55

4.6.12 STRUCTCONST ..57

 AVRco Compiler-Manual

E-LAB Computers Table of Content - III

4.6.13 VAR ... 58
4.6.14 LOCKED ..59

4.7 Procedures and Functions.. 61
4.7.1 PROCEDURE ..63
4.7.2 PROCEDURE SYSTEM_INIT... 64
4.7.3 PROCEDURE SYSTEM_MCUCR_INIT..65
4.7.4 FUNCTION...65
4.7.5 PROCESS..66

4.7.5.1 Define Options ..68
4.7.6 TASK ... 68

4.7.6.1 Define Options ..70
4.7.7 FORWARD...71
4.7.8 BEGIN.. 72
4.7.9 RETURN..72
4.7.10 END ... 73
4.7.11 ASM: .. 73
4.7.12 ASM; .. 73
4.7.13 ENDASM..73

4.8 INTERRUPTs, TRAPs and EXCEPTIONs ..74
4.8.1 INTERRUPT...74

4.8.1.1 Push, Pop ...76
4.8.1.2 PushAllRegs, PopAllRegs ...76
4.8.1.3 External Interrupts... 76
4.8.1.4 Interrupt Pins INT0..INTx... 76
4.8.1.5 PinChangeInterrupts PCINT0..PCINT3 (*4*) ... 77

4.8.2 TRAPS and Software Interrupts (SWI) ..77
4.8.2.1 Implementation of the Traps ..78

4.8.3 EXCEPTIONS ..79
4.8.3.1 Implementation..81
4.8.3.2 Functions ..81

4.9 Statements... 82
4.9.1 Simple Statements ...82
4.9.2 Assignment Statement.. 82
4.9.3 Procedure Statement..82
4.9.4 Empty Statement..82
4.9.5 Structured Statement..83
4.9.6 Compound Statement...83
4.9.7 NOP Statement ..83
4.9.8 Conditional Statements... 83

4.9.8.1 IF Statement ...83
4.9.8.2 GOTO Statement .. 84
4.9.8.3 CASE Statement ...85
4.9.8.4 FOR Statement ...87
4.9.8.5 WHILE Statement.. 88
4.9.8.6 REPEAT Statement... 88
4.9.8.7 CONTINUE ...88
4.9.8.8 LOOP Statement...89

4.10 System Library - Standard .. 90
4.10.1 TRUE ... 90
4.10.2 FALSE.. 90
4.10.3 PI ... 90
4.10.4 NIL ... 90
4.10.5 Type Conversion ..90

4.10.5.1 BOOLEAN...90
4.10.5.2 BYTE ..90
4.10.5.3 Int8.. 90
4.10.5.4 CHAR ...90

AVRco Compiler-Manual

IV – Table of Content E-LAB Computers

4.10.5.5 WORD ..91
4.10.5.6 INTEGER..91
4.10.5.7 LONGWORD ..91
4.10.5.8 LONGINT..91
4.10.5.9 FLOAT ..91
4.10.5.10 FLOATASLONG..91
4.10.5.11 LONGASFLOAT..92
4.10.5.12 POINTER..92

4.10.6 Character and String Functions ..92
4.10.6.1 ORD..92
4.10.6.2 UPCASE...92
4.10.6.3 LOWCASE..92
4.10.6.4 UPPERCASE..92
4.10.6.5 LOWERCASE ...93
4.10.6.6 COPY ...93
4.10.6.7 STRREPLACE ..93
4.10.6.8 TRIM...93
4.10.6.9 TRIMLEFT ..93
4.10.6.10 TRIMRIGHT..93
4.10.6.11 PADLEFT..93
4.10.6.12 PADRIGHT ...93
4.10.6.13 LENGTH ...94
4.10.6.14 SETLENGTH ..94
4.10.6.15 POS..94
4.10.6.16 POSN ...94
4.10.6.17 APPEND...95
4.10.6.18 INSERT...95
4.10.6.19 DELETE..95
4.10.6.20 STRCLEAN...95
4.10.6.21 STRTOINT..95
4.10.6.22 HEXTOINT..96
4.10.6.23 STRTOFLOAT ..96
4.10.6.24 STRTOARR ..96
4.10.6.25 ARRTOSTR ..96
4.10.6.26 EXTRACTFILEPATH .. 96
4.10.6.27 EXTRACTFILENAME.. 97
4.10.6.28 EXTRACTFILEEXT... 97

4.10.7 Access to Parts of Variable / Constants ..97
4.10.7.1 SWAP...97
4.10.7.2 SWAPLONG ...97
4.10.7.3 MIRROR8 ...97
4.10.7.4 MIRROR16 ...97
4.10.7.5 MIRROR32 ...97
4.10.7.6 LONIBBLE ..98
4.10.7.7 LO (Function) ..98
4.10.7.8 LO (Assignment) ...98
4.10.7.9 LOWORD (Function) ... 98
4.10.7.10 LOWORD (Assignment) .. 98
4.10.7.11 HINIBBLE ...98
4.10.7.12 HI (Function) ...98
4.10.7.13 HI (Assignment) ..98
4.10.7.14 HIWORD (Function) .. 99
4.10.7.15 HIWORD (Assignment) ... 99

4.10.8 ABS.. 99
4.10.9 Negate ... 99
4.10.10 INC... 99
4.10.11 INCTOLIM..99
4.10.12 INCTOLIMWRAP.. 100
4.10.13 DEC ... 100

 AVRco Compiler-Manual

E-LAB Computers Table of Content - V

4.10.14 DECTOLIM... 100
4.10.15 DECTOLIMWRAP .. 100
4.10.16 VALUETRIMLIMIT.. 100
4.10.17 VALUEINTOLERANCE .. 101
4.10.18 VALUEINTOLERANCEP.. 101
4.10.19 VALUEINRANGE ... 101
4.10.20 MULDIVBYTE .. 101
4.10.21 MULDIVINT8.. 102
4.10.22 MULDIVINT.. 102
4.10.23 SQUAREDIVBYTE... 102
4.10.24 SQUAREDIVINT8... 102
4.10.25 SQUAREDIVINT... 103
4.10.26 INTEGRATEB .. 103
4.10.27 INTEGRATEI8.. 103
4.10.28 INTEGRATEI.. 103
4.10.29 INTEGRATEW ... 103
4.10.30 Even... 103
4.10.31 ODD... 103
4.10.32 PARITY.. 104
4.10.33 ISPOWOFTWO.. 104
4.10.34 SIGN.. 104
4.10.35 SGN... 104
4.10.36 PRED... 104
4.10.37 SUCC... 104
4.10.38 MIN .. 105
4.10.39 MAX... 105
4.10.40 SIZEOF.. 105
4.10.41 BitCountOf.. 105
4.10.42 ADDR... 105

4.11 System Library - Bit Processing... 106
4.11.1 INCL... 106
4.11.2 EXCL ... 107
4.11.3 TOGGLE.. 107
4.11.4 SETBIT .. 107
4.11.5 BIT ... 108

4.12 System Library - Diverse System Functions.. 109
4.12.1 SYSTEM_RESET... 109
4.12.2 DELAY ... 109

4.12.2.1 mDelay.. 109
4.12.2.2 uDelay .. 109
4.12.2.3 uDelay_1... 109
4.12.2.4 sDelay... 109

4.12.3 SYSTIMER... 110
4.12.3.1 SetSysTimer ... 110
4.12.3.2 SetSysTimerM... 110
4.12.3.3 GetSysTimer ... 110
4.12.3.4 ResetSysTimer.. 110
4.12.3.5 IsSysTimerZero... 111

4.12.4 LOWER.. 111
4.12.5 HIGHER... 111
4.12.6 WITHIN .. 111
4.12.7 VAL.. 111
4.12.8 Block Functions.. 112

4.12.8.1 FILLBLOCK... 112
4.12.8.2 FILLRANDOM (*4*) ... 112
4.12.8.3 COPYBLOCK.. 112
4.12.8.4 COMPAREBLOCK.. 112

4.12.9 Pointer Access Outside the Linear Adress Range ... 113

AVRco Compiler-Manual

VI – Table of Content E-LAB Computers

4.12.9.1 FlashPtr .. 113
4.12.9.2 EEPromPtr.. 113
4.12.9.3 UsrDevPtr ... 113
4.12.9.4 BankDevPtr... 113

4.12.10 FLUSHBUFFER ... 113
4.12.11 CRC Checksum.. 113

4.12.11.1 CRC CHECK... 113
4.12.11.2 CRC STREAM .. 114
4.12.11.3 FLASH CHECKSUM ... 114
4.12.11.4 EEPROM CHECKSUM ... 115

4.12.12 RANDOM ... 117
4.12.13 RANDOMRANGE (*4*)... 117
4.12.14 SQR, (*4*)(*P*): SQR_D... 117
4.12.15 SQRT, (*4*)(*P*): SQRT_D... 117
4.12.16 POW, (*4*)(*P*): POW_D ... 117
4.12.17 POW10, (*4*)(*P*): POW10_D.. 118
4.12.18 EXP, (*4*)(*P*): EXP_D.. 118
4.12.19 LogN, (*4*)(*P*): LogN_D ... 118
4.12.20 Log10, (*4*)(*P*): Log10_D... 118
4.12.21 Trigonometrical Functions... 119

4.12.21.1 TAN, (*4*)(*P*): TAN_D... 119
4.12.21.2 TAND, (*4*)(*P*): TAND_D.. 119
4.12.21.3 ARCTAN, (*4*)(*P*): ARCTAN_D .. 119
4.12.21.4 SIN, (*4*)(*P*): SIN_D ... 119
4.12.21.5 SININT.. 119
4.12.21.6 SININT16.. 119
4.12.21.7 SIND, (*4*)(*P*): SIND_D .. 120
4.12.21.8 COS, (*4*)(*P*): COS_D.. 120
4.12.21.9 COSINT .. 120
4.12.21.10 COSINT16 .. 120
4.12.21.11 COSD, (*4*)(*P*): COSD_D... 120
4.12.21.12 DEGTORAD, (*4*)(*P*): DEGTORAD_D ... 121
4.12.21.13 RADTODEG, (*4*)(*P*): RADTODEG_D ... 121
4.12.21.14 ROTATEPNTi ... 121

4.12.22 TRUNC, (*4*)(*P*): TRUNC_D.. 121
4.12.23 ROUND, (*4*)(*P*): ROUND_D... 121
4.12.24 FRAC, (*4*)(*P*): FRAC_D... 122
4.12.25 INT, (*4*)(*P*): INT_D... 122
4.12.26 GETTABLE .. 122
4.12.27 SETTABLE... 122
4.12.28 Conversion to Strings ... 122

4.12.28.1 BYTETOSTR .. 123
4.12.28.2 INTTOSTR.. 123
4.12.28.3 LONGTOSTR.. 123
4.12.28.4 FLOATTOSTR .. 124
4.12.28.5 BOOLTOSTR.. 124
4.12.28.6 LONG64TOSTR (*4*)(*P*)... 125
4.12.28.7 BYTETOHEX .. 125
4.12.28.8 INTTOHEX.. 125
4.12.28.9 LONGTOHEX ... 125
4.12.28.10 LONG64TOHEX (*4*)(*P*) .. 125
4.12.28.11 BYTETOBIN.. 125
4.12.28.12 INTTOBIN ... 125

4.12.29 BYTETOBCD ... 126
4.12.30 WORDTOBCD ... 126
4.12.31 BCDTOBYTE ... 126
4.12.32 PCU SI-Conversion (*P*).. 127

4.12.32.1 Utility Functions... 127
4.12.32.2 Temperature ... 127

 AVRco Compiler-Manual

E-LAB Computers Table of Content - VII

4.12.32.3 Volume.. 127
4.12.32.4 Pressure ... 128
4.12.32.5 Length... 128
4.12.32.6 Area.. 128
4.12.32.7 Weight .. 129
4.12.32.8 Energy .. 130
4.12.32.9 Integer Functions .. 130
4.12.32.10 Constants.. 130

4.12.33 Interpolation ... 131
4.12.33.1 InterPolX, InterPolY... 131

4.12.34 Moving Average Filter... 132
4.12.34.1 PresetAVfilter .. 132
4.12.34.2 SetAVfilter... 132
4.12.34.3 AddAVfilter.. 132
4.12.34.4 GetAVfilter... 132
4.12.34.5 DeclAVfilter ... 132

4.12.35 Network-Functions.. 133
4.12.35.1 Predefined Types .. 133
4.12.35.2 Converting Functions .. 133
4.12.35.3 Compare Functions ... 133
4.12.35.4 Miscellaneous Functions ... 133

4.13 System Library - String Formatting .. 134
4.13.1 Decimal Separator.. 134
4.13.2 WRITE ... 134
4.13.3 WRITELN... 135
4.13.4 READ... 135
4.13.5 READLN .. 136

4.14 Error Handling ... 137
4.14.1 RUNERR.. 137
4.14.2 RUNTIMEERR ... 137
4.14.3 CLEARRUNERR .. 138

4.15 Multi-Task Functions... 139
4.15.1 SLEEP ... 139
4.15.2 SUSPEND.. 139
4.15.3 SUSPEND ALL... 139
4.15.4 RESUME.. 140
4.15.5 RESUMEALL.. 140
4.15.6 PRIORITY .. 140

4.15.6.1 GetPriority... 140
4.15.7 MAIN_PROC.. 140
4.15.8 IDLE PROCESS... 141

4.15.8.1 On Idle Process... 141
4.15.9 SCHEDULE.. 141
4.15.10 SCHEDULER ON/OFF... 141
4.15.11 LOCK ... 142
4.15.12 UNLOCK .. 142
4.15.13 RESET PROCESS... 142
4.15.14 SEMAPHORE .. 142

4.15.14.1 WAITSEMA... 142
4.15.14.2 ProcWaitFlag .. 143
4.15.14.3 SETSEMA... 143
4.15.14.4 INCSEMA ... 143
4.15.14.5 DECSEMA .. 143
4.15.14.6 SEMASTAT... 143

4.15.15 PIPES .. 144
4.15.15.1 WaitPipe ... 144
4.15.15.2 PipeFlush.. 144
4.15.15.3 PipeSend .. 144

AVRco Compiler-Manual

VIII – Table of Content E-LAB Computers

4.15.15.4 PipeRecv .. 144
4.15.15.5 PipeStat .. 144
4.15.15.6 PipeFull... 145

4.15.16 PROCESS ID ... 145
4.15.16.1 ISCURPROCESS.. 145
4.15.16.2 GETCURPROCESS.. 145
4.15.16.3 GETPROCESSID.. 145

4.15.17 PROCESS STATE ... 145
4.15.18 DEVICE LOCK ... 146

4.15.18.1 SetDeviceLock .. 146
4.15.18.2 ClearDeviceLock ... 146
4.15.18.3 TestDeviceLock... 146
4.15.18.4 WaitDeviceFree... 147

4.15.19 Stack and Frame Usage ... 147
4.15.19.1 GETSTACKFREE ... 147
4.15.19.2 GETFRAMEFREE... 147
4.15.19.3 CHECKSTACKVALID.. 148
4.15.19.4 CHECKFRAMEVALID... 148

4.15.20 SCHEDULER CALL BACK... 148
4.16 PID-Controller.. 149

4.16.1 pFACTOR .. 149
4.16.2 iFACTOR ... 149
4.16.3 dFACTOR .. 150
4.16.4 sFACTOR... 150
4.16.5 NOMINAL... 150
4.16.6 ACTUAL... 150
4.16.7 EXECUTE .. 150

4.17 Functions depending on HardWare.. 151
4.17.1 PROCCLOCK... 151
4.17.2 STACKSIZE, RAMpage.. 151
4.17.3 FRAMESIZE, RAMpage ... 151
4.17.4 TASKSTACK, RAMpage... 152
4.17.5 TASKFRAME ... 152
4.17.6 SCHEDULER ... 152
4.17.7 SYSTICK.. 152

4.17.7.1 OnSysTick... 153
4.17.7.2 SysTickStop.. 153
4.17.7.3 SysTickStart.. 153
4.17.7.4 SysTickRestart .. 154
4.17.7.5 SysTickDisable.. 154
4.17.7.6 SysTickEnable .. 154
4.17.7.7 SystemTime (*4*) .. 154

4.17.8 ENABLEINTS... 154
4.17.9 START_PROCESSES.. 155
4.17.10 DISABLEINTS.. 155
4.17.11 NOINTS, RESTOREINTS... 155
4.17.12 CPUSLEEP.. 155
4.17.13 POWERSAVE .. 156
4.17.14 WATCHDOG.. 156
4.17.15 WATCHDOGSTART... 156
4.17.16 WATCHDOGSTOP .. 156
4.17.17 WATCHDOGTRIG.. 156
4.17.18 GETWATCHDOGFLAG.. 156
4.17.19 {$NOWATCHDOGAUTO}... 157
4.17.20 ENABLE_JTAGPORT .. 157
4.17.21 DISABLE_JTAGPORT ... 157

4.18 EEPROM .. 158
4.18.1 Structured Constant.. 158

 AVRco Compiler-Manual

E-LAB Computers Table of Content - IX

4.18.2 Variable.. 158
4.18.3 Memory Block... 159
4.18.4 EEprom Access.. 159

4.19 HEAP (*P*)... 160
4.19.1 Implementation... 160

4.19.1.1 Functions .. 160
4.19.1.2 Example.. 162

4.20 BOOT VECTORS.. 164
4.20.1 Implementation... 165
4.20.2 Functions ... 165
4.20.3 Constants... 165
4.20.4 Example Program... 166

4.21 BOOT TRAPS... 172
4.21.1 Implementation of the Boot Traps ... 172

4.22 Inheritance... 173
5 Multi-Tasking Programming... 174

5.1 Introduction ... 174
5.2 Principle of Operation ... 174

5.2.1 Processes and Tasks ... 175
5.2.2 Priority.. 175

5.2.2.1 Default Priorities.. 176
5.3 Optimal Multi-Tasking ... 176

6 Optimization ... 177
6.1 Library.. 177

6.1.1 Variable.. 177
6.1.2 Constant... 177
6.1.3 Runtime.. 177

6.2 Highly Optimizing?.. 177
6.3 The "Merlin Optimizer".. 178

7 Compiler Switches ... 179
7.1 Memory Administration... 179

7.1.1 Considerations about Memory Usage ... 182
7.2 External Memory ... 182
7.3 Include Files .. 183

7.3.1 Search Path for Include Files.. 183
7.4 Runtime Checks .. 184
7.5 Variable, Constant and Procedure Check .. 184
7.6 System Controlling.. 186
7.7 Conditional Compile.. 188

8 Program Structure.. 190
8.1 Program Frame.. 190

8.1.1 Order.. 190
8.2 Initializing .. 191

9 Compiler Errors.. 193
9.1 Error File.. 193

9.1.1 Type Mismatch... 193

AVRco Compiler-Manual

X – Table of Content E-LAB Computers

10 Units (*P*)... 194
10.1 Declaration and Construction of a Unit .. 194

10.1.1 Unit-Header.. 194
10.1.2 Interface-Section .. 195
10.1.3 Implementation-Section .. 195
10.1.4 Initialization-Section.. 195
10.1.5 Finalization-Section .. 195
10.1.6 Uses-Clause... 196

10.1.6.1 Search Path for Units .. 196
10.1.7 Info Part of a Unit.. 196
10.1.8 Hardware Imports within Units .. 197

10.2 PreCompiled Units .. 197
11 Assembler... 198

11.1 Overview.. 198
11.1.1 ASM; .. 198
11.1.2 ENDASM;... 198

11.2 Assembler - Keywords.. 199
11.2.1 Register.. 199
11.2.2 Assembler Directives.. 200
11.2.3 Operators for Constant Manipulation... 201
11.2.4 Access to Pascal Constants and Variables ... 202

11.3 Assembler Routines.. 202
11.3.1 Local Variables and Assembler Access... 202
11.3.2 Procedure Calls and System Functions... 204
11.3.3 Function Results and Assembler... 204
11.3.4 Function/Procedure Exit ... 204
11.3.5 Interrupt Procedures with Assembler .. 205
11.3.6 Constants and Optimization.. 205

11.4 Assembler Switches.. 205
11.5 Assembler Errors .. 205

 AVRco Compiler-Manual

E-LAB Computers Introduction - 13

1 Introduction

1.1 Every Toaster its Processor!

Some comments you could interpret like that. Microprocessors are more and more used for applications,
you never thought they could be used for. Some things cannot be done without them.

Partly this results from the greatly reduced price of the chips, but also because of the miniaturization of
them. More and more mechanical, electromechanical problems are being solved with processors. The
developer has the problem to finding solutions with little money and time.

Because of the costs, the constructor has to decide in eac case, which processor to use to have the ratio
between cost and performance. It is nearly impossible to use one chip (e.g. 80C535 or 68332) for all
applications.

The industry for semiconductors offers controllers, which have 16 pins / 8 bits (DM3.-) to more than 84 pins
with 32 bits (DM80.-). The constructor also has to decide which kind of development tool he needs. The
more varied the processor that are specified, the more development tools that are needed. Altogether, at a
usual price between 4000,- and 10000,- DM for each tool, you have to pay some 10,000 DM, which
contradicts to cost problem, so that everything, including the development, has to get cheaper. Some
customers even prefer that development costs are not calculated.

With processor size 8051, 68HC11, Z80 etc. you find many tools that differ in price and
performance. Unfortunately, nearly all tools are written in “C“. Other languages are hard to find on
the market. A developer who knows different kinds of languages, regards the value of the easy
readability, the self-documentation and the easy maintenance of Pascal or similar languages
(Modula-2, Oberon) highly.

Surely many arguments for or against a language can be relegated to philosophy, but the fact is, that in
military or space projects, “C“ is prohibited, only the Pascal related language ADA is allowed. Jobs relevant
for security, for example controlling railways and plane electronics are often written in Pascal not in “C“. This
is surely not because of nostalgic reasons. So much to our decision to use Pascal instead of cryptic “C“.

In order to find a way out of the above problem (Costs, no or weak tools, no “C“), E-LAB Computers has
developed a Pascal compiler for a series of processor families. The aim was to build a tool, which has a wide
performance range, but doesn’t produce high cost internally. Because of this and also because of lack of
resources on the target processors, we decided against some of the more complex functions. Further on
there is now (in the profi version only) a linker and modular program/units.

In spite of this the tool is easily portable to other (small) processors. Non-Multi-Task versions are
available for MicroChip’s PIC. Multi-Task versions are available for the AVR from Atmel.

The tool always includes the IDE (Editor and so on), the Compiler and the Assembler. At least the IDE is
equal to the much more expensive tools of the competitors. Only the AVR version includes a simulator as a
bonus.

AVRco Compiler-Manual

14 - Overview E-LAB Computers

2 Overview

2.1 AVRco Versions

All AVRco Versions support all AVR Controllers with an internal RAM (for the stack). That means in
practice the whole range.

AVRco Profi Version:
The Profi Version contains all available drivers, including very complex ones like e.g. a FAT16 file system
and an extensive library for graphic LCDs.
The professional program development is furthermore assisted by the full support of Units.

AVRco Standard Version:
The Standard Version omits only the most complex drivers, and does not support units.

AVRco Demo Version:
The Demo Version supports all controllers and all drivers of the Standard Version.
The only restriction is the limitation of the generated code to max. 4 kByte size.

2.2 Manual Versions

Chapters marked with the attribute (*P*) are only available in AVRco Profi Revision.
Chapters marked with the attribute (*4*) are only available in AVRco Revision 4.

2.3 Structure of the Documentation

..\E-Lab\DOCs\DocuCompiler.pdf:
contains the Pascal language description and the enhancements compared with Standard Pascal

..\E-Lab\DOCs\DocuStdDriver.pdf:
contains the description of the drivers contained as well in the Standard, as in the Profi Version.

..E-Lab\DOCs\DocuProfiDriver.pdf:
contains the description of the drivers contained only in the Profi Version.

..E-Lab\DOCs\DocuReference.pdf:
contains a Short Reference (the the same as the online help)

..\E-Lab\DOCs\DocuTools.pdf:
contains the description of the IDE, the simulator, a tutorial etc.

..\ E-LAB\IDE\DataSheets\Release-News.txt:
lists the enhancements in chronological order.
The enhancements are documented in the above mentioned .pdf files (DocuXXX.pdf)

..\E-Lab\AVRco\Demos\ :
contains many test and demo programs

..\E-Lab\DOCs\ :
contains the documentation and further schematics and data sheets

 AVRco Compiler-Manual

E-LAB Computers Overview - 15

2.4 Known Limitations

- The function IntegrateI still has a problem with negative values.

- Overwriting of predefined Types, Variables, Constants, Functions and Procedures is not
 implemented yet.

- The order of the operators (* AND SHR etc.) is not completely implemented yet.
 So please use always parentheses in conjunction with expressions.

- Not implemented: "With" constructs with Records in Records

- Strings

 The following string concat result is not what you expect:

 str:= str1 + str;

 Because of the limited RAM this can not be realised.

 Possible is:

 str:= str + str1;

- Arrays

 The construction of Array of Array is not supported

AVRco Compiler-Manual

16 – Basic Symbols E-LAB Computers

3 Basic AVRco Language Elements

3.1 Basic Symbols

The basic vocabulary of AVRco Pascal consists of basic symbols divided into letters, digits, and
special symbols:

Letters A to Z, a to z and _ (underscore). The underscore should not be used as the first letter of a
symbol.

Digits 0123456789

Special symbols */=<>()[]{}|.,

No distinction is made between upper and lower case letters. Certain operators and delimiters are
formed using two special symbols:

Assignment operator: : =
Relational operators: <> <= >=
Comments: (* and *) may be used instead of { and }.
It is also possible to use C-style comments using //

In addition, AVRco Pascal makes use of certain constructs to allow low level access to the CPU and it’s
resources. There are also many language extensions to support embedded programming.

3.2 Reserved Words
Reserved words are integral parts of AVRco Pascal. They cannot be redefined and must therefore not be
used as user defined identifiers.

Examples:
ABS, AND, ARRAY, ASM, BEGIN, BREAK, CASE, CONST, CONTINUE, DIV, DO, DOWNTO, ELSE,
ELSIF, END, ENDFOR, ENDCASE, ENDWHILE, ENDIF, EXIT, FOR, FORWARD, FUNCTION, GOTO, IF,
IN, LABEL, MOD, NOT, OF, OR, PROCEDURE, PROGRAM, RECORD, REPEAT, ROR, ROL, SHL, SHR,
STRING, THEN, TO, TYPE, UNTIL, VAR, WHILE, WITH, XOR

3.3 Standard Identifier
AVRco Pascal defines a number of Standard Identifiers for predefined Types, Constants, Variables,
Procedures and Functions. These can also not be redefined.

Examples:
FALSE, TRUE, NIL, CHAR, BOOLEAN, INTEGER, BYTE, INT8, LONGINT, WORD, LONGWORD, FLOAT,
POINTER, SIZEOF, ADDR, @, INC, DEC, MOVE, LENGTH, COPY, INTTOSTR, BYTETOSTR, INTTOHEX,
STRTOINT, LO, HI, LOWORD, HIWORD, INSERT, DELETE, UPCASE, POS

3.4 Delimiters
Language elements must be separated by at least one of the following delimiters: a blank, an end of line, or
a comment. Note that comments are allowed anywhere in the source. There are some restrictions.

3.5 Program Lines
The maximum length of a program line is 250 characters.

 AVRco Compiler-Manual

E-LAB Computers Types - 17

4 Language Reference

4.1 Types

4.1.1 Standard scalar Types

A data type defines the set of values a variable may assume. Every variable in a program must be associated
with one and only one data type. Although data types in the AVRco can be quite sophisticated, they are all
built from simple (unstructured) types.

The basic data types of Pascal are the scalar types. Scalar types constitute a finite and linear ordered set
of values.

A simple type may either be defined by the programmer (it is then called a declared scalar type), or be one
of the standard scalar types: integer, int8, word, longint, longword, float, boolean, char, or byte.

Apart from the standard scalar types, Pascal supports user defined scalar types, also called declared scalar
types (enumeration). The definition of a scalar type specifies, in order, all of its possible values. The values
of the new type will be represented by identifiers, which will be the constants of the new type

type
 Operator = (Plus, Minus, Multi, Divide);

In the above example, the type Operator is nothing else but a type byte. All following values are enumerated
starting from 0. Effectively Plus is a constant with the value 0, Minus a 1, Multi a 2 and so on. The use of
defined scalar types is strongly recommended as it greatly improves the readability of programs.

type
 TDay = (Mon,Tue,Wed,Thur,Fri,Sat,Sun);
 TMonth = (Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec);
 TMArr = array[Jan..Dec] of TDay;

var
 MonArr = TMarr;
 ...

 MonArr[Aug]:= Sun;
 If MonArr[Jan] = Fri then ...

4.1.2 Type Conversion

The compiler does not perform automatic type conversion. An allocation like byte := word leads to a Type
Mismatch. But it is possible to convert most types to another by using the so called typecasting. In many
cases no additional machine-code will be generated
(char := char(byte)).
AVRco Pascal provides “Type Casting” as can be found in most Pascal compilers today. This is done by
simply using the type identifier as “function” name. The single parameter in this “function call” is a variable of
type A that you would like the compiler to view as a variable of type B (the type identifier used in the “function
call”).

AVRco Compiler-Manual

18 – Types E-LAB Computers

var ch : char;
 b1 : byte;
 w1 : word;
 i1 : integer;
 p1 : pointer

ch:= char(b1);
b1:= byte(w1);
i1:= integer(w1);
p1:= pointer(w1);

type
 TRecordA = record
 a,b,c : word;
 end;
 TRecordB = record
 X : longint;
 Y : word;
 end;

var
 A : TRecordA;
 B : TRecordB;
 C : char;
 D : byte;

begin
 A:= RecordA (B);
 RecordA (B):= A;
 D:= byte (C);
 C:= char (D);
end.

Tip:
In the Pascal world it’s good practice that type declarations start with a capital “T“. This is not a must but
supports the readability of the program and helps to avoid programming errors.

4.1.3 Variable Overlay

Variables can be placed directly into other variables (Overlay).
But here is the problem that the second variable can be larger (memory) as the referenced variable.
Because only the reference variable does a memory allocation, it is possible that a write access to the
overlay destroys the subsequently placed variable at runtime.

var abc : byte;
 xyz : byte;
 ovr1[@abc] : byte; // it's ok
 ovr2[@abc] : word; // problem

In this example a write access to the variable "ovr2" always overwrites also the variable "abc" as expected
but also (unexpected) the variable "xyz".
The compiler checks in case of an overlay whether the overlay variable fits into the memory which was
allocated by the referenced (overlaid) variable.

 AVRco Compiler-Manual

E-LAB Computers Types - 19

But to enable the construction below there is a compiler Switch {$NOOVRCHECK}.
So it is possible to switch off the check for a single following declaration.

var

 v1 : byte;
 v2 : byte;
 v3 : byte;
 v4 : byte;

{$NOOVRCHECK}
v5[@v1] : longword;

Normally v5 will raise an error because a longword consumes 4 bytes but the variable v1 only offers one byte
memory. By disabling the check the variable v5 occupies the memory locations of v1-v4 and overlays all four
bytes, which can be legal but may not be so. The programmer is responsible for that.

Borland Pascal has another implementation for this. The AVRco also supports this type:

var
 abc : byte;
 xyz : word;
 ovr1 : byte absolute abc; // var abc overlayed
 {$NOOVRCHECK}
 ovr2 : word absolute xyz; // var xyz overlayed

"absolute" is only applicable with variables in RAM and EEprom area.

4.1.4 BOOLEAN

Required memory: 8bit, value: true..false
A boolean value can assume either of the logical truth values denoted by the standard identifiers True and
False. These are defined such that False = 0; True > 0 (normally $FF). A Boolean variable occupies one
byte in memory.

true = $FF false = $00

var flag : boolean;

Comment:
One boolean needs 1 byte as memory location. To economize memory location, it possibly makes sense to
use a one byte-variable and divide it with the help of the BIT-definition into separate bits. So the required
memory for 8 Booleans is reduced to 1 byte.

var flag : byte;
 flag0[@flag, 0] : bit;
 flag1[@flag, 1] : bit;
 ...

if Bit (Flag0) then ...
Incl (Flag1);
SetBit (flag0, flag1); {copy bit}

AVRco Compiler-Manual

20 – Types E-LAB Computers

4.1.5 BIT

Required memory: 1bit, true..false, 0..1

In order to handle the necessary bits for embedded applications the variable bit was introduced. This type
can be used exactly if it were a boolean. In addition INCL(bit), EXCL(bit), TOGGLE(bit), SetBit and “if BIT(bit)
then ..“ may be used. The declaration of a bit-variable always consists of two grades: First the memory
location or variable in which the bit resides has to be declared. This variable must be a global var. Bit
definitions into Records or Arrays are not possible. First define a global variable of type byte, word or with
REV4 also LongWord.

var Leds[$05] : byte; or
 bits16 : word;

The type of the memory location (byte, word, longword) determines, too, if 8 or 16 bits are at disposal. After
the declaration of a general variable the actual bit-declaration follows. The first parameter indicates a
memory location and the second parameter indicates the corresponding bit of this memory location.
Symbolic parameters can also be used.

const LedBit2 = 3;
var port6[6] : byte;
 Led2[@port6, Led2Bit] : bit;

 if BIT (Led2) then ...
 Toggle(Led2);

SetBit (Led2, not Led2);

Bits can also be dynamically generated within the program.

Toggle (Leds, 3); {Bit3 in 8 Bits}
Incl (bits16, 12); {Bit12 in 16 Bits}

4.1.6 BITSET

8bit, 16bit or 32bit dependent of the underlying enumeration. 32bits only in REV4

Basics:
With an enumeration each of the 256 possible values each used value can/must be named. With a BitSet
each used bit must be named. Because of this a byte can contain upto 8 “Names“ = Bits, a word up to 16
names and a longword up to 32 names. With a BitSet each single bit can be accessed and manipulated by
it’s name. Also accessing in Bit-groups is then possible.

Definition:
Before a BitSet type can be defined, there must be an enumeration type which contains the Bit names.
The count of the bit names defines whether the resulting BitSet resides in a byte, word or longword.
The maximum count of names or bits is 32.

Declaration:

type
 TBitNames = (one, two, three, four, five, six); // enum
 TBitSet = BitSet of TbitNames; // build a bitset type

var
 BitSet1 : TBitSet; // build a bitset var
 BitSet2 : TBitSet; // build a bitset var
 Bb : byte;

 AVRco Compiler-Manual

E-LAB Computers Types - 21

Working with BitSets:

BitSet1:= BitSet2; // copy a set into another
bb:= byte (BitSet1); // type convert
BitSet2:= TbitSet (bb); // type convert

In order to completely fill a bitset all bits of the enum type must be entered:

BitSet1:= [one, two, three, four, five, six];

It's also possible to use the enum name:

BitSet1:= [tEnum];

BitSets can be set in conjunction with Operators. These are + - * /

Addition:
BitSet1:= [one, three];
BitSet2:= [two, four, six];
BitSet1:= BitSet1 + BitSet2; // unification – logical or
//BitSet1 contains now one, two, three, four and six.

Subtraction:
BitSet1:= [one, two, three];
BitSet2:= [two, four, three];
BitSet1:= BitSet2 - BitSet1; // difference – logical and not
//BitSet1 contains now four.

Multiplication:
BitSet1:= [one, two, three];
BitSet2:= [two, four, five];
BitSet1:= BitSet2 * BitSet1; // logical and
//BitSet1 contains now two.

Division:
BitSet1:= [one, two, three];
BitSet2:= [two, four, five];
BitSet1:= BitSet2 / BitSet1; // logical xor
//BitSet1 contains now one, three, four, five.

BitSets can be compared with the use of = <> <= >= IN
Compared are the binary values of the corresponding bit patterns.

if BitSet1 = [one, two, three] then ...
if BitSet2 <= [two, four, five] then ...
if BitSet2 in BitSet1 then ...
if [two, four, five] in BitSet1 then ...

AVRco Compiler-Manual

22 – Types E-LAB Computers

4.1.7 BYTE

8 bit, 0..255
Bytes are whole numbers. They are limited to a range of 0 through 255.
Bytes occupy one byte in memory.

All variable declarations can be assigned to a fixed address.

Example for a fixed address:

var b[$10] : byte; {memory at addr. 10hex}

Example for a free address allocation by the compiler:

var x : byte;

It is also possible to specify a previous declared variable as reference. So it is possible, for example, to
access the two bytes of a word variable.

var w[$12] : word;
 b1[@w] : byte; {b1 is at addr. 12hex – low byte}
 b2[@w + 1] : byte; {b2 is at addr. 13hex – high byte}

4.1.8 CHAR

8 bit, chr(0..255)

A Char value is one character in the ASCII character set.
Characters are ordered according to their ASCII value, for example: 'A' < 'B'. The ordinal (ASCII) values of
characters range from 0 to 255. A Char variable occupies one byte in memory.

Example variable of type char:
var c : char;

Example constant of type char:
const cd = 'D';
 Bell = ^G; {Control G}
 LF = #10; {Line Feed}

4.1.9 STRING

0..255 bytes, variable or constant.

AVRco Pascal offers the convenience of string types for processing of character strings i.e. sequences of
characters. String types are structured types and are in many ways similar to array types. In Pascal, a string
is the exact equivalent of an array of char and such an array may be treated as a string.
AVRco Pascal uses the FIRST character in a string as a length indicator with the remainder of the string
following. This is compatible with most Pascal string implementations but differs from C, which uses a zero
byte as string delimiter.

In short, the Pascal string results in a better performance since the length of a string is always known without
having to scan the string. The Pascal string is also a convenient dynamic storage medium for data other than
characters as there is no restriction on the value of a character that can be placed inside the string. C
strings on the other hand may be of indefinite length while Pascal strings are restricted to a maximum
length of 255 characters.

 AVRco Compiler-Manual

E-LAB Computers Types - 23

type st10 = string[10]; {stringlength = 10}

structconst {constant in Rom, at startup copied into Ram}
 str : st10 = 'abcde';

const {constant in Rom}
 st = '1234' + 'R' + #7 + ^L;

var st1 : string[8];

 st1:= st;
 ch:= st[2];

The so called Length Byte is located at first position of the string (str[0]). This byte specifies the actual occupied
length of the string. It is possible, for example, to change the length dynamically by manipulating the position 0
within the declaration (str[0]:= # 5;). The better way is to use the system function SetLength (st : string; len :
byte) ;

The length byte (= char!!) can also be read to determine the actual length. But here is the function
Length(str) better and faster. Do string-manipulations only with Var and StructConst !

AVRco Compiler-Manual

24 – Types E-LAB Computers

The definition of a string type must specify the maximum number of characters it can contain, i.e. the
maximum length of strings of that type. The definition consists of the reserved word string followed by the
maximum length enclosed in square brackets. The length is specified by an byte constant in the range 0
through 255. Notice that strings do not have a default length; the length must always be specified.

String variables occupy the defined maximum length in memory plus one byte which contains the current
length of the variable. The individual characters within a string are indexed from 1 through the length of the
string.

Strings are manipulated by the use of string expressions. String expressions consist of string constants, string
variables, function designators, and operators.
The plus-sign may be used to concatenate strings. The Concat function available in some Pascal
implementations does the same thing but is not implemented in AVRco Pascal since the + operator is often
more convenient.

The result of string expressions cannot provide a string larger than 255 characters in length, also, in string
assignments, the assignment target will never receive a string larger than the size of the target permits.

'E-LAB ' + 'Pascal ' + 'is '+ 'fun…
' '123' + ' . + '456’
 'A ' + 'B' + ' C ' + 'D '

The relational operators = and < > are lower in precedence than the concatenation operator. When applied
to string operands, the result is a Boolean value (True or False). When comparing two strings, single
characters are compared from the left to the right according to their ASCII values.

If the strings are of different length, but equal up to and including the last character of the shortest string,
then the shortest string is considered the smaller.

Strings are equal only if their lengths as well as their contents are identical.

'A' = 'A' // is true
'A' = 'a' // is false
'2' <> ' 12' // is true
'PASCAL' = 'PASCAL' // is true
'PASCAL' = 'pascal' // is false
'Pascal Compiler' <> 'Pascal compiler' // is true

The assignment operator is used to assign the value of a string expression to a string variable.

Age := 'twenty'
Line := 'Many happy returns on your ' + Age + 'birthday’

If the maximum length of a string variable is exceeded (by assigning too many characters to the variable),
the exceeding characters are truncated. E.g., if the variable Age above was declared to be of type string[5],
then after the assignment the variable will only contain the five leftmost characters: 'twent'.

Concat restrictions

 If the destination string is included in the concatenation the it must be the first string!
 The following string concat result is not what you expect:
 str:= str1 + str;

 This is correct:
 str:= str + str1;

 AVRco Compiler-Manual

E-LAB Computers Types - 25

4.1.10 ARRAY

An array is a structured type consisting of a fixed number of components which are all of the same type,
called the component type or the base type. Each component can be explicitly accessed by indices into the
array. Indices are expressions of any scalar type placed in square brackets suffixed to the array identifier,
and their type is called the index type.

1..4 dimensions. One dimension can have up to 61440 ($F000) members. Total size is limited to ca.
60kbytes. Types: bytes, int8, chars, booleans, words, integers, longwords, floats, pointers, procedures.

The definition of an array consists of the reserved word array followed by the index type, enclosed in
square brackets, followed by the reserved word of followed by the component type.

type Day = (Mon,Tue,Wed,Thu,Fri,Sat,Sun);

var WorkHour : array[1..8] of Integer;

Week : array [1. . 7] of Day;

type Players = (Playerl, Player2, Player3, Player4);
 Hand = (One, Two, Pair, TwoPair, Three, Straight, Flush, FullHouse, Four, 5traightFlush);

Bid = array[Players] of byte;

var Player : array[Players] of Hand;
 Pot : Bid;

An array component is accessed by suffixing an index enclosed in square brackets to the array variable
identifier:

Player[Player3] := FullHouse;
Pot[Player3] := 100;
Player[Player4] := Flush;
Pot[Player4] := 50;

As assignment is allowed between any two variables of identical type, entire arrays can be copied with a
single assignment statement.

The definition of an array constant consists of the constant identifier followed by a colon and the type
identifier of a previously defined array type followed by an equal sign and the constant value expressed
as a set of constants separated by commas and enclosed in parentheses.

type Status : array[0..2] of string[7] ;
const Stat : Status = ('active', 'passive', 'waiting');

The example defines the array constant Stat, which may be used to convert values of the scalar type Status
into their corresponding string representations.

The following boolean comparisons would return true:

Stat[0] = 'active'
Stat[1] = 'passive'
Stat[2] = 'waiting'

AVRco Compiler-Manual

26 – Types E-LAB Computers

Multi-dimensional array constants are defined by enclosing the constants of each dimension in
separate sets of parentheses, separated by commas. The innermost constants correspond to the
rightmost dimensions.

type Cube = array[0..1,0..1,0..1] of integer;

const Maze : Cube = (((0, 1) , (2, 3)) , ((4, 5) , (6, 7))) ;

type Tars = array[0..1, 3..4] of byte;

structconst {constant in Rom, at startup copied into Ram}
 ars : Tars = ((0, 1) , ($FE, $FF)) ;

const {constant in Rom}
 arc : array[0..4] of word = (1, 200, 523, 1200, 9999);

var ar1 : array[5..12] of char;
 ar2 : array [6 .. 9, 56 .. 67] of word;
 ar3 : Tars;

x:= ar[1];
ar1[8] := #7;
ars [1, 3] := $7;
ar2 [8, 60] := arc [3] ;

Array-manipulations only for Var and StructConst !

Special construction
Array and Record constants can be read in from a file. The programmer is responsible of the contents of the
file. The file length is not important. If the file is too short, the structure is filled with zeros. If the file is too
long, the read-in is aborted at the Array/Record-limits.

Const Arr1 : array[0..31] of word = 'FileName.ext';

4.1.11 TABLE

1 dimension. Up to 255 members.
Types: bytes, Int8, chars, booleans, words, integers, longwords, floats, pointers, procedures.
TABLE is a specialized array which can contain look-up tables. The table length is limited on power of 2, to
have a very fast access:
0..3, 0..7, 0..15, 0..31, 0..255.
The access automatically wraps, for example: an access to a table [0..7] with an index of 8 the access wraps
to the table index 0. Tables have to be defined as global variables to assure a fast access. Table constants
in ROM are not possible with AVR, but structured constants in ROM and EEprom are possible. Accesses to
a table must be done with GetTable and SetTable.

structconst {constant in Rom, at startup copied into Ram}
 Table1 : Table[0..3] = (0, $45, $A5, $FF);

var tb1 : Table[0..15] of char;
 tb2 : Table[0..127] of word;

 x:= GetTable (tb1, 1);
 SetTable (tb1, x, $35);
 x:= GetTable (Table1, z);

 AVRco Compiler-Manual

E-LAB Computers Types - 27

4.1.12 RECORD

A record is a structure consisting of a fixed number of components, called fields. Fields may be of different
type and each field is given a name the field identifier, which is used to select it.

Record Definition

The definition of a record type consists of the reserved word record succeeded by a field list and terminated
by the reserved word end. The field list is a sequence of record sections separated by semi-colons, each
consisting of one or more identifiers separated by commas, followed by a colon and either a type identifier or
a type descriptor. Each record section thus specifies the identifier and type of one or more fields

type tMonths = (Jan,Feb,Mar,Apr,May,Jun,July,Aug,Sep,Oct,Nov,Dec);
 Date = record
 Day : byte;
 Month : tMonths
 Year : word;
 end;
var
 Birth : Date;
 WorkDay : array[1..5] of date;

Day, Month and Year are field identifiers. A field identifier must be unique only within the record in which it is
defined. A field is referenced by the variable identifier and the field identifier separated by a period.

Birth.Month := Jun;
Birth.Year := 1950;
WorkDay[Current] := WorkDay[Current-1];

Note that, similar to array types, assignment is allowed between entire records of identical types. As record
components may be of any type, constructs like the following record of records of records are possible:

type Tmonths = (Jan,Feb,Mar,Apr,May,Jun,July,Aug,Sep,Oct,Nov,Dec);
 Tname = record
 FamilyName : string[32],
 ChristianNames : array[1..3] of string[16];
 end;

 TRate = record
 NormalRate,
 OverTime,
 NightTime,
 Weekend : Integer;
 end;

 TDate = record
 Day : byte;
 Month : TMonths;
 Year : word;
 end;

 TPerson = record
 ID : TName;
 Time : TDate;
 end;

AVRco Compiler-Manual

28 – Types E-LAB Computers

 Twages = record
 Individual : TPerson;
 Cost : TRate;
 end;

Var Salary, Fee: TWages;

Assuming these definitions, the following assignments are legal:

Salary:= Fee;
Salary.Cost.Overtime := 950;
Salary.Individual.Time := Fee.Individual.Time;
Salary.Individual.ID.FamilyName := Smith;

The definition of a record constant consists of the constant identifier succeeded by a colon and the type
identifier of a previously defined record type followed by an equal sign and the constant value expressed as
a list of field constants separated by semi-colons and enclosed in parentheses.
The constants must have the same name as in the Type-Declaration.

type Point = record
 X,Y, Z : integer;
 end;

const APoint : Point = (X : 0; Y : 2; Z : 4);

The field constants must be specified in the same order as they appear in the definition of the record type.

Special construction
Array and Record constants can be read in from a file. The programmer is responsible of the contents of the
file. The file length is not important. If the file is too short, the structure is filled with zeros. If the file is too
long, the read-in is aborted at the Array/Record-limits.

Const Rec1 : TWages = 'FileName.ext';

4.1.12.1 WITH Statement for Access to Records
The use of records as described above does sometimes result in rather lengthy statements; it would often be
easier if we could access individual fields in a record as if they were simple variables. This is the function of
the with statement: it 'opens up' a record so that field identifiers may be used as variable identifiers.

A with statement consists of the reserved word with followed by a record variable followed by the reserved
word do and finally a statement. It ends up with the EndWith statement.

Within a with statement, a field is designated only by its field identifier, i.e. without the record variable
identifier.

with Salary do
 Individual := NewEmployee;
 Cost := StandardRates;
endwith;

 AVRco Compiler-Manual

E-LAB Computers Types - 29

4.1.13 PROCEDURE

16 bit (usually, depending on processor), parameter, word, address.
“procedure“ declares a variable, which contains the address of a procedure.

var proc : procedure;

procedure indirtest;
begin
 ...
end;

begin {Main Program}
 ...
 Proc:= @indirtest; {occupy variable with address of indirtest}
 Proc; {call indirtest}
 ...
end.

4.1.14 WORD

16 bit, 2 Bytes, 0..65535

Words are whole numbers. They are limited to a range of 0 through 65535.
Words occupy two bytes in memory: low byte (lower address), high byte (higher address)

var w : word;
 w1[24] : word; {word at address 24}

4.1.15 INT8 or ShortInt

8bit, 1 Byte, -128..+127

Short integers (Int8) are whole numbers. They are limited to a range of - 128 through +127.
Short integers occupy one byte in memory.

4.1.16 INTEGER

16bit, 2 Bytes, -32767..32768

Integers are whole numbers. They are limited to a range of - 32768 through 32767.
Integers occupy two bytes in memory: low byte (lower address), high byte (higher address)

var i : integer;
 w[@i] : word; { word with the same address as i }

AVRco Compiler-Manual

30 – Types E-LAB Computers

4.1.17 POINTER

16 bit (usually, depending on processor), 2 Bytes

Variables discussed up to now have been static, i.e. their form and size is pre-determined and they exist
throughout the entire execution of the block in which they are declared. Programs, however, frequently
need the use of a data structure which varies in form and size during execution. Dynamic variables serve this
purpose as they are generated as the need arises and may be discarded after use.

Such dynamic variables are not declared in an explicit variable declaration like static variables, and they
cannot be referenced directly by identifiers. Instead, a special variable containing the memory address of
the variable is used to point to the variable. This special variable is called a pointer variable.

Sometimes it makes sense to use this type if you have not to access a variable by its name, but there is the
possibility to work with the address of a variable.

An unqualified pointer always assigns to one byte, so it is “standardized“. An exception is the type
conversion with p := pointer(word1);. This generated pointer is always untyped and is only qualified with an
assignment to another pointer-variable. It is always better to work with qualified pointers. Therefor a private
type is generated with

type tpb : pointer to Byte;

var pb : tpb;

pb:= tpb (anyPointer);

A value to a pointer has to be assigned with address-operator @. A pointer is made invalid with the
assignment p:= nil. The pointer can itself be manipulated like every other variable. But be careful, a
manipulated variable can also point to nirvana!!

A check of the validity of pointers (destination address) does not take place. The programmer should be very
careful with pointers. If a pointer has possibly lost its validity, NIL should be assigned to it, to be able to test
its validity when next used. But this must happen in the software, the compiler is not able to support this.
Greetings from ‘C’!

type tpw : pointer to word;

var p : pointer to word; {always points to a word}
 pb : pointer; {points to a byte}
 pw : tpw; {points to a word}
 b1 : byte;
 b2 : byte;
 w : word;

Function DecWord (p : tpw) : word;
begin
 inc (p^);
 return(p^);
end;

 AVRco Compiler-Manual

E-LAB Computers Types - 31

Procedure IncByte (b : pointer to byte);
begin
 inc (b^);
 p:= pointer (b1);
end;

{Main}
...
pb:= @b1;
incByte (pb);
pb:= @b2;
incByte (pb);
p:= @w;
p^:= 1234;
p:= nil;

Sometimes it’s necessary to declare a pointer before the object/type to which it points to, is declared. (e.g.
linked lists). Then the pointer declaration must be defined with the attribute “Forward“. The main declaration
follows after the necessary type is defined:

type TPtr = pointer; forward; // preliminary declaration
 TRec1 = record
 ...
 Ptr1 : TPtr;
 end;
 TPtr = pointer to Trec1; // main declaration

Basically a pointer points into to address area of the CPU. With the AVR this is: Register-Page, IOPage,
InternRam-Page and ExternRam-Page. All these areas reside in the linear address area from $0000 to
$FFFF. As long as the programmer takes care of his pointer arithmetic, there are no problems (or rather: not
many. Greetings from 'C'). But you cannot directly access the Eeprom or Flash with a pointer. The Compiler
cannot recognize that the result of a pointer manipulation now should point into the Flash. The Compiler
must be informed that the access does not result in the normal address area. To this end the Compiler
exports some predefined pointer types which can be used for a quasi type conversion:

EEpromPtr (pointer)
FlashPtr (pointer)
UsrDevPtr (pointer)
BankDevPtr (bank; pointer)

EEpromPtr
An access by an EEpromPtr(pointer) is redirected into the EEprom with the address which the pointer
contains. If the pointer points to $100, the access is done to the address $100 in the EEprom.

FlashPtr
An access by an FlashPtr(pointer) is redirected into the ROM with the address which the pointer contains. If the
pointer points to $100, the access is done to the address $100 in the Flash.

UsrDevPtr
An access by an UsrDevPtr(pointer) is redirected into the UserDevice with the address which the pointer
contains. If the pointer points to $100, the access is done to the address $100 in the UserDevice.

AVRco Compiler-Manual

32 – Types E-LAB Computers

BankDevPtr
An access by a BankDevPtr(bnk; pointer) is redirected into the Banked Device with the bank that bnk contains
and the address which the pointer contains. If the pointer points to $100, and bnk contains 2 the access is
done to the address $100 in bank 2 of the Banked Device.

type TRec1 = record
 Rbb : byte;
 Rww : word;
 end;
 TPtr1 = pointer to TRec1;

const FRec1 : TRec1 = (Rbb : $AA; Rww : $1234);

{$EEPROM}
var ERec1 : TRec1;

{$UDATA}
var URec1 : TRec1;

{$BDATA 2}
var BRec1 : TRec1;

{$IDATA}
var IRec1 : TRec1;
 Ptr1 : TPtr1;
 bb : byte;
 ww : word;
...
...

begin
 Ptr1:= @FRec1;
 bb:= FlashPtr (Ptr1)^.Rbb;
 ww:= FlashPtr (Ptr1)^.Rww;

 Ptr1:= @ERec1;
 EEpromPtr (Ptr1)^.Rbb:= $ff;

 Ptr1:= @URec1;
 UsrDevPtr (Ptr1)^.Rbb:= $ff;

 Ptr1:= @BRec1;
 BankDevPtr (2, Ptr1)^.Rbb:= $ff;

 Ptr1:= @IRec1;
 Ptr1^.Rbb:= $ff;
end.

4.1.17.1 Pointer AutoIncrement
One of the very few advantages of C over Pascal is the AutoIncrement of Pointers. This is also possible with
AVRco by writing Pointer^++
The condition to use pointers with AutoIncrement is that they must be located either in the global space or
local space (procedure/functions frame). You cannot manipulate pointers residing in the flash (obviously), in
EEprom etc.
The pointer must be dereferenced. This means a read or write data move must be done with the pointer
using the "^". An exception is pointer++;
Only typed pointers can be used with AutoIncrement.

 AVRco Compiler-Manual

E-LAB Computers Types - 33

The target/source of the pointer can be global, local, Flash or EEprom variables and constants.
But pay attention to the fact that the pointer always becomes incremented by the data size of the moved
object. For a byte this is 1, with words this is 2, with arrays this is sizeOf(Array) and with records this is also
sizeOf(record). With strings the increment is not length(string) but sizeOf(string).

This all is the difference to inc(pointer) where the pointer is always incremented by 1.
By the use of the AutoIncrement of pointers short and fast move loops can be build..

pointer^++:= variable;
pointer^++:= contant;
EEpromPtr(pointer)^++:= variable;
variable:= pointer^++;
variable:= FlashPtr(pointer)^++;
variable:= EEpromPtr(pointer)^++;
pointer1^++:= pointer2^++;
etc.

4.1.18 LONGWORD

32bit, 4 Bytes, 0..4294967295
Longwords are whole numbers. They are limited to a range of 0 through 4294967295.
Longwords occupy four bytes in memory.

var lw : longword;

4.1.19 WORD64 (*4*)(*P*)

64bit, 8 Bytes, 0..18446744073709551615

Word64 are whole numbers. They are limited to a range of 0 through 18446744073709551615.
Word64 occupy eight bytes in memory.

var w64 : word64;

Attention:
64 bit types like word64, int64 and double are not available by default. The corresponding type
has to be explicitly imported.

from System Import Word64, Double;

4.1.20 LONGINT

32 bit, 4 Bytes, -2147483648..2147483647

LongInts are whole numbers. They are limited to a range of -2147483648 through 2147483647.
LongInts occupy four bytes in memory.

var li : longint;

AVRco Compiler-Manual

34 – Types E-LAB Computers

4.1.21 INT64 (*4*)(*P*)

64bit, 8 Bytes, -9223372036854775808 ... 9223372036854775807

Int64 are whole numbers. They are limited to a range of
-9223372036854775808 through 9223372036854775807. Int64 occupy eight bytes in memory.

var i64 : int64;

Attention:
64 bit types like word64, int64 and double are not available by default. The corresponding type
has to be explicitly imported.

from System Import Int64, Double;

4.1.22 FLOAT

32 bit, 4 Bytes, 6..9 Digits, 10E-38..10E38

var f : float;

Attention:
32 bit types like longint, longword and float are not available by default. The corresponding type
has to be explicitly imported.

from System Import LongInt, Float;

4.1.23 DOUBLE (*4*)(*P*)

64bit, 8 Bytes, 10E-308..10E308

var d : double;

Attention:
64 bit types like word64, int64 and double are not available by default. The corresponding type
has to be explicitly imported.

from System Import Int64, Double;

4.1.24 ENUM

8bit, 0..255 Enumeration

type eKey = (Key1, Key2, Key3); {type declaration}
var Keys : eKey; {variable of type eKey}
 {runs from Key1..Key3}

if Key2 in Keys then ...

It's possible to change enumerations with the INC and DEC procedures.
The upper and lower limits are taken in account, but unlike SUCC and PRED these functions wrap around at
the limits.

 AVRco Compiler-Manual

E-LAB Computers Types - 35

Enumeration can also be defined with holes or gaps:

type
 tEnum = (aaa, bbb, ccc=100, ddd, eee=200, fff);
 0 1 100 101 200 201 <- numerical values

4.1.25 SEMAPHORE

8bit, Byte is imported by processes and tasks

var sema : Semaphore;

Semaphores are specialized variables and serve for the process-synchronization.
A process or a task can increment or decrement a semaphore. A value > 0 may mean for a task/process for
example that a certain function/procedure is disabled.

An access can only be done with the corresponding special functions/procedures, because the access has
to be secured from interrupts (task changes).

State of a Semaphore (byte)
Function SemaStat (sema : semaphore) : byte;

Incrementing of a Semaphore
Procedure IncSema (sema : semaphore);

Decrementing of a Semaphore
Function DecSema (sema : semaphore) : boolean;

Process is waiting for Semaphore > 0
Function WaitSema (sema : semaphore [; timeout: word]) : boolean;

The TimeOut parameter is optional. If omitted the process waits until the event occurs. The same is true if
TimeOut is set to 0000. With a value > 0 the Wait is terminated after (TimeOut * SysTicks).
The function result becomes true if there was no Timeout.
A TimeOut in Tasks is not possible. This parameter is ignored.

4.1.26 PIPE

generic is mainly used by processes or tasks

4.1.26.1 Pipe for ordinal Types
A pipe is a block of memory, which is organized as a so called FIFO (First in, First Out) or queue. The pipe
can be a container for all ordinal types (boolean..longint) and float. The length of the pipe or the possible
number of parameters/variables is max. 255. An access to pipes can only be done with the corresp.
functions/procedures, because the access has to be secured from interrupts (task changes).

Declaration:
var Pipe1 : Pipe[16] of byte; // int8, boolean, word, integer etc.

State of a Pipe (byte) = number of available parameters
Function PipeStat (pipe1 : pipe) : byte;
The function PipeStat is also applicable to RxBuffer, RxBuffer1, -2, -3 and TxBuffer, TxBuffer1, -2, -3
of the serial interfaces.

State of a Pipe (boolean)
Function PipeFull (pipe1 : pipe) : boolean;

AVRco Compiler-Manual

36 – Types E-LAB Computers

Add Parameter to Pipe
Function PipeSend (pipe1 : pipe; parm : type) : boolean;

Fetch Parameter from Pipe
Function PipeRecv (pipe1 : pipe) : type;
Waits until the pipe at least contains one parameter and then returns the oldest entry.

Function PipeRecv_ND (pipe1 : pipe) : type;
This function allows the read out of a pipe without removing or changing the pipe contents
"non-destructive-readout".

Empty Pipe
Procedure PipeFlush (pipe1 : pipe);

Process or Task waiting for Pipe
Function WaitPipe (pipe1 : pipe [; timeout: word]) : boolean;
The TimeOut parameter is optional. If omitted the process waits until the event occurs. The same is true if
TimeOut is set to 0000. With a value > 0 the Wait is terminated after (TimeOut * SysTicks).
The function result becomes true if there was no Timeout.

4.1.26.2 Pipe of Bit
To save the limited resources and memory the Pipe type is able to handle bits:

BitPipe : pipe[xx] of bit;

The behavior of this Pipe is the same as with a Pipe of boolean. But only one bit is used for each entry.
Because of this each 8 Bits result in a memory usage of one byte. The access follows the FIFO
principle. The first bit written to the pipe is also the first bit read from the pipe.
A pipe can handle upto 248 bits which results in a maximal memory consumption of 36 Bytes.

4.1.26.3 Pipe for complex Types
It's possible to build pipes of strings, arrays and records.
To read these complex types the function PipeRecv is expanded:

Function PipeRecv (Pp : Pipe; var Value : PipeType{record, array, string} [, doWait : boolean]) : boolean;
The parameter Record, Array or String must be an already defined type.
The name of the target variable must be passed as the second parameter. With the optional switch "doWait"
it's possible to define whether the function returns with a FALSE, if nothing there, or waits in a loop until the
pipe has any content. If the switch "doWait" is omitted the function acts like the "doWait" is defined as true
and the result is always a true.

Function PipeRecv_ND (P : Pipe; var Value : PipeType{record, array, string} [, doWait : boolean]) : boolean;
The same as the function above except that the read out of a pipe doesn’t remove or change the pipe
contents. "non-destructive-readout".

4.1.27 SYSTIMER

16 bit, word is imported by SysTick
Variable is decremented by every system tick, if it is > 0.

var Timer1 : SysTimer[, UpCount]; {variable of type SysTimer}

SetSysTimer (Timer1, 50000);
repeat until GetSysTimer (Timer1) = 0;

 AVRco Compiler-Manual

E-LAB Computers Types - 37

(better is ->)

repeat until isSysTimerZero (Timer1);

For simple time measure functions an upcounter is very useful. This timer must be started with
ResetSysTimer. The system now increments this timer with each SysTick. An overflow/wrap is inhibited.
The max value is limited to $FFFF.
The SysTimer functions "GetSysTimer, ResetSysTimer, SetSysTimer" are also applicable to the upcounters,
but the function "isSysTimerZero" obviously is not.

The system supports a total count of max. 16 SysTimer (SysTimer +SysTimer8+SysTimer32).

4.1.28 SYSTIMER8

8 bit, byte is imported by SysTick
Variable is decremented by every system tick, if it is > 0.

var Timer2 : SysTimer8[, UpCount]; {variable of type SysTimer8}

SetSysTimer (Timer2, 50);
repeat until isSysTimerZero (Timer2);

Interrupts are not disabled during an access. So an access to this Timer type is faster and shorter as the
access to a “SysTimer“.

For simple time measure functions an upcounter is very useful. This timer must be started with
ResetSysTimer. The system now increments this timer with each SysTick. An overflow/wrap is inhibited.
The max value is limited to $FF.
The SysTimer functions "GetSysTimer, ResetSysTimer, SetSysTimer" are also applicable to the upcounters,
but the function "isSysTimerZero" obviously is not.

The system supports a total count of max. 16 SysTimer (SysTimer +SysTimer8+SysTimer32).

4.1.29 SYSTIMER32

32 bit, 4 bytes is imported by SysTick
Variable is decremented by every system tick, if it is > 0.
So extreme long times/delays can be achieved. If used, LongWords must be imported.

from System import longword;
var Timer3 : SysTimer32[, UpCount]; {variable of type SysTimer32}

SetSysTimer (Timer3, 100000);
repeat until isSysTimerZero (Timer3);

For simple time measure functions an upcounter is very useful. This timer must be started with
ResetSysTimer. The system now increments this timer with each SysTick. An overflow/wrap is inhibited.
The max value is limited to $FFFFFFFF.
The SysTimer functions "GetSysTimer, ResetSysTimer, SetSysTimer" are also applicable to the upcounters,
but obviously the function "isSysTimerZero" is not.

The system supports a total count of max. 16 SysTimer (SysTimer +SysTimer8+SysTimer32).

AVRco Compiler-Manual

38 – Types E-LAB Computers

4.1.30 PIDCONTROL

Pseudo-Record
PID-controller, is often used in technical applications, for example temperature controlling, servos, rotation
speed controller, etc.

PID-controller have two input parameters: nominal value = the required value and the actual value.
Four parameters, which are usually only adjusted once, are pFactor, iFactor, dFactor and sFactor.
The controller output, which belongs to the actuator (heating, motor etc), is calculated by the function
‘execute’.
The controller type is determined by the two initializing parameters ‘iLimit’ and ‘dIntVal’.
The internal variablesw pValue, iValue, dValue can be read but should not be changed.

iLimit
is of type longword (0..100000) and determines the maximal size of the I-clipping. If iLimit = 0 the Integral-
value will not be calculated and will be discarded (e.g. PD-controller).

dIntVal
is of type byte (0, 1, 2, 4, 8, 16, 32) and determines the degree step of calculation of the D-clipping
(gradiation).
If dIntVal = 0 the Differential-value of the controller will not be calculated and will be decarded (e.g. PI-
controller).
If the value = 1, the gradiation will be calculated from the last error value up to the actual error value.
In the remaining cases a corresponding array is introduced. So it is possible to calculate the gradiation with
just a few values required.

The controller itself calculates with longinteger. In practice it is improbable to get an overflow with execute.

var Pid1 : PIDcontrol[iLimit, dIntVal];

{Init}
Pid1.pFactor:= 1000;
Pid1.iFactor:= 2500;
Pid1.dFactor:= 678;
Pid1.sFactor:= 10000;

{Run}
Pid1.Actual:= 500;
Pid1.Nominal:= 550;
PWM1:= Pid1.Execute;

 AVRco Compiler-Manual

E-LAB Computers Operators - 39

4.2 Operators

4.2.1 NOT

a:= not a; {inverting bits of var a }

Only the types byte, Int8, boolean, integer, word, longint and longword are permitted as operands. If the
variable 'a' has the value $FF in the example above, then it has the value $00 after the operation. See also
the Negate function.

4.2.2 DIV

a:= a div b; {integer division}

Only the types byte, Int8, integer, word, longint and longword are permitted as operands. If the variable 'a'
has the value $10 and 'b' the value $02 in the example above, then 'a' has the value $08 after the operation.

4.2.3 MOD

a:= a mod 5; {Modulo of integers}

Only the types Byte, Int8, Integer, word, Longint and Longword are permitted as operands. If the variable 'a'
has the value $06 in the example above, 'a' has the value $01 after the operation. Modulo is the remainder
after integer division.

4.2.4 AND

a:= a and $0f; {And Mask}

Only the types Byte, Int8, Integer, word, Longint and Longwords are permitted as operands. If the variable
'a' has the value $13 in the example above, then 'a' has the value $03 after the operation. Thus the result of
and is those bits that are set in the operand and in the mask.
'And' is also used with boolean functions.

if (a > b) and (a < c) then ... endif;

4.2.5 OR

a:= a or $30; {Or Mask}

Only the types Byte, Int8, Integer, word, Longint and Longwords are permitted as operands. If the variable
has 'a' has the value $09, then 'a' has the value $39 after the operation. 'Or' is additional setting the bits in
the result, which were set in the mask.

'Or' is also used with boolean functions.

if (a > b) or (a < c) then ... endif;

4.2.6 XOR

a:= a xor 1; {Xor Mask}

Only the Types Byte, Int8, Integer, word, Longint and Longword are permitted as operands. If the variable
has the value $01, then 'a' has the value $00 after the operation. 'Xor' is exclusive or, setting bits that are the
same in the mask and in the operand to zero, and those that are different to one.

AVRco Compiler-Manual

40 – Operators E-LAB Computers

4.2.7 SHL

a:= a shl 5; {shift left}

Only the types Byte, Int8, Integer, word, Longint and Longword are permitted as operands. If the variable has
the value $03, then 'a' has the value $60 after the operation. 'SHL' shifts all Bits in the operand left and filling
the bits from right with 0.

4.2.8 SHLA

a:= a shla 5; {shift left arithmetically}

Only the Types Byte, Int8, Integer, word, Longint and Longword are permitted as operands. If the variable ‘a’
has the value $03 in the example above, then ‘a’ has the value $60 after the operation. ‘SHLA’ shifts all bits
within the operand to left and fills the bits from right with ’0’. In contrast to ‘SHL’ the highest value bit (sign bit)
stays unchanged. So it is ensured that a negative number stays negative.

4.2.9 SHR

a:= a shr 4; {shift right}

Only the types Byte, Int8, Integer, word, Longint and Longword are permitted as operands. If the Variable 'a'
has the value $81, then 'a' has the value $08 after the operation. 'SHR' shifts all Bits in the operand right and
fills up the bits from left with 0.

4.2.10 SHRA

a:= a shra 4; { shift right arithmetically}

Only the Types Byte, Int8, Integer, word, Longint and Longword are permitted as operands. If the variable ‘a’
has the value $71 in the example above, then ‘a’ has the value $07 after the operation. ‘SHRA’ shifts all bits
within the operand right and fills the bits from left with ’0’. In contrast to ‘SHR’ the highest value bit stays
unchanged. Thus it is ensured, that a negative number stays negative.

4.2.11 ROL

a:= a rol 4; {rotate left}

Only the Types Byte, Int8, Integer, word, Longint and Longword are permitted as operands. If the Variable 'a'
has the value $81, then 'a' has the value $18 after the operation. 'ROL' rotates all bits to the left. All bits are
retained, but change their positions

4.2.12 ROR

a:= a ror x; {rotate right}

Only the types Byte, Int8, Integer, word, Longint and Longword are permitted as operands. If the Variable 'a'
has the value $01, so 'a' has the value $02 after the operation. 'ROR' rotates all bits to the right. All bits are
obtained, but change their positions.

 AVRco Compiler-Manual

E-LAB Computers Operators - 41

4.2.13 IN

if v2 in ['a'..'g'] then ... {analyze Enum}
if Key in [Key2..Key4] then ... {analyze Enum}
if x in[45..56] then ..

All ordinal types and enums are permitted as arguments Byte, Char, ... LongInt, as well as float.

4.2.14 +

a:= a + 5; {add}

As operands only the types Byte, Int8, Integer, word, Longint, Longword and Float are permitted. A special
case is a string-operation.

4.2.15 -

a:= a - b; {subtract}

As operands only the types Byte, Int8, Integer, word, Longint, Longword and Float are permitted. If the minus
should be used as sign, this has to be enclosed by a bracket.

a:= a * (- b); {multiply with negative value}

4.2.16 /

a:= a / 5.5; {Float Division}

4.2.17 *

a:= a * %11000100; {Multiplication}

f:= f * 1.5;

AVRco Compiler-Manual

42 – unechte Operatoren E-LAB Computers

4.3 Pseudo Operators

4.3.1 @

p:= @a; {memory location address}

Only variables, procedures and functions are permitted as operands, because only they have a physical
address. After the operation ‘p’ contains the address of ‘a’. Actually '@' is not an operator, but a system
function. The destination normally is a pointer.

4.3.2 ^

x:= p^; {variable from pointer}

Only variables of the type pointer are permitted as operands. After the operation ‘x’ contains the value,
which is in the memory location ‘p’ that points to. Actually '^' is not an operator, but a system function.

Further a prefixed '^' in front of a char is the instruction for the compiler to interpret the following symbol as an
ANSI control character.

A ^G , for example, produces the so called bell-symbol (hex 09). The compiler executes the following
operation: result: = 'G' - '@'. ($49 - $40).

const Bell = ^G; {Control G}

4.3.3 #

const LF = #10; {Line Feed}

The number-symbol is another way (in addition to ^), to define control symbols (non representable letters).
The argument, which follows the symbol, must be a decimal number on the area of 0..255. It defines the
following number as a character.

'#' is actually not an operator, but a system function.

4.3.4 $

const x1 = $10; {decimal 16}

The dollar symbol defines the following constant to a hexadecimal value.

4.3.5 %

const b1 = %10100101; {hex $A5, decimal 165}

Percent symbol defines the following constant to a binary value.

 AVRco Compiler-Manual

E-LAB Computers User definined Elements - 43

4.4 User Defined Language Elements

4.4.1 Identifier

Identifiers are used to denote labels, constants, types, variables, procedures, and functions. An identifier
consists of a letter followed by any combination of letters, digits, or underscores. An identifier is limited in
length to 64 characters, and all characters are significant.

PASCAL
square
persons_counted
BirthDate
3rdRoot // illegal, starts with a digit
Two Words // illegal, must not contain a space

As the AVRco does not distinguish between upper and lower case letters, the use of mixed upper and lower
case as in birthDate has no functional meaning. It is nevertheless encouraged as it leads to more legible
identifiers. VeryLongIdentifier is easier to read for the human reader than VERYLONGIDENTIFIER

4.4.2 Numbers

Numbers are constants of byte, Int8, integer type or of float type. Integer constants are whole numbers
expressed in either decimal, hexadecimal or binary notation. Hexadecimal constants are identified by being
preceded by a dollar sign: $1234 is a hexadecimal constant. Binary constants are preceded with a
percentage sign: %1011100 is a binary constant.

The decimal longint range is -2147483648 to +2147483647, the hexadecimal integer (longint) range is $0 to
$FFFFFFFF. The binary integer (longint) range is %0 to %11111111111111111111111111111111 (32 * 1).

12345
-1
$123
$ABC
$123G // illegal, G is not a legal hexadecimal digit
%1011
%1003 // illegal, 3 is not a legal binary digit
1.2345 // illegal as integer, contains a decimal part

4.4.3 Strings

A string constant is a sequence of characters enclosed in single quotes:

'This is a string constant’

Strings containing only a single character may be of the standard type char. The actual type is determined by
the context.

'PASCAL'
'You''ll see'
''

As shown in the examples, a single quote within a string is written as two consecutive quotes.
The quotes enclosing no characters, denoting the empty string - is compatible only with string types
(not with the type char).

AVRco Compiler-Manual

44 – User definined Elements E-LAB Computers

4.4.4 Control Characters

The AVRco also allows control characters to be embedded in strings.
The # symbol followed by an byte constant in the range 0..255 denotes a character of the corresponding
ASCII value.

The AVRco allow the use of the ^ character followed by an alpha character to denote control
characters.

#10 // ASCII 10 decimal (Line Feed).
#$1B // ASCII 1B hex (Escape).
^G // ASCII 07 hex (Bel)

Sequences of control characters may he concatenated into strings by writing them using a + between the
individual characters:

#13 + #10
#27 + #20

Control characters may also be mixed with text strings:

'Waiting for input!’+#7+#7+#7+#7+’Please wake up'

4.4.5 Comments

A comment may be inserted anywhere in the program where a delimiter is legal. It is delimited by the
curly braces { and }, which may be replaced by the symbols (* and *).
It is also possible to use the symbols // to comment the remainder of the line as can be done in the “C”
language.

{This is a comment}
(* also a comment *)

Curly braces may be nested within curly braces, and (* *) may be nested within (*. *).
Curly braces may nested within (* *) and vise versa, thus allowing entire sections of source code to be
commented away, even if they contain comments.

 AVRco Compiler-Manual

E-LAB Computers Expressions - 45

4.5 Expressions

Expressions are algorithmic constructs specifying rules for the computation of values. They consist of
operands, variables, constants, and function designators combined by means of operators as defined in the
following.

4.5.1 Operators

1) Operators fall into five categories, denoted by their order of precedence:
2) Unary minus (minus with one operand only)
3) Not operator.
4) Multiplying operators: *, /, div, mod, shl, shr.
5) Adding operators: +, -, or, and, xor.
6) Relational operators: =, < > , > , < , <= ,>= , in.

Sequences of operators of the same precedence are evaluated from left to right. Expressions within
parentheses are evaluated first and independently of preceding or succeeding operators.
The operators must be the same type. There is no automatic type casting.

Attention
The order of the operators (* AND SHR etc.) is not completely implemented yet. So please use always
parentheses in conjunction with expressions.

4.5.1.1 Unary Minus
The unary minus denotes a negation of its operand which may be of Float, Longint, Int8 or Integer types.

4.5.1.2 Not Operator
The not operator negates (inverses) the logical value of its Boolean operand:
not True = False
not False = True
In AVRco Pascal the “not” operator can be used to invert a value if the argument in of type byte, integer,
longint, word or longword.

4.5.1.3 Multiplying Operators
Operator Operation Types
* multiplication Float, Longint, Longword, Word, Integer, Int8, Byte, Bitset
/ division Float, Bitset
div division Longint, Longword, Word, Integer, Int8, Byte
mod modulus Longint, Longword, Word, Integer, Int8, Byte
and arithmetic and Longint, Longword, Word, Integer, Int8, Byte
and logical and Boolean
shl shift left Longint, Longword, Word, Integer, Int8, Byte
shr shift right Longint, Longword, Word, Integer, Int8, Byte
rol rotate left Longint, Longword, Word, Integer, Int8, Byte
ror rotate right Longint, Longword, Word, Integer, Int8, Byte

12 * 34 // = 408
123 / 4 // = 30.75
123 div 4 // = 30
12 mod 5 // = 2
True and False // = False
12 and 22 // = 4
2 shl 7 // = 256
256 shr 7 // = 2

AVRco Compiler-Manual

46 – Expressions E-LAB Computers

4.5.1.4 Adding Operators
Operator Operation Types
+ addition Float, Longint, Longword, Word, Integer, Int8, Byte, String, Char, Bitset
- subtraction Float, Longint, Longword, Word, Integer, Int8, Byte, Bitset
or arithm. or Longint, Longword, Word, Integer, Int8, Byte, Bitset
or logical or Boolean
xor arithm. xor Longint, Longword, Word, Integer, Int8, Byte
xor logical xor Boolean

123+456 // = 579
456-123 // = 333
True or False // = True
12 or 22 // = 30
True xor False // = True
12 xor 22 // = 26

4.5.1.5 Relational Operators
The relational operators work on all standard scalar types: Float, Longword, Longint, Word, Integer, Boolean,
Char, Int8, and Byte. The type of the result is always Boolean, i.e. True or False.

= equal to
<> not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

a = b // true if a is equal to b
a <> b // true if a is not equal to b
a > b // true if a is greater than b
a < b // true if a is less than b
a >= b // true if a is greater than or equal to b
a <= b // true if a is less than or equal to b

A comparison of record and array types is also possible.
In this case the variables must consist of the same type. This means they must be predefined as types:

Type TRec = record
 ...
 end;

var Rec1, Rec2 : TRec;

if Rec1 <> Rec2 then ...
bool := Rec1 = Rec2;

4.5.2 Function Designators

A function designator is a function identifier optionally followed by a parameter list, which is one or more
variables or expressions separated by commas and enclosed in parentheses. The occurrence of a function
designator causes the function with that name to be activated. If the function is not one of the pre-defined
standard functions, it must be declared before activation.

Z:= func1(x); // assume func1 is a declared function returning a value
F:= sqr(a); // sqr is a builtin function returning the square of a value

 AVRco Compiler-Manual

E-LAB Computers Keywords - 47

4.6 Keywords

4.6.1 PROGRAM

Starting the program. A particular form of program framework is necessary. This starts with 'Program name'
and ends with 'End.'

 Program Test;
 Device ... {hardware declaration}
 Import ... {system Functions}
 from system Import ... {types and functions}
 Define ... {hardware definition}
 Implementation {program start}
 const ... {constant declaration}
 var .. . {variable declaration}

 Procedure System_Init; {private initialize}
 begin
 ...
 end;

 Interrupt Timer1; {interrupt declaration}
 begin
 ...
 end;

 Process Pxx (14,20 : iData); {process declaration}
 begin
 ...
 end;

 Task Txx (iData); {task declaration}
 begin
 ...
 end;

 Procedure ABC (z : integer); {procedure head}
 Var xy : byte;
 begin
 ...
 end;

 Function CDE : boolean; {function head}
 Var a, b : byte;
 begin
 ...
 Return(a > b); {result of the function}
 end;

 begin {main = main program}
 ABC (i);
 x:= CDE;
 end.

AVRco Compiler-Manual

48 – Keywords E-LAB Computers

Comment:

The standard version of the compiler has no linker. So it is not possible, to introduce units or to link extern
code. At first sight this looks like a limitation. But in practice this is not really a disadvantage, because the
generated code and so the program size is limited by the relative small program memory (typ. 8kB) of the
destinated CPU.
Frequently recurring program parts can be included with help of the compiler switch “Include“ {$I ... } and {$J..}.

Further since the often small program memory does not allow extensive stack- or frame-operations, this limits
the number of local variables in procedures and functions.

In contrast to well-known programmer-systems for the PC (Turbo Pascal, Delphi etc.), in which the compiler
knows exactly the hardware, a compiler for embedded systems (SingleChips) does not know the target
hardware unless it is told.
Hence it is necessary for the programmer to specify the destinated hardware/CPU exactly. Because of the
often limited system resources (RAM/ROM) it must further be considered which functions of the compiler
(system) are really required.

To specify the available hardware and the required functions for the compiler, you need to have diverse
instructions (Device, Import and Define). These three definitions are required and have to be specified in
above mentioned order.

To identify the exact position of RAM and ROM and their sizes as well as the implemented hardware of the
CPU (SCI, ADC etc) the compiler needs a Description-File, which contains this information. These are
provided by E-LAB. An example be found in P90S851 5.dsc, for instance.

4.6.2 DEVICE

Processor and Hardware Specification.

The arguments of “Device“ are totally processor specific. The processor has to be the first entry. Depending
on the processor family the parameters of the compiler are evaluated in the assembler or in both program
parts. In part the data is included in HexFile and is required by the programming unit. The Device parameter
names correspond to the respective processor databooks where they are also specified.

The used CPU-name has to be identical with the processor-control file prefixed by a ‘P’.

Example for a Device instruction of the AVR AT90S2313:

device = 90S2313;

The relevant control file must be named: P90S2313.dsc

 AVRco Compiler-Manual

E-LAB Computers Keywords - 49

4.6.3 IMPORT

Import of Hardware dependant system functions

As mentioned above, the sometimes modest resources of some implemented processors force us to include
only the most necessary system functions. Memory or program intensive and also more exotic functions
have to be imported explicitly.

Certain imports again require an additional specification, which is made by means of the Define section.
Some functions import additional functions automatically, which possibly have to be further specified within
the define section. The description of the separate import functions can be found in the Driver Manuals of
the respective drivers.

Many functions assume corresponding Hardware within the CPU. Systick requires a Hardware Timer and
SwitchPort a port. Further some imports require the SysTick, e.g. ADCport. So SysTick should always be
imported first

Import SYSTICK, SWITCHPORT1;

4.6.4 FROM

With FROM a type, function or procedure is imported from a specific source.

From System Import LongInt, LongWord, Float;

Possible imports of types and system functions:

Double
Float
Int64
LongInt
Word64
LongWord
Processes Sleep, Suspend, Resume, Priority, WaitSema ...
Tasks Sleep, Suspend, Resume, Priority, WaitSema ...
Pipes PipeFlush, PipeSend, PipeRecv, PipeStat, PipeFull ...
Pids pFactor, iFactor, dFactor, sFactor, Actual, Nominal, Execute

From System Import LongInt, LongWord, Float, Pipes;

4.6.5 DEFINE

Parameters for certain import functions

Certain imports require an additional specification, which is specified using Define. Here for example a time
in msec is assigned to the system tick or a physical port address is assigned to the switch port. At the very
least the processor speed ProcClock has to be specified.
The description of the defines can be found in the Driver Manuals of the respective drivers.

Define ProcClock = 4000000; {4 Mhz}
 SYSTICK = 10; {10msec}
 StackSize = 82, iData; {82 Bytes in iData}
 FrameSize = 99, xData; {99 Bytes in xData}
 SwitchPort1 = PortA; {Port Addr}
 SerPort = 9600, Stop2; {9600Bd, 2 Stopbits}
 RxBuffer = 8, iData; {RxBuffer 8 Chars}
 TxBuffer = 10, iData; {TxBuffer 10 Chars}
 PWMpresc1 = 4; {prescaler 4}

AVRco Compiler-Manual

50 – Keywords E-LAB Computers

Tip:
Most of the Defines, which consist of a numeric constant, can be used as a normal constant in the
application.

Define ProcClock = 4000000; {4 Mhz }
 SYSTICK = 10; {every 10msec }
 ...

const myConst = ProcClock div SysTick;
 ...
if ProcClock > 4000000 then ...

It's also possible to make a "Forward" reference at the point where the Define is searched by the compiler.
This forward can be completely defined later in the implementation part of the program or unit.
An example how to do this can be found in the directory ..\E-Lab\AVRco\Demos\Mega161.

4.6.6 Hardware Imports within Units

If Units are imported the definitions can also be placed into an Unit:

Main Program

Import SysTick, MatrixPort, SerPort;

From System Import longword, longint, float, pipes;

Define
 ProcClock = 8000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $0020, iData;
 FrameSize = $0040, iData;
 SerPort = 9600;
 RxBuffer = 16, iData;

DefineFrom unit1; // Unit1 defines the Matrixport

Unit

Unit Unit1;

Define
 MatrixRow = PortD, 4; {use PortD, start with bit4}
 MatrixCol = PinD, 0; {use PinD, start with bit0}
 MatrixType = 3, 4; {3 Rows at PortD, 4 Columns at PinD}

Interface
...

The reserved word "DefineFrom" within the main "Define" block switches the scanning from main program to
the given Unit name, where the scanning of the defines continues.
When the word "Interface" appears the scanning is switched back to the main program.

 AVRco Compiler-Manual

E-LAB Computers Keywords - 51

4.6.7 DEFINE_USR

With "Define_USR" it is possible to define constants which are visible and accessible from every point of the
program and also from each Unit. But there can be only ordinal types.
This Define should only be used if it is absolute necessary because it's not a good programming style.
The better way is to place such globals into a Unit which resides in the last position of the Unit chain.
Then the definitions are also visible from all other parts of the application.

Define SysTick = 10;
 ...
Define_USR myConst = 1;
 myBool = true;

4.6.8 DEFINE_FUSES

As on option the fuse settings for the programmers can be defined in the source. The definition must be
placed between the "Device" and the "Import" statement.
The fuse names correspond with the names in the datasheet of the CPU and the names found in the
programmer software. Spaces in the origin names must be replaced by "_" .

The four possible fuse groups are named
"LockBits0, FuseBits0, FuseBits1, FuseBits2"

All fuses are low-active, this means if a fuse name is given, e.g. "CKSEL1", so this bit will be programmed to
ZERO (low = active).
So fuses which do not appear are always programmed to "1" (high = inactive)!

For example the statement:
 LockBits0 = [];
programs all Lockbits to "1" = inactive.

The statement:
 FuseBits0 = [CKSEL1];
programs the fusebit CKSEL1 to "0", all other bits of this group get the value "1" = inactive.

With creating a new project these fuses are written into the ISPE-file for the programmer's purposes.
If the ISPE file already exists, it will be not changed. The optional define of "OverRide_Fuses" always forces
an ISPE update. OverRide_Fuses must be placed after Define_Fuses.

The programmer software copies the settings in the ISPE-file to the "write boxes" of the fuses.
The general options

program Fuses and
program Lockbits

in Programmer Options are not changed by that, except bthey are explicitely listed here.
The user selects here whether the fuses are witten which each programming cycle.

The NoteBook entry is used only with the professional stand alone programmers.
With an extreme large project count the selection of the desired project becomes for these programmers
somewhat difficult. Because of this a tabbed notebook is implemented. It contains the pages A...N.
The above Define now selects the notebook page where the application must be stored.

ProgMode defines one of the 3 possible programming modes.
Supply instructs the programmer to provide a voltage with a current limit to the target device.

AVRco Compiler-Manual

52 – Keywords E-LAB Computers

AddApp instructs the programmer to load additional hexfiles build by another project:
 AddApp = 'pathname\projectname';
This provides joining a BootApplikation with the Main application in the programmer and both are
programmed together in one operation. See also Demos\BootApp

Device = mega16, VCC = 5;

Define_Fuses
 Override_Fuses; // optional, always replaces fuses in ISPE
 COMport = COM1; // COM2..COM7, USB
 Supply = 4.0, 200; // programmer supplies target, 4.0Volt, 200mA
 LockBits0 = [];
 FuseBits0 = [CKSEL1];
 FuseBits1 = [BOOTRST, BOOTSZ1, SPIEN, OCDEN];
 ProgMode = SPI; // SPI, JTAG or OWD
 ProgFuses = true; // or false – program Fuse Bits (* REV4 *)
 ProgLock = true; // or false – program Lock Bits (* REV4 *)
 ProgFlash = true; // or false – program Flash (* REV4 *)
 ProgEEprom= true; // or false – program Eeprom (* REV4 *)
 AddApp = 'pathname\projectname';

Import SysTick, …;

Define SysTick …

4.6.9 IMPLEMENTATION

Starting the program.
The compiler inserts the reset-code and the initialization at this point. The instruction must exist and has to
be placed directly after the define-bloc.

Normally the global type-, constant-, and var declarations follow the implementation instruction.

 AVRco Compiler-Manual

E-LAB Computers Keywords - 53

4.6.10 TYPE

Starting of a type declaration

A data type in Pascal may be either directly described in the variable declaration part or referenced by a type
identifier. Several standard type identifiers are provided like boolean, byte, word, integer etc., and the
programmer may create his own types through the use of the type definition.
The reserved word type heads the type definition part, and it is followed by one or more type assignments
separated by semicolons. Each type assignment consists of a type identifier followed by an equal sign and a
type.
The definition of ones own types is a good programming practice and makes for better readability.

type tpb = pointer to byte;

 tarr = array[2..7] of byte;
 tpa = pointer to tarr;
 tstr = string[8];
 tps = pointer to tstr;
 tKey = (Forw, Stop, BackW);

var pb : tpb;
 pa : tpa;
 ps : tps;

 str : tstr;
 ar1 : tarr;

 keys : tKey;

 str:= '1234';
 ar1[3]:= 56;

 pb:= tpb (pa);
 pb^:= 0;

 keys:= Stop;

4.6.11 CONST

Starting of a constant declaration

The constant definition part introduces identifiers as synonymous for constant values. The reserved word
const heads the constant definition part, and is followed by a list of constant assignments separated by
semicolons. Each constant assignment consists of an identifier followed by an equal sign and a constant.
Constants can be of any scalar type, strings, records or arrays.

Please note that the scalar constants are not stored into the ROM/FLASH while constant arrays, strings and
records are always stored into the Flash.

AVRco Compiler-Manual

54 – Keywords E-LAB Computers

4.6.11.1 Predefined Constants
The following constants are predefined and may be referenced without previous definition:

Name: Type and values:
False Boolean (boolean value false).
True Boolean (boolean value true).
Pi Float pi
Nil Zero, also zero value pointer.

The following predefined constants have a special construction: they dynamically generate a string which
is constructed of the actual Computer Date or Time:

Date current date as a string constant into the ROM
Time current time as a string constant into the ROM

Const
 Date = 'dd.mm.yy'; // -> '26.12.99'
 Date = 'dd.mm.yyyy'; // -> '26.12.1999'
 Date = 'mm/yy'; // -> '12/99'
 Time = 'hh:mm:ss'; // -> '22:02:06'
 Time = 'hh:mm'; // -> '22:02'
 Time = 'hhmm'; // -> '2202'

Compiler Version

The compiler version can be found with predefined constants and can be used within the program.

CompilerRev : word = rev; // actual Compiler version
CompilerBuild_Y : byte = yy; // actual Compiler build, last 2 digits of current year 00..99
CompilerBuild_M : byte = mm; // actual Compiler build, current month 01..12
CompilerBuild_D : byte = dd; // actual Compiler build, last current day 01..31
CompileYear : byte = yy; // last 2 digits of current year 00..99
CompileMonth : byte = mm; // current month 01..12
CompileDay : byte = dd; // current day 01..31
CompileHour : byte = hh; // current hour 00..23
CompileMinute : byte = mi; // current minute 00..59
PojectBuild : word = pbuild; // number, incremented with each successful project compile

4.6.11.2 Type Specification with Constant Declaration
With Borland Pascal constants have to be defined without a type declaration:
const abc = 1;

The value "1" now can be used as byte, word, integer, float etc. This is similar in the AVRco Pascal.
But sometimes there are problems with such ambiguous values. Because of this the ordinal constants should
be defined like this:

const abc : byte = 1;

See also Compiler Switch {$TYPEDCONST ...}
This fixes the value of a constant to a specific type, in the example above it is an unambiguous byte.

Warning:
in Borland the meaning of this construction is always a structured constant. Do not confuse the two kinds!

 AVRco Compiler-Manual

E-LAB Computers Keywords - 55

4.6.11.3 Constant Load from File
Array and Record constants can be read in from a file. The programmer is responsible of the contents of the
file. The file length is not important. If the file is too short, the structure is filled with zeros.
If the file is too long, the read-in is aborted at the Array/Record-limits.

const name : array[a..z] of byte = 'FileName.ext';

This operation is also valid for records where the record must be a predefined type.
Such file constants can also be placed into the StructConst area of the EEprom.

As on option it is possible that the filesize itself defines the array size.

const name : array = 'FileName.ext';

The array now is defined as array[0..filesize-1] of byte.

const FileConst : array = 'E-LAB.pbmp';

It is possible to add an optional type to a constant which is loaded from a file. This type must be a simple one
(Byte...Float). The Array now is implemented in this manner:

const array[0..(filesize div sizeOf (type))-1] of Type.
const FileConst : array of Char = 'E-LAB.txt';

Constant Records and Arrays can be read out of more than one file for such constants. They will be read
sequentially.

const ArrXYZ : tArrXYZ = 'FN1.ext', 'FN2.ext', 'FN3.ext';

The filenames must be separated by commas. The files are read in until the structure is full. The rest will be
ignored.
If the sum of the file bytes is smaller than the structure size the rest of the structure is filled with zeros.

Example:
An Example can be found in the directory ..\E-Lab\AVRco\Demos\LCD_PCF8548

4.6.11.4 Constant Located in Flash
Byte and Word constants can be placed into the Flash at fixed addresses:

{$PHASE $01EFF}
ASM;
 .WORD 0AA55h
ENDASM;
{$DEPHASE}

The switch $PHASE defines the absolute start address of the following statement block.
This address is a WORD address.
The address $01EFF above results in an absolute Byte-address of $03DFE.

AVRco Compiler-Manual

56 – Keywords E-LAB Computers

It's possible to place ordinal, Array and Record constants into dedicated addresses in the Flash.
This is done as with variables

const wwC[$1000] : byte = 123;
 fltC[$1010] : float = 0.5;

The address follows the name/identifier in []. A type (byte, word etc) is necessary.
With arrays and Records a previously defined type must be used. The address is only checked for Flash
boandaries but not for plausibility. Use absolute addresses with care!

Further it's possible that the compiler generates the placement like it does with variables:

const
 Name[@FLASH] : type = value;

The identifier "FLASH" forces the automatic address generation and placement.

All constant definitions like:

const
 name = 'x';
 name1 = 'xxx';

are placed into the ROM as string constants.
If character literals (immediate constants) must be possible, which are not placed into the ROM, these
must be qualified like this:

const
 name : char = 'x';
 name1 : char = #12;

It is possible to place constants into ROM/FLASH which contain Pointer which also point into the
ROM/FLASH. You find an example in the directory ..\E-Lab\AVRco\Demos\Mega161.
Please note that predefined/user defined arrays and records must always be used. These types must be
defined in the type declaration part of the application.

With all constants in ROM/FLASH the following is always valid:
If the name of the constant never appears in the context (never referenced) the optimizer removes this
constant. If only a pointer is used to reference such a constant and the pointers value is build at runtime, the
constant is probably removed. If so, an assembler error is generated. To avoid this, one can make a dummy
access onto this construct by its name.

Types, constants and variables should be declared completely before the first procedure or function.
Most of the calculations and operators are also permitted for constant declarations.

Complex constants (Arrays and Strings) are stored in ROM (Rom constants). It is therefore necessary for the
programmer that corresponding ROM space is allocated and these values are not normally alterable (read
only).

 AVRco Compiler-Manual

E-LAB Computers Keywords - 57

const x1 = Lo (1234);
 x2 = Hi (1234);
 x3 = 24 * 2;
 x4 = x2 div 2;
 x5 = 12 mod 10;
 x6 = 1 shl 4;
 x7 = 1200 or 34;
 x8 = $FFFF and $AAAA;
 str0 = '1234' + 'R' + #7 + ^L;
 str1 = '1234';
 ch = '9';
 TAB = ^I;
 TB = TAB;
 bits = 3;
 st = 'Hallo';
 x9 = %11001101;
 arr : array[3..7] of byte = (0, 1, 7, 34, 128);

4.6.12 STRUCTCONST

structured Constants

ars : array[3..7] of byte = (0, 1, 7, 34, 128);
px : pointer to word = $40;
sc[$15] : word = $1234; {fixed addr $15}

Structured constants behave like variables at run-time, that means they possess an address and they are
readable and writeable. The value and its address, which are treated as ‘constant’ are stored in the
program (ROM) or EEprom. After the memory initialization the stored values of the constants are loaded
from ROM into RAM to the corresponding address and are now able to be handled as a variable. Because
a structured constant possesses an address, a fixed address can also be optionally assigned by using the
syntax xx [adr] : byte = bb; .

A destination memory area as a compiler switch should always be prefixed before a StructConst declaration,
e.g. {$IDATA}.

A special case is the use of structured constants in EEprom, if EEPROM is available in the processor. The
declaration of such a constant looks like this:

{$EEPROM}
Structconst
 ee1 : word = $1234;
 est : string = ‘hello’;
 eflt : float = 1.23456;
{$IDATA}

All structured constant declarations following the compiler switch EEPROM now are going to the EEprom of
the CPU (until switched back again e.g. with {$IDATA}). These constants stay in the EEprom and will not be
copied into RAM. Instead the compiler generates a special Hex-File which has the ending xxx.eep, where
these constants are held.

The programmer-tools are generally able to read a special Hex-file for the On-chip EEprom and they are
able to program corresponding the CPU. The EEprom is programmed with the assigned values.

The defined constants are in the EEprom and can be read and written like normal variables with help of the
CPU specific addressing algorithms, which are used automatically by the compiler.

AVRco Compiler-Manual

58 – Keywords E-LAB Computers

Special construction
Array and Record constants can be read in from a file. The programmer is responsible of the contents of the
file. The file length is not important. If the file is too short, the structure is filled with zeros. If the file is too
long, the read-in is aborted at the Array/Record-limits.

Structconst Arr1 : array[0..31] of word = 'FileName.ext';

4.6.13 VAR

Starting of the variable declaration

Every variable occurring in a program must be declared before use. The declaration must textually precede
any use of the variable so that the variable is 'known' to the compiler when it is used.

A variable declaration consists of the reserved word var followed by one or more identifier(s),
separated by commas, followed by a colon and a type. This creates a new variable (or variables) of the
specified type and associates it with the specified identifier.

The 'scope' of this identifier is the block (function, procedure) in which it is defined, and any block within that
block. This variable is said to be local to the block in which it is declared, and the variable access from the
outer level becomes impossible. In Pascal the search for an identifier starts from the inner block and ends
global. This means within a Procedure/Function/Unit the search starts with local definitions. If nothing found
the search continues with global definitions, which also includes the definition part of Units.

Types, constants and variables should be declared before the first procedure or function. All variables
require appropriate memory area. For the respective requirements read types above. Variables, which are
not required by the program only waste the limited memory. So a careful handling with these declarations is
necessary. (see also compiler switch $W)

Generally all variables have to be stored in a certain memory page of the CPU. The possible pages are :
Data, iData, iData1, pData, xData and EEprom, EEprom1, depending on the type of processor used (File
xxx.dsc). The actual page is selected by the according compiler switch , e.g. {$IDATA}. Pay attention to
capitalisation! This memory page is preserved until the next re-definition.

Note that the last selected page is valid for the main program and also for some system variables. The
Default value of the term ‘Implementation’ is, if it exists, ‘Data’, or if not ‘iData’.

 AVRco Compiler-Manual

E-LAB Computers Keywords - 59

A global variable can with an attached address be stored at a fixed memory location. This is necessary for
memory-mapped ports and control registers. Here must be observed that the assigned address also is in the
actual memory page (Data, iData, pData, xData, EEprom). Variables without addresses are stored by the
compiler at the next available memory location in the currently selected memory page.

{$DATA}
Var TrisA[$85] : byte; {var at fixed addr.}
 TrisB[$86] : byte; {var at fixed addr.}
 Count : byte; {normal declaration}
 i : integer;
 ix[@i] : byte; {Lo-byte of i}
 iy[@i + 1] : byte; {Hi-byte of i}
 Bit7[@TrisB, 7] : bit; {bit7 in TrisB Reg}

Ar1 : array[2..9] of byte; {array}
St1 : string[6]; {string of length 6}

4.6.14 LOCKED

Global ordinal variables can be extended by the attribute locked in order to protect them against
concurrent accesses of interrupts, processes or tasks. For example if two processes have access to a
global Bit-var, it’s possible that a process starts a read-modify-write access with Incl(Bit) and after the Bit-
read (byte access) is interrupted by the other process. Now this process changes this byte which the first
process has read before. After passing the control back to the first process this one writes back the
manipulated bit (byte-write). This write access overwrites the changes made by the second process.
Locked prevents this by disabling a Task/Process change or interrupt during the access to such protected
vars.
Read-Modify-Write statements are : INC, DEC, INCL, EXCL, SETBIT.

With 8-Bit processors also read or write accesses to global vars, which are greater than a byte, should be
protected if concurrent access is possible. The Locked attribute should be used carefully and rare because
each access generates an overhead of code and cycles. Also the interrupt is disabled during the whole
access.

{$IDATA}
Var i : integer, locked; {protected}

 Bit9[@i, 9] : bit; {bit9 in i}

The integer variable i is locked and protected and also the Bit-variable Bit9, which is derived from i.

Attention:
Continuously polling or read of a “locked“ variable e.g. within a loop can lead to a distortion of Task/Process-
changes, because interrupts are disabled nearly all of the time.

AVRco Compiler-Manual

60 – Keywords E-LAB Computers

Local variables within a procedure are stored in an area known as the frame and they are only accessible
within this procedure because the frame and the variables only exist temporarily. Local variables force an
indexed address calculation and a read/write access with a pointer. That leads to an increase of code and
runtime.
Local variable are not initialized (default). See compiler switch {$ZeroLocVars}

Procedure LocalVars;
Var bb : Byte; {local variable}
begin
 bb:= not bb;
end;

Process and Task variables are programmed like normal local variables, but they always must exist.
So they are static and will be directly addressed like global variables. In spite of this they are not global but
encapsulated, i.e. they are not normally accessible from outside the process in which they are defined.
However if it is necessary manipulate them from outside the process, the process name has to be prefixed
before the variable,

e.g. procName.var1:= 0;

With concurrent accesses by other Processes or Tasks these variables must get the "locked" attribute from
the user (no automatic locking).

{ process-vars and process-stack into xData}
Process DoTheJob (20, 10 : xData);
Var pb : Byte; {local var, but static }
begin
 bb:= not bb;
end;

{$IDATA Main-stack into iData}
begin {Main}
 DoTheJob.pb:= $FF;
end;

 AVRco Compiler-Manual

E-LAB Computers Procedures and Functions - 61

4.7 Procedures and Functions

A Pascal program consists of one or more blocks, each of which may again consist of blocks. One such
block is a procedure, another is a function (commonly called subprograms). Thus, a procedure is a
separate part of a program, and it is activated from elsewhere in the program by a procedure statement. A
function is rather similar, but it computes and returns a value when its identifier, or designator, is
encountered during execution.

C programmers are familiar with the type function. A procedure is a function that does not return any result.
This may seem unnecessary but it actually allows the compiler to produce more compact code.

Parameters

Values may be passed to procedures and functions through parameters. Parameters provide a
substitution mechanism which allows the logic of the subprogram to be used with different initial values,
thus producing different results.

The procedure statement or function designator which invokes the subprogram may contain a list of
parameters, called the actual parameters. These are passed to the formal parameters specified in the
subprogram heading. The order of parameter passing is the order of appearance in the parameter lists.
Pascal supports two different methods of parameter passing, by value and by reference, which determines
the effect that changes of the formal parameters have on the actual parameters.

When parameters are passed by value, the formal parameter represents a local variable in the
subprogram, and changes of the formal parameters have no effect on the actual parameter. The actual
parameter may be any expression, including a variable, with the same type as the corresponding formal
parameter. Such parameters are called a value parameter and are declared in the subprogram heading as
in the following example. This and the following examples show procedure headings; function headings are
treated later.

procedure Example (Num1, Num2 : Number; Str1, Str2 : Txt);

Number and Txt are previously defined types (e.g. Integer and string[255]), and Num1, Num2, Str1, and
Str2 are the formal parameters to which the value of the actual parameters are passed.
The types of the formal and the actual parameters must correspond.
Notice that the type of the parameters in the parameter part must be specified as a previously defined type
identifier. Thus, the construct:

procedure selectIModel (array[1..5] of Integer);

is not allowed.
Instead, the desired type should be defined in the type definition of the block, and the type identifier should
then be used in the parameter declaration.

type
 Range: array[1..5] of integer;

procedure Select (Model: Range);

AVRco Compiler-Manual

62 – Procedures and Functions E-LAB Computers

When a parameter is passed by reference, the formal parameter in fact represents the actual parameter
throughout the execution of the sub program. Any changes made to the formal parameter are thus also
made to the actual parameter, which must therefore be a variable. Parameters passed by reference are
called a variable parameters, and are declared as follows:

procedure Example (var Num1,Num2: Number)

Value parameters and variable parameters may he mixed in the same procedure as in the following:

procedure Example (var Num1, Num2 : Number; Str1, Str2 : Txt);

in which Num1 and Num2 are variable parameters and Str1 and Str2 are value parameters.

All address calculations are done at the time of the procedure call. Thus, if a variable is a component of an
array, its index expression(s) are evaluated when the subprogram is called.

When a large data structure, such as an array, is to be passed to a sub program as a parameter, the use of a
variable parameter will save both time and storage space, as the only information then passed on to the
subprogram is the address of the actual parameter. A value parameter would require storage for an extra
copy of the entire data structure, and the time involved in copying it.

Tip:

Make your job easier and improve the readability of your applications by an unambiguous use of functions:

Function ReturnAbyte : byte;
begin
 ...
end;

This function then is usually used in this manner:

var bb : byte;
 ...
bb:= ReturnAbyte;

But looking at the statement it's not clear whether ReturnAbyte is a variable or a function.
But if you write

bb:= ReturnAbyte();

it's clear, it's a function.

With the following constructions the empty parenthesis is a must.

Function ReturnApointer : pointer;
begin
 …
end;
…
bb:= ReturnApointer()^;
ReturnApointer()^:= bb;

Here the function result (pointer) is directly used to implement a move.

 AVRco Compiler-Manual

E-LAB Computers Procedures and Functions - 63

4.7.1 PROCEDURE

Procedure Declaration
A procedure declaration serves to define a procedure within the current application or Unit. Procedures
within procedures are not allowed. A procedure is initiated from a procedure statement, and upon
completion, program execution continues with the statement immediately following the calling statement.

A procedure declaration consists of a procedure heading followed by a block which consists of a
declaration part and a statement part.

The procedure heading consists of the reserved word procedure followed by an identifier which becomes
the name of the procedure, optionally followed by a formal parameter list as described earlier.

All identifiers declared in the formal parameter list and the declaration part are local to that procedure. This
is called the scope of an identifier, outside which they are not known. A procedure may reference any
constant, type, variable, procedure, or function defined in an outer block.

The statement part specifies the action to he executed when the procedure is invoked, and it takes the form
of a compound statement. If the procedure identifier is used within the statement part of the procedure
itself, the procedure will execute recursively. This may be dangerous for inexperienced programmers.

Procedure are sub-routines, which can be called by name. There is a distinction between parameterless
procedures and procedures with parameters.

Example for a parameterless procedure:

Procedure Test1;
begin
 Statement ...;
 Statement ...;
end;

Example for a procedure with parameters:

Procedure Test2 (par : byte);
begin
 if par > 0 then
 ...
 else
 ...
 endif;
end;

The passing parameter (argument) is, if there is no var prefixed, generally a invariant, i.e. it is possible to
manipulate it within the procedure. It can be changed, but the original (at the calling location) is not
changed, because the parameter is only a copy of the original

Often the changes made to the formal parameters in the procedure should also affect the actual
parameters.
If a var is prefixed the original variable is used, not a copy! The parameter is treated like a pointer.

Procedure Test2(var par : byte);

AVRco Compiler-Manual

64 – Procedures and Functions E-LAB Computers

Passing parameters are passed by the frame-stack and stay on the frame. That leads to a bigger code and a
slower execution speed than with the global variable. If a procedure/function is time-critical, you should
work without passing parameters and local variables.

Recursions (e.g. calling of Test1 within the procedure Test1) are certainly allowed, but they could quickly
lead to stack problems (e.g. overflow).

Local variables in functions and procedures have to be considered from the same point of view as passing
parameters, namely a bigger and slower code.

Procedure Test3;
var loc : boolean;
begin
 if loc then
 ...
 endif;
end;

Every procedure is able to be completed (exited prematurely) with Return.

Procedure Test1;
begin
 Statement ...;
 if (a > b) then
 Return;
 endif;
 Statement ...;
end;

4.7.2 PROCEDURE SYSTEM_INIT

Special Procedure Declaration

System_Init is executed after the stack-initialisation. The user program is here able to execute certain
hardware-initialisation, before the system is doing its own initialisation. After the procedure follows the
system internal memory-, hardware,- and structured constant-initialisation etc.

Procedure System_Init;
begin
 Statement ...;
 Statement ...;
end;

Attention:

The program itself must not call the System_Init!!

 AVRco Compiler-Manual

E-LAB Computers Procedures and Functions - 65

4.7.3 PROCEDURE SYSTEM_MCUCR_INIT

The mega128 supports different WAIT states at some external memory areas. Furthermore parts of the
address bus ports can be used as standard IOs.
In order to handle this the MCUCR register must be accessed immediately after a PowerOn or reset.

If this callback function is present in the application the system internal initialization of the MCUCR is
omitted and now is completely under control of the application.
In order to do this the application must provide the following procedure:

Procedure SYSTEM_MCUCR_INIT;
begin
 MCUCR:= bb;
end;

At this time no other initialization has been done. So local vars, calling Library functions etc. are forbidden.

4.7.4 FUNCTION

Function Declaration
A function declaration consists of a function heading and a block which is a declaration part followed by a
statement part. The function heading is equivalent to the procedure heading, except that the heading must
define the type of the function result. This is done by adding a colon and a type to the heading.

The declaration part of a function is the same as that of a procedure. The statement part of a function is a
compound statement as described with procedures.

A function declaration serves to define a program part which computes and returns a value. A function is
activated when its designator is met as part of an expression. It is also possible to call a function like a
procedure. In this case the result is discarded.

Functions are sub-routines, which are called by name. A function generally returns a result. The Return-
statement is a must and has to be added with the result of the function. In general the same principles
apply as with Procedure. The distinction between parameterless functions and functions with parameters
are as with procedures.

Example for a parameterless function:

Function Test1 : boolean;
begin
 Statement ...;
 Statement ...;
 Return(a > b);
end;

Example for a function with parameters:

Function Test2 (var par : byte) : byte;
begin
 if par > 0 then
 Return(0);
 else
 Return(1);
 endif;
end;

AVRco Compiler-Manual

66 – Procedures and Functions E-LAB Computers

Example for a function with local variable:

Function Test3 : boolean;
var loc : boolean;
begin
 if loc then
 Return(loc);
 endif;
end;

With the use of the Compiler switch {$NORETURNCHECK} it’s possible to omit the return statement in a
function. This is only for special purposes.

The result of a function can also be an array or record. But the result of such a function must always be
assigned to a variable of the correct type.
Other assignments or the usage of the result in an expression are not possible.

type tRec = record
 abc : byte;
 …
 end;

var rec : tRec;

function GetRec : tRec;
begin
 return(rec);
end;
...
rec:= GetRec(); // legal

Not possible is:

GetRec().abc:= $12; // illegal
xy:= GetRec().abc; // illegal

4.7.5 PROCESS

Process Declaration

Process ProcessName (StackSize, FrameSize : word; DataPage);

Processes are independent programs in an application, which are able to run completely independent from
other program parts (e.g. main). Processes can not be called like procedures or functions. They are instead
called periodically by what is known as a scheduler, based on their priority. If processes were imported, the
main program also runs as a process and has a priority, too.

If several processes exist in a program, the processing of the separate processes operate quasi-parallel,
i.e. considered from outside all tasks/processes seem to work at the same time = Multi-Tasking. So a
pseudo parallel-processing is achieved for events and data, although they are not really executed
simultaneously.

In practice a process runs endlessly, only interrupted by interrupts and other processes and tasks. The
‘begin’ and ‘end’ limits a process with respect to its statements. Because processes cannot be called like
functions they cannot have passing parameters and, may return no results.

 AVRco Compiler-Manual

E-LAB Computers Procedures and Functions - 67

On the first call by the scheduler it starts with the statement which comes after the ‘begin’. Now all
statements will get processed until ‘end’, eventually interrupted by a task switching through the scheduler
(switching to another process/task). If ‘end’ is reached, it is automatically continued with the first statement
after ‘begin’. So a process runs continuously in a circle respective without an end. But the programmer has
not to program a loop, because the jump to the begin is automatically. Here is the essential difference to a
task. Tasks break up with ‘end’ and pass the control to the scheduler respective to the next process.

To declare a process, the stacksize and the framesize (10..1000 bytes), which are required by this process
and the data area (iData, xData etc) has to be specified. The stacksize is depending on the depth of the
sub-routines calls, the according address pushes, and the parameter pushes caused by various
statements. The framesize is only depending on the frames (local and passing parameters) of the called
sub-routines. The exact required amount of bytes is in practice hard to establish because all eventualities
must be traced by a debugger. It is not the size (number of statements) of the processes that is relevant,
but the kind of the statement (for example Floating Point or multiple nested sub-program calls). If there is
enough ram available, then ‘the more the better’. An acceptable value for fairly simple processes is 32
bytes for the stack and 16 bytes for the frame.

Every process requires ca. 20 byte memory, where during an interruption by the scheduler the pseudo-
accumulators (working registers), stack pointer and flags of the process are stored.

Local variables within processes and tasks are indeed encapsulated i.e. there is no direct access from
outside, but they are located in the normal memory like global, static variables. Local variables must be
available and there must always be a possibility of access. It makes no difference if the process is active,
asleep or is suspended. So they reside in normal memory in ram and they have to be included in the
calculation of the required memory. The access within the process or the task is made by the declared
name. From outside (other processes, main etc) an access can be made by using the qualified name
‘ProcessName.VarName'.

The above mentioned memory areas (Register-backup, stack, frame and local variable) are within the
memory page, which was specified by the process declaration ($IDATA, $XDATA etc).

If processes/tasks are imported, the main program is treated as a process, so a compiler switch should be
used to select the desired memory area immediately before the begin.

Process DoTheJob (32, 16 : iData); {Stacksize = 32 bytes, Framesize = 16 bytes}
var px : integer;
begin
 Statement ...;
 Statement ...;
end;

The method of working is controlled by a large number of relevant functions and procedures. An essential
parameter is priority.

With priority a part of the available run-time is placed at disposal to a process. The higher the value of
priority is, the more run-time is at disposal. At the same time priority predefines the number of system ticks,
which are completely available for the process in one time slice. The proportional runtime of the total time
in % is calculated by: Priority / Sum of all priorities.

Assumed there is only the process ‘DoTheJob’ and it has the priority 10 and Main Priority is 5 then % time
available for the process is (estimated): run-time = 10 / (5 + 10) = 66%. The exact run-time can only be
calculated if no process is suspended or locked and if no ProcessWaits etc. exist. In practice the
proportional run-time can only be estimated.

AVRco Compiler-Manual

68 – Procedures and Functions E-LAB Computers

A process/task is able to take over the CPU completely by lock, so apart from itself only interrupts are
running. This state is cancelled by unlock.

If a process/task establishes that it has nothing to do at the moment, there should be no waste of run-time
by using waitloops or delays. There are several ways to pass the control to other processes:

With Schedule the process/task is interrupted immediately, but is kept in the list of active processes.

With Sleep a process/task is able to switch itself off for a certain number of system ticks.

With Suspend a process/task switches off. It is not able to switch itself active again. This must be done
from another process/task or by the main program using the resume procedure.

Because the communication between tasks/processes is made by pipes and semaphores, there is also the
possibility that the task switches itself off by calling WaitSema or WaitPipe. The process/task becomes
active if there is data in the specified semaphore or pipe. It is also possible for RxBuffer to be specified as
a pipe.

The process/task is interrupted directly after an above mentioned instruction.

4.7.5.1 Define Options

It is possible to optionally define a Process's priority and/or initially suspend or resume it:

Process Name (StackSize, FrameSize : MemoryArea[; Priority, RunMode]);

Process Proc1 (32, 32 : iData); // default prio=3, autostart
Process Proc1 (32, 32 : iData; 5); // priority 5
Process Proc1 (32, 32 : iData; resumed); // default prio=3, automatic start
Process Proc1 (32, 32 : iData; 5, suspended); // prio= 5, no automatic start

4.7.6 TASK

Task Declaration

Task TaskName (DataPage);

Tasks are independent programs within an application, which are able to run absolutely independently from
other program parts (e.g. main), i.e. tasks cannot be called like functions or procedures. Instead they are
called periodically by the scheduler. If tasks have been imported, the main program runs as a process, and
also has a priority. Tasks are extremely specialized processes and they only should be used for certain
jobs, for example PID-controller.

If there are several processes/tasks within a program, the tasks are done quasi-parallel, i.e. it seems like all
processes are done at the same time = Multi-Tasking. So an apparent parallel-processing for example
of events or data is achieved, although they do not actually run simultaneously.

In practice a task runs perpetually, only interrupted by interrupts and other processes and tasks. The
‘begin’ and ‘end’ limits a task with respect to its statements. Because tasks can not be called like functions,
they do not have any passing parameters or results.

 AVRco Compiler-Manual

E-LAB Computers Procedures and Functions - 69

With every call of a task by the scheduler, it is started with the statement which immediately follows the
‘begin’ statement. Following statements are all processed until the ‘end’ statement is reached. If the ‘end’ is
not reached within a system tick, the task is interrupted by a task change by the scheduler (Switch over
to another process/task). So the task never reaches the ‘end’, if its required run-time from ‘begin’ to ‘end’ is
longer than a system tick. The run-time must never be longer than a system tick. Similar conditions are
also valid for interrupts. A timer-interrupt-service-routine for example, should never take more time than the
period between two interrupts.

If the ‘end’ is reached, the control is automatically passed to the scheduler, which now activates the next
process or task. In contrast to a process a task runs from ‘begin’ to ‘end’ and then aborts itself.

If tasks have been imported, a TaskStack and a TaskFrame have to be defined. All tasks within the
system use the same stack and frame, i.e. only one task stack and frame exists, because tasks are
normally not interrupted by the scheduler and always resume at the same point (statement). The required
stack size is determined by the demand of the largest task (7..255 bytes). The stack size depends on the
depth of the calls of sub-programs and the resulting address push’s as well as on parameter pushes,
caused by various statements. In practice the exact number of required bytes can not be established,
because all eventualities have to be traced.

As with all other stack definitions it has to be estimated with common sense and experience. It is not the
size (number statements) of the task is important, but the kind of statement (for example Floating Point or
multiple nested sub-program calls). If there is enough ram available, the best policy is ‘the more the better’.
An acceptable value for a simple task is 32 bytes.

Every task requires ca. 20 byte memory, where during an interruption by the scheduler the pseudo-
accumulators (working registers), stack pointer and flags of the process are saved. This memory is also
the same for all tasks and exists only once.

Local variables within processes and tasks are encapsulated, i.e. there is no direct access from outside,
but they are held in normal memory like global and static variables. Local variables must be available and
there must always be a possibility of access. It makes no difference if the task is active, asleep or is
suspended. They are usually use memory in ram and they have to be included in the calculation of the
required memory. Access within the process or the task is made by the declared name. From outside
(other processes, main etc) an access can be made by ‘TaskName.VarName’.

The above mentioned memory areas (register-backup, frame and stack) are within the memory page
specified by Define TaskStack = size, RAMpage (iData, xData etc) and Define TaskFrame = size.
The ‘local’ variables of a task also reside in this memory page.

Task RunPid (xData);
var tx : integer;
begin
 Statement ...;
 Statement ...;
end;

The method of working of a task is controlled by a large number of relevant functions and procedures. An
essential parameter is priority.

As opposed to a process, the calling interval of the task is predefined by priority. The lower the value of
priority is, the more often the task is called. Assumed the task ‘RunPid’ has the priority 10, then it is called
every 10 Systicks.
Thus the period between two calls is always 10 ticks.

AVRco Compiler-Manual

70 – Procedures and Functions E-LAB Computers

Note:
If there are several tasks, and if it is possible, that several of them are active, pay absolutely attention that
all priorities have a common denominator.
I.e. all priorities must be a multiple of 2, for example. If this condition is not met, then there are irregular call
intervals, i.e. the period between two calls is not constant any more. Further the lowest priority has to be
higher than the sum of all tasks.

If a task establishes that it has nothing to do at the moment, there should be no waste of run-time by
waitloops or delays. There are several possibilities to pass the control to other processes:

With schedule the task is interrupted immediately, but is enqeued again into the waiting loop.

With sleep a task is able to switch itself off for a certain number of system ticks.

With suspend a task switches off. It is not able to switch itself active again. This must be done by a task
from outside or by the main program with resume.

The task is directly suspended after any instruction mentioned above.

A task is able to take over the CPU completely by lock, so that except itself only interrupts are running.
This state is abolished by unlock.

Because the communication between tasks/processes can be with pipes or semaphores, there is the
possibility that the task switches off by calling WaitSema or WaitPipe. The task gets active again if there is
data in the specified semaphore or pipe. RxBuffer can also be specified as a pipe.

4.7.6.1 Define Options

It is possible to optionally define a Task's priority and/or initially suspend or resume it:

Task Name (MemoryArea[; Priority, RunMode]);

Task Task1 (iData); // default prio=5, autostart
Task Task1 (iData, 8); // priority 8
Task Task1 (iData, resumed); // default prio=5, automatic start
Task Task1 (iData, 8, suspended); // prio= 8, no automatic start

 AVRco Compiler-Manual

E-LAB Computers Procedures and Functions - 71

4.7.7 FORWARD

Forward declarations of pointers, functions, procedures and processes

A forward reference is properly not possible in Pascal as well as in other programming languages and
some assemblers. I.e. al statement referenced elements (types, variables, constants, procedures,
functions) have to be declared before they could be used.

Sometimes it is absolutely necessary that a procedure/function/process is referenced before it has been
declared. Therefore a Forward declaration is possible. The procedure/function/process head is written
again after the variable/constant declaration and before the first function/procedure declaration with the
addition ‘forward’. The proper declaration can happen at any later position. Here forward must not be used
again!

Program Abc;
...
var ...;
const ...;

Procedure Test1; Forward;
Process Proc1(32); Forward;
Funktion Test2(par : byte) : byte; Forward;
...
...
Process Proc1(32);
begin
 ...
end;

Procedure Test1;
begin
 Statement ...;
 if (a > b) then
 Return;
 endif;
 Statement ...;
end;

Funktion Test2 (par : byte) : byte;
begin
 if par > 0 then
 Return(0);
 else
 Return(1);
 endif;
end;

Forward also can be used for type declarations, particularly for pointers.

Type TPtr = pointer; forward;
 TRec1 = record
 ...
 Ptr1 : TPtr;
 end;
 TPtr = pointer to Trec1;

AVRco Compiler-Manual

72 – Procedures and Functions E-LAB Computers

4.7.8 BEGIN

Starting procedure-, function-, process- or task body

Every procedure, function, process, task as well as the main program has to begin with a begin and to end
with an end; as you see also in above mentioned examples. Pascal programmers will surely have already
recognized that after a then and else generally no begin and no end statement follows.

The designer of Pascal, N.Wirth, has not been consistent by this and the result is that begin/end is either a
must or a can. A concrete example is the exception with the Case..Else statement. Every programmer
must often consider, how did it come about? In the successor of Pascal, Modula-2, Wirth clarified it, and he
abolished the begin/end in these constructs. This made the relevant compiler construction easier and safer
at this point.

This feature (as well as others) has been introduced in the existing compiler. The protest: This is not now
Pascal-compatible, can be ignored in a system, which knows as many hardware dependences as an
‘embedded’ development system. To make development easy there have to be many language
extensions introduced.

Anyone who knows Borland-Pascal or Delphi, also knows that about half of the construction is not standard
Pascal compatible either.

Statements

The statement part is the last part of a block. It specifies the actions to be executed by the program.
The statement part takes the form of a compound statement followed by a period or a semicolon.
A compound statement consists of the reserved word begin, followed by a list of statements separated by
semicolons, terminated by the reserved word end.

The final end in a program is followed by a “.” (dot) in traditional Pascal.

4.7.9 RETURN

Abort and exit within a procedure/function

The Return statement allows for the abort (return) of a procedure or a function at any point. Return is a
must for all functions. (With the use of the Compiler switch {$NORETURNCHECK} it’s possible to omit the
return statement in a function, but this is only for special purposes.)
Every procedure can be terminated with the Return statement. The Return statement is parameterless.

Procedure Test1;
begin
 Statement ...;
 if (a > b) then
 Return;
 endif;
 Statement ...;
end;

Every function has to be terminated by the Return-statement.. Return has to have a parameter. The type
of this parameter has to be declared in the function header. Permissible types are 8, 16, 32 and 64bit
values.

Function Test2 : boolean;
begin
 Statement ...;
 Return(a > b);
 Statement ...;
end;

 AVRco Compiler-Manual

E-LAB Computers Procedures and Functions - 73

4.7.10 END

End of a procedure-, function-, task- or process-body

Every procedure, function, task and process has to begin with a begin and end with an end; see also
examples above. The end-statement has to be followed by a semicolon. See also description of Begin. The
End-statement is in contrast to standard Pascal only permitted for the end of functions procedures and the
main program. IF, WHILE, REPEAT etc. have their own qualified abort, i.e. ENDIF etc. This is for a better
readability of the source.

For a better readability it is optionally possible to insert the name of the procedure/function in front of the
semicolon (end Test2;)

4.7.11 ASM:

Start of a single Assembler statement in a Pascal source.

ASM: PUSH _ACCA;

4.7.12 ASM;

Start of an assembler text block

A program for Embedded Control often does not work without assembler code, because either the
compiler generated code is too slow for some operations, or certain assembler commands have to be
done, which are not known or not used by the compiler.
Assembler source can be inserted directly at every position of the Pascal source. This source is passed
untested and unprocessed by the compiler to the assembler. Because the compiler also generates
assembler code, the assembler text is seamlessly inserted.
Asm-syntax errors are only recognized by the assembler, not by the compiler.
Access to all declared variables is possible in the assembler text.

Attention:
Labels in an assembler-block have to start at the beginning of a line and terminated with a ‘:’. This line may
not contain any further instructions, e.g. code.
The analysis of the compiler generated assembler-files ‘xxx.ASM’ may help:

ASM;
 LDI _ACCA, 040h
 ANDI _ACCA, myProg.a; {a = Pascal var in myProg }
ENDASM;

4.7.13 ENDASM

End of an assembler text

ASM and ENDASM are Pascal statements and have to end with a semicolon ;

AVRco Compiler-Manual

74 – Interrupts, Traps, Exceptions E-LAB Computers

4.8 INTERRUPTs, TRAPs and EXCEPTIONs

4.8.1 INTERRUPT

Declaration of an Interrupt Procedure.

Possible interrupt sources totally depend on the processor. Within a CPU-family there are considerable
differences. Interrupt sources are defined declared in the processor description file (xxx.dsc).

This procedure sets only an entry in the interrupt-vector-table and creates a program frame for the selected
register savings (see below).

In addition the I/O control registers of the CPU for the specific interrupt handling must be initialized
by the application itself (see the descriptions in the controller manual) !

Example (AVR Mega103):

TIMER0 timer0 overflow interrupt
TIMER0COMP compare match interrupt timer0

TIMER1 timer1 overflow interrupt
TIMER1COMP compare match interrupt timer 1
TIMER1COMPA compare match "a" interrupt timer 1
TIMER1COMPB compare match "b" interrupt timer 1
TIMER1CAPT capture event timer 1

TIMER2 timer2 overflow interrupt
TIMER2COMP compare match interrupt timer2

EERDY eeprom ready
ACOMP analog comparator
SPIRDY SPI serial transfer complete
ADCRDY ADC conversion complete

INT0 External Interrupt 0
INT1 External Interrupt 1
INT2 External Interrupt 2
INT3 External Interrupt 3
INT4 External Interrupt 4
INT5 External Interrupt 5
INT6 External Interrupt 6
INT7 External Interrupt 7

RXRDY uart1 rx complete
UDRE uart1 data register empty
TXRDY uart1 tx complete

RXRDY2 uart2 rx complete
UDRE2 uart2 data register empty
TXRDY2 uart2 tx complete

The declaration of an interrupt generates automatically corresponding entries in the interrupt vector
table, and also as a special code-frame for the interrupt procedure.
Here are at default all registers saved -> complete register saving.
This can be controlled by the compiler switches {$NOSAVE}, {$NOREGSAVE} and {$NOSHADOW}.

The global-interrupt-enable-flag, which is reset automatically by the CPU, is not changed, i.e. the
interrupts stay disabled in runtime. If the ‘end’- statement is reached, a RETI (return from interrupt) will be
done, which enables the interrupt.

 AVRco Compiler-Manual

E-LAB Computers Interrupts, Traps, Exceptions - 75

That means, that an interrupt procedure should be as short as possible, so the other interrupts are not
disabled too long.

A complete register saving needs about 20 Bytes in RAM, statically, not on Stack or Frame. Because of
this a stacked interrupt is impossible. That means within an interrupt procedure the interrupt never should
be enabled again. The CPU itself does this enabling with the RETI instruction

If an interrupt nesting is undispensable, the compiler switch {$NOSAVE} must be used. So only the flags
and the main work registers are saved. The procedures PushAllRegs and PopAllRegs can be used to save
the remaining registers via the stack if necessary.

Interrupt nesting is very dangerous and ends frequently in a system crash. It should be avoided
whenever possible. At least a very careful planning an absolute necessity.

Attention:
the correct initialization of interrupts needs usually settings in different control and mask registers.
With the contained drivers that are running in interrupt mode this a done by the corresponding drivers.
If the application defines the interrupts, the compiler can not be of any assistance.

In these cases it is the duty of the application to do the necessary initializations !!

If the system reaction is too time-critical and more statements need to be executed, the following
procedure is recommended:
the interrupt increments a semaphore and returns. A process is always waiting for this semaphore and will
get the control briefly.

Interrupt Int0;
begin
 IncSema (sema0);
end;

Process ProcessInt0 (32, 16 : iData);
begin
 WaitSema (sema0); {wait for sema0 > 0 }
 ...
 ...
end;

Interrupt Service Routines can have own local variables. Because there is no Frame here, these vars are
static/nonvolatile which means they are placed into the iData (SRAM) area and they are always accessible
(static) and their content is always valid (nonvolatile).
Inside of the Interrupt procedure they can be accessed and used like any other var. Because of their static
nature they can also be used by other parts of the application. But they are a property of a procedure so an
access must be qualified:

Interrupt Timer1;
var abc : byte;
begin
 abc:= 123; // no qualification
 ...
end;
...
Interrupt_Timer1.abc:= $67; // qualify with "Interrupt_name"

Please note that "Interrupt_" must always precede the qualifier.

AVRco Compiler-Manual

76 – Interrupts, Traps, Exceptions E-LAB Computers

Basically all Interrupts which are not supported by an interrupt Handler are handled by a default/dummy
interrupt service routine with a simple "RETI". For debug and test purposes this interrupt error can be
supported by the application. Normally such a condition should never occur so this routine should never be
called by any interrupts. The implementation must be done in the application:

Interrupt IntErrorHandler;
begin
 ...
end;

4.8.1.1 Push, Pop

Procedure Push (regnum : byte | regname : internal); //e.g. Push (24);
Procedure Pop (regnum : byte | regname : internal); //e.g. Pop (_ACCFLO);

For a better readability. Creates the same code as
ASM: PUSH ... ; or
ASM: POP … ;

4.8.1.2 PushAllRegs, PopAllRegs

Sometimes, but only sometimes, it makes sense to re-enable globals interrupts in an interrupt procedure
for example a Timer Interrupt. This avoids too long interrupt disable times. In this case, if registers must be
saved, this can not be done by the common automatic register save (Switch $NOSHADOW inactive).
This register save does not support "nested interrupts".

In order to save all registers in such a function where the global interrupt must be re-enabled, the register
save must be done in a special way:

{$NoSave}
Interrupt TIMER1COMPA; // TickTimer
begin
 PushAllRegs;
 EnableInts;
 ...
 ...
 PopAllRegs;
end;

The switch {$NoSave} is mandatory here.
This method should only be used if the global interrupts must be enabled in an interrupt service routine.
The user should exactly know why and what he is doing here :-)

4.8.1.3 External Interrupts
The AVR family provides two external Interrupt types which can by controlled by port pins.

The first group contains these Pins/Interrupts where every pin can fire an own vector interrupt (unique
vector). These are the interrupts INT0..INT7 and the associated port pins.

The second group contains the so called PinChangeInterrupts PCINT0..PCINTxx. Here always upto 8 pins
of a port are joined together and firing one common interrupt vevtor.

4.8.1.4 Interrupt Pins INT0..INTx
These standard external interrupts are supported by the AVRco system in a way that if a concerned
interrupt procedure is defined in the application, for example Interrupt INT0, the system enters the address
of this procedure into the interrupt vector table. If this interrupt is raised the selected register saving is
executed an this procedure is called. The initialisation of this interrupt in the associated Enable and Mask
registers must be done by the application.

 AVRco Compiler-Manual

E-LAB Computers Interrupts, Traps, Exceptions - 77

4.8.1.5 PinChangeInterrupts PCINT0..PCINT3 (*4*)
Most of the newer AVR CPUs provide this interrupt mechanism. Upto 4 Ports (PCINT0..3) or 32 interrupt
pins are supported. This looks very powerful but it must be used with some restrictions. So there is only
one vector for one port and eache state change at every pin fires an interrupt. Means the Low/High edge
fires and also the High/Low edge.

With many applications this is still sufficient. But sometimes it is necessary to identify the pin source of the
interrupt. A separate vector or service routine per pin is necessary. So each PinChange should end in a
specific service routine. The AVRco system supports this with a special interrupt handler PCintServer for
the PCINT Interrupts.

Here the previous PIN state is compared with the actual one in order to find out which port pin was the
reason for this interrupt. If then the application provides a special interrupt service routine so this one will
be called and the register R16 (_ACCB) contains a true or false ($00/$FF) dependend which edge of the
pin change was the source of this interrupt. The associated iinterrupt procedurs must follow this naming
conventions: PCINT00 upto PCINT31.
The Interrupt Handler PCintServer for the PCINT Interrupts must be imported.

From System Import PCINTserv0, PCINTserv1, …;

In order to use the individual Pin Change Interrupts the necessary Interrupt procedures must be defined.

Interrupt PCint00; // PinB.0 mega168
begin
 if _ACCB <> 0 then
 …
 else
 …
 endif;
end;

PCINTxx is also supported by the Application Wizard and the Simulator.
An example program can be found in the Demos Directory in PCintServ.

4.8.2 TRAPS and Software Interrupts (SWI)

Using Software-Interrupts (SWI), also called Traps, is usually the only way with larger processors to switch
from the application layer to the system layer (application level - system level). Many important operations
are only enabled on the system level, e.g. IO-accesses, memory accesses into protected areas etc.

An additional reason for having SWI or Traps is the communication between one program part and another
where neither part knows the structure, functions and addresses of the other part. Such types are Debug-
Monitors for example.

Privileged layers don't exist with the AVR. Because of this there are no SWI or Traps. But in some cases it
could be an advantage if they were available. It is possible to use hardware interrupt for these purposes, as
Atmel suggests. But most of the interrupts of the AVR can't be used because a peripheral part or a pin
interrupt must be wasted. Most of the mega CPUs provide a SPMRDY interrupt which is used very rarely,
doesn't use any additional resources and is very simple to use.

The AVRco supports Traps through the SPMRDY. Not as elegant as native Traps or SWIs, but practical.

AVRco Compiler-Manual

78 – Interrupts, Traps, Exceptions E-LAB Computers

Why Traps with AVR?
With the almost all AVR applications using Traps/SWI is definitely not necessary. There are only a very few
special cases where they make sense. When a program is patched or parts of it do not “know“ each other
there can be the problem of communication between them. It is impossible to call any function of the other.
And also the data transfer between them is very difficult.

A typical application is for example a Debug Monitor. Without Traps/SWI it must have its entry at a fixed
known address. This is a necessity for the application to contact this monitor.

How does it work?
The system provides the procedure Trap (t : byte) which can be called at anytime. The parameter “t“ can
be any byte which is passed to the receiving function. Assuming that the global interrupt is enabled the
procedure “Trap“ triggers a SPMRDY interrupt.

Either this interrupt then is processed by the interrupt procedure Interrupt SPMRDY or by a TrapHandler,
which the application must then provide TrapHandler (t : byte).

All this happens in the completely in the application. But how can the external part be involved? In the first
case with “Interrupt SPMRDY“ an entry address can be passed with the definition of the Trap mode which
then will be called instead of the interrupt procedure in the application itself. So the app-internal interrupt
procedure can be omitted. The same is true for the TrapHandler procedure.

In both cases if an external part is involved and Traps are used for communication this external entry
address must be defined. This external address must be the absolute address of the external interrupt
procedure or TrapHandler. This is similar as with most of the bigger architectures (16/32bit).
This address is a Byte-address and must have an even value.

The parameter “t“ is passed to the interrupt procedure “SPMRDY“ in _ACCA = R17.

A special case are traps in the boot area. Here are interrupts not the right way. They can be used with
another implementation that has nothing in common with this one.
For more details see the chapter BootTraps.

4.8.2.1 Implementation of the Traps

Defines

The definition of the TrapHandler controls how the Traps are handled by the system.

Define ProcClock = 8000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $0030, iData;
 FrameSize = $0030, iData;
 TrapHandler = false, 0; {Intproc only, no ext address}

With the define of the TrapHandler the first parameter (true/false) defines whether an interrupt or
TrapHandler procedure is expected.
The second parameter DestAddr (longword) defines whether this procedure is a part of the application (0)
or of the external part (> 0).

 AVRco Compiler-Manual

E-LAB Computers Interrupts, Traps, Exceptions - 79

TrapHandler = false
The Trap(nn) call triggers a SPMRDY interrupt. This interrupt then is executed either

- application-internaly (DestAddr = 0) or
- externally (DestAddr > 0).

The Interrupt procedure must be defined and handled in the same way as all other Interrupt procedures.
The same restrictions are true like: short processing time, possible register save etc. The global Interrupt is
still disabled at the entry time.

Interrupt SPMRDY;
begin
 // _ACCA/R17 contains the parameter “t”
end;

TrapHandler = true
The Trap(nn) call triggers a SPMRDY interrupt. The TrapHandler then is executed either

- application-internaly (DestAddr = 0) or
- externally (DestAddr > 0).

The interrupt itself is completely handled by the system and calls the internal/external Handler procedure.
At the entry time into the Handler the global interrupt is already enabled. So the Handler is a procedure
without any restrictions.

Procedure TrapHandler(t : byte);
begin
 ...
end;

DestAddr
As described above this address is the entry address of the external Interrupt procedure or TrapHandler
and must be an even byte address. So the Flash-end of the mega128 has the address $1FFFE.

Note:
If the DestAddr = 0 then the corresponding procedure (Interrupt or TrapHandler) must be defined in the
application.
If the DestAddr > 0 then the corresponding procedure (Interrupt or TrapHandler) must be present
externally. Declarations in the application itself are ignored by the system.

4.8.3 EXCEPTIONS

With complex applications with many sub-routines and drives often there is a circumstance that in a deep
level in a basic function (e.g. In/Out) there is an error or a time-out. Now this function can return a FALSE
to the calling function, this function again returns also a false etc. until the call returns to this location where
this action was initiated. Here the result (FALSE) can or must be interpreted which had its reasons “very
deep down“. This can work only when each concerned function returns a boolean and the calling function
interprets this

if not funcx then
 Return(false);
else ...

in a proper way.

AVRco Compiler-Manual

80 – Interrupts, Traps, Exceptions E-LAB Computers

The whole operation can be difficulty and erroneous. For this purpose Borland introduced some years ago
the elegant and powerful Exceptions in Delphi. Exceptions are error handlers. This means, if such an
exception occurs the program immediately returns to this location where the exception handler was
implemented. The difficult stepping up through all the functions used is discarded.

Exceptions always consist of an implementation part, limited by Try and EndTry and one or more
RaiseException statements. Between Try and EndTry there can be an optional Except statement

Try
 StatementE..
 StatementE..
 StatementE..
EndTry;

or

Try
 StatementE..
 StatementE..
 StatementE..
except
 StatementN..
 StatementN..
EndTry;

If the execution of a Statement meets the statement

RaiseException (num);

all further operations are discarded and the application returns to the initiating Try/EndTry block. In the first
example the execution continues with the statement after the line “EndTry”. In the second example the next
executed statement is this one which follows the line “except”. With the function

GetExceptResult

the parameter “num”, which was passed with the function RaiseException can be read.

If there was no exception then with the first example all statements are executed. In the second example
only the statements between Try and Except are executed and the execution jumps to the line after the
EndTry statement.

The better way is always example two where the application always gets notified that an execution
happened (raised) because the block between Except and EndTry is executed.

Attention
An exception can only be raised (by RaiseException(num)) if it happens between the execution of Try and
EndTry or Except. Otherwise it will be ignored. A Try/EndTry block always must be placed into a block.
This is illegal:

if a > b then
 Try
else

 Endtry;
endif;

 AVRco Compiler-Manual

E-LAB Computers Interrupts, Traps, Exceptions - 81

Restriction
With MultiTasking there a some restrictions at this time. Try/EndTry must only be placed in the MAIN. So
the RaiseException function is only valid if at this time the MAIN process is controlling the system.
Otherwise it is ignored.

4.8.3.1 Implementation

Imports
The exception support must be imported.

Import SysTick, TickTimer, ..;

From System Import Exceptions, ...;

Defines
The Exceptions can be nested indirectly. The max. nesting must be defined

Define Exceptions = 2[, Boot[, iData1]]; // 1..15 levels, Boot and iData1 are optional

Exceptions must not be directly nested, but it is possible while a Try/EndTry is active additional ones can
be placed into function statements. The count of the nested levels is limited by the above define. Each level
needs a set of parameters which is placed into the RAM in a stacked order. If all Try/EndTry levels are
occupied at runtime additional ones are ignored. The structure is build at runtime and released with an
EndTry. So this can be called an Exception Stack.

If the Option Boot is selected then the Exception Handler is placed into the Boot area. Because this handler
builds and uses some system variables the addresses of these vars must never be changed after a Flash
download. Because this can not always be ensured by the application it makes sense that these vars will
be placed into the already defined Idata1 area (must be separately defined) where they are always be
placed into the very first locations.

4.8.3.2 Functions
With the import of Exceptions two support functions also become imported:

Procedure RaiseException (num : byte);

This procedure raises the exception. Then the program immediately returns to the location which is on the
first place (Top Level) of the exception stack. The parameter num is stored and can later be read back with
the function described below. Please note that the global interrupt stays disabled from here on.

If the exception stack is empty, meaning there is no responsible Try/EndTry active at this time the
RaiseException procedure will be ignored.

Function GetExceptResult : byte;

The parameter num passed by the function RaiseException can be read back by this function. The
parameter can be used for several informations, e.g. It shows which Exceptions was the initiator or what
kind of problem occurred.

Example Program:
An example can be found in the directory ..\E-Lab\AVRco\Demos\Exceptions

AVRco Compiler-Manual

82 – Statements E-LAB Computers

4.9 Statements

The statement part defines the action to be carried out by the program (or subprogram) as a sequence of
statements; each specifying one part of the action. In this sense Pascal is a sequential programming
language: statements are normally executed sequentially in time, not simultaneously. The statement part is
enclosed by the reserved words begin and end and within it, statements are separated by semi-colons.
Statements may be either simple or structured.

4.9.1 Simple Statements

Simple statements are statements which contain no other statements. These are the assignment statement,
procedure statement, goto statement, and empty statement.

4.9.2 Assignment Statement

The most fundamental of all statements is the assignment statement. It is used to specify that a certain value
is to be assigned to a certain variable. An assignment consists of a variable identifier followed by the
assignment operator := followed by an expression.

Assignment is possible to variables of any type as long as the variable (or the function) and the expression
are of the same type or assignment compatible.

Angle:= Angle * 3;
AccessOK:= False;
AccessOK:= Answer = PassWord;
Result:= (Entry * 13) shl 8;

4.9.3 Procedure Statement

A procedure statement serves to activate a previously defined user defined procedure or a pre-defined
standard procedure. The statement consists of a procedure identifier, optionally followed by a parameter list,
which is a list of variables or expressions separated by commas and enclosed in parentheses. When the
procedure statement is encountered during program execution, control is transferred to the named
procedure, and the value (or the address) of possible parameters are also transferred to the procedure.
When the procedure finishes, program execution continues from the statement following the procedure
statement.

Find (Name,Address);
Sort (Address);
Uppercase (Text);

4.9.4 Empty Statement

An 'empty' statement is a statement which consists of no symbols, and which has no effect. It may occur
whenever the syntax of Pascal requires a statement but no action is to take place

repeat until KeyPressed; {wait for any key to be hit}

 AVRco Compiler-Manual

E-LAB Computers Statements - 83

4.9.5 Structured Statement

Structured statements are constructs composed of other statements which are to be executed in sequence
(compound statements), conditionally (conditional statements), or repeatedly (repetitive statements).

4.9.6 Compound Statement

A compound statement is used if more than one statement is to be executed in a situation where the Pascal
syntax allows only one statement to be specified. It consists of any number of statements separated by
semicolons. The block starts with a preliminary statement (e.g. if .. then) and ends with an associated
reserved word (e.g. endif).

if Small > Big then
 Tmp := Small;
 Small := Big;
 Big := Tmp;
endif;

4.9.7 NOP Statement

The Pascal Statement "NOP" is implemented. It produces an Assembler "NOP"

Incl (bit);

 NOP;
Excl (bit);

4.9.8 Conditional Statements

A conditional statement selects for execution a single one of its component statements.

In most cases decisions and branches are build with "if..then..else". This is a common and always usable
way, but sometimes it is inefficient and code and time consuming.
If constants are used with decisions it is better to use this: " if x in[a, b, m..p] ".
Another way is to use "case" constructs.

But in many cases there are no constants but variables and so "case" is unusable. But also here using
powerful system functions like IncToLim, DecToLim, IncToLimWrap, DecToLimWrap, ValueTrimLimit,
ValueInTolerance, Lower, Higher etc. can reduce code size in IF-constructs and also in general.

4.9.8.1 IF Statement

IF
The IF statement requires at least THEN and ENDIF

THEN iF a > b then a:= b; endIf;

ELSE iF a > b then a:= b; else b:= a; endIf;

ELSIF
 iF a > b then ..; elsif b = a then ..; endIf;

ENDIF End of an IF Statements

AVRco Compiler-Manual

84 – Statements E-LAB Computers

IF is the leading statement of a branch. After IF has to be an operation with a boolean result (true/false).
This can be a compare (a > b) or abstractly a boolean (bit or var).

After the operation there has to be a then. The begin, which is normal in Pascal, is not permitted in this
case (see also description of begin). After then there has to be at least 1 executable statement. Then
optional an else or elsif can follow, whereby begin is not permitted, too, and there has to be at least one
executable statement.

In contrast to Standard-Pascal IF has always to be terminated with ENDIF.
In certain cases it makes sense to work with GoTo instead of If, but this should be an exception.

Attention:
Nested IF's are permitted, but they have to be programmed very carefully, because provisional results are
generally stored on the stack. In case of doubt (Stack-Overflow) the corresponding program code has to be
tested with help of a debugger/simulator. Sometimes using elsif is better than a nested if.

if a > b then
 ...
elsif a = b then
 ...
else {a is less than b}
 ...
endif;

4.9.8.2 GOTO Statement

GOTO is an absolute branch statement, which leads to any location (forwards and backwards) in a block
(block definition see below), and that is the danger. The branch destination always is a label, which has to be
declared beforehand. Within a block only one label definition and so only one branch destination is
permitted. But Several GOTOs can point to one destination.

A goto statement consists of the reserved word goto followed by a label identifier. It serves to transfer further
processing to that point in the program text which is marked by the label.
The following rules should be observed when using goto statements:

1) Before use, labels must be declared. The declaration takes place in a label declaration in the
 declaration part of the block in which the label is used.
2) The scope of a label is the block in which it is declared. It is thus not possible to jump into or out
 of procedures and functions.

Procedure GotoSample;
begin
 Label: lab1; {Definition of a Labels}
 ...
 Goto Lab1;
 ...
 Lab1: {Branch destination, no Semicolon!!}
 ...
 IF a > b then
 Label: Lab2;
 Lab2: {Branch destination, no Semicolon!!}
 ...
 goto Lab2;
 ...
 endif;
 ...
 goto Lab1;
end;

 AVRco Compiler-Manual

E-LAB Computers Statements - 85

Block Definition
In Pascal blocks are determined by certain block limits. A typical block limit is for example the BEGIN and
END of a procedure or function. Loop blocks are limited by LOOP..ENDLOOP, REPEAT..UNTIL,
WHILE..ENDWHILE, FOR..ENDFOR. The statements between IF..ENDIF, IF.. ELSE, IF..ELSIF,
ELSIF..ELSIF, ELSIF..ELSE, ELSE..END also form respectively one block.

All three statements (label, Goto and the destination) of a Goto have to be within such a block. But it is
irrelevant if the block is split in sub-blocks (see Begin IF..ENDIF END). In above mentioned example LAB2 is
only recognized within IF..ENDIF, while Lab1 is known in the whole procedure, however not in the subblock
IF..ENDIF.

Comment:
in C block limits are determined with { and } and so very clear :-)

GOTO
The Goto statement requires a definition of the label and use of this label in the same block.

LABEL
The label defines the destination address of the Goto statement.
The programmer always should take care to produce a readable and hence easily maintainable code. But
this described GoTo-statement generally contradicts this aim. Sometimes, and only sometimes, a GoTo
helps to get a better view over the program. Because of that GoTo should only be used in emergency,
because in most cases an If- or loop-statement is much more elegant and safe.

4.9.8.3 CASE Statement

The case statement consists of an expression (the selector) and a list of statements, each preceded by a
case label of the same type as the selector. It specifies that the one statement be executed whose case
label is equal to the current value of the selector. If none of the case labels contain the value of the selector,
then either no statement is executed, or, optionally, the statements following the reserved word else are
executed. The else clause is an expansion of standard Pascal.

A case label consists of one to many constants or subranges separated by commas followed by a colon. A
subrange is written as two constants separated by the subrange delimiter '..'. The type of the constants must
be the same as the type of the selector. The statements following the case label are executed if the value of
the selector equals one of the constants or if it lies within one of the subranges.

AVRco Compiler-Manual

86 – Statements E-LAB Computers

The case label may be any 8 bit data type such as byte, Int8, enum or char and also word or integer (16 bit).

Case is the leading statement of a branch block. After case an 8bit variable has to follow (byte, char or
enum) and then the word “of“ (case v1 of ..). Within this block there are instructions what to do, if a variable is
identical with a constant or a constant area (7 :... or 8..12 :...).

This area-declaration has to be terminated with a colon. The following area-block must contain at least one
statement. Every single statement has to be terminated with a ‘;’. This sub-block is to abort with a separator-
symbol (|).

After one or several area-blocks there can be an optional Else with further statements. The EndCase-
statement generally forms the termination. Case is actually a specialized If-statement.

const c1 = 83;
 c2 = 105;

Case x of
 0 : inc(a);
 |
 1, 7 : a:= 4;
 |
 2..6 : x:= x + a;
 dec(x);
 |
 8..9, 12 : PWMport1 (45);
 |
 14..23,
 27..67 : a:= a * a;
 |
 c1..c2 : a:= c1;
 |
else
 x:= 0;
EndCase;

CASE
Begin of a Case Block.

Case x of …

ENDCASE
End of a Case Block.

 AVRco Compiler-Manual

E-LAB Computers Statements - 87

4.9.8.4 FOR Statement

For is the leading statement of a program-loop. After For, an 8 or 16bit runtime-variable (control variable) has
to follow. A start value has to be assigned to this variable by := . Then follows the operator TO or DownTo,
which specifies whether the runtime-variable should be incremented or decremented within every pass. The
optional argument BY determines the increment or the decrement-value (1..255). Then follows the
termination-value and the instruction DO. The start-value and the termination value may be 8 or 16bit
variable or constants.

After the head-declaration (For x:= 0 to v1 do) follows a block with instructions, which is to be executed on
each pass. This block can be empty.

The number of passes is depending on the difference between termination- and start-value.

With for i:= 2 to 1 the loop is not executed since i initially has the value 2
With for i:= 2 to 2 the loop is executed once and i then has the value 3
With for i:= 2 to 7 the loop is executed six times and i then has the value 8

In contrast to Standard-Pascal FOR has to be terminated with ENDFOR.

const a = 0;
var v1 : byte;
 x : byte;

for x:= a to v1 do {ramp up}
 PWMport1:= x;
endfor;

for x:= x downto 0 do {ramp down}
 PWMport1:= x;
endfor;

A FOR-loop can be terminated with a break-statement:

for x:= 1 to 9 by 2 do
 ...
 if a:= 0 then Break;
 ...
endfor;

See also Continue!

 FOR

Begin of a For loop

for a:= 0 to 45 do inc (x); endfor;

 ENDFOR

End of a For loop

AVRco Compiler-Manual

88 – Statements E-LAB Computers

4.9.8.5 WHILE Statement

While is the leading statement of a program-loop. After While an operation with a boolean result (true/false)
must follow. This can be a compare (a > b) or a boolean (bit or var). The expression controlling the repetition
must be of type Boolean. The statements contained in the loop are repeatedly executed as long as
expression is True. If its value is false at the beginning, the statement is not executed at all. The loop is
repeated as long as the controlling expression returns true.

The statement must be terminated with a do. The begin, which is usual in Pascal, is not permitted in this
case (see also description of begin). After do there should be at least one executable statement. Leaving the
while-loop is possible with a BREAK. See also Continue!

In contrast to standard-Pascal WHILE always has to be terminated with ENDWHILE.

while x < 100 do
 inc (x);
endwhile;

WHILE
Begin of a While loop

while a < b do inc (a); endwhile;

ENDWHILE
End of a While loop

4.9.8.6 REPEAT Statement

REPEAT is the leading statement of a program-loop. After REPEAT there can be one or several executable
statements. The begin, which is usual in Pascal, is not permitted in this case (see also description of begin).

The statement UNTIL forms the termination of the loop. After that there has to follow an operation with a
boolean result (true/false). This can be a compare (a > b) or a boolean (bit or var). The loop is executed as
long as the operation returns false. So in contrast to WHILE it is executed at least once.
Leaving the loop is possible with BREAK . See also Continue!

x:= 0;
repeat
 inc(TCC);
until TCC > 20;

REPEAT
Begin of a Repeat loop

UNTIL
End of a Repeat loop

4.9.8.7 CONTINUE

The Continue statement interrupts the normal flow of program execution of a for-, while- or repeat-loop and
transfers execution to the beginning of the loop. The following statements until EndFor, EndWhile or Until are
ignored.

 AVRco Compiler-Manual

E-LAB Computers Statements - 89

4.9.8.8 LOOP Statement

Within a Controller-application the program normally never terminates, i.e. the program runs in an endless-
loop. In this case Pascal only offers the construction: Repeat ... until false = true;
This is formally o.k., but is nonsense.

Modula-2 allows the endless-loop LOOP and this is implemented, too.
All statements within Loop ... Endloop; are repeatedly processed.

Loop .. Endloop; is also permitted within a procedure or even within a loop.
The statement ExitLoop is necessary to exit.
ExitLoop exits the loop and continues with the next statement after EndLoop.

begin
 loop
 ...
 endloop;
end.

 LOOP

Begin of an endless-loop

 ENDLOOP

End of an endless-loop

 EXITLOOP

Termination of an endless loop

loop
 ...
 ...
if a > b then
 exitloop;
endif;
 ...
endloop;

AVRco Compiler-Manual

90 – System Library - Standard E-LAB Computers

4.10 System Library - Standard

4.10.1 TRUE

Pre-defined constant = $FF

4.10.2 FALSE

Pre-defined constant = $00

4.10.3 PI

Pre-defined constant = 3.141592654 (float)

4.10.4 NIL

Pre-defined constant of type pointer = $0000

p:= nil;

4.10.5 Type Conversion

4.10.5.1 BOOLEAN
Converts the argument into a boolean

Function Boolean (a : type) : boolean;

bo:= boolean (x);

4.10.5.2 BYTE
Converts the argument into a byte

Function Byte (a : type) : byte;

b:= byte (x);

4.10.5.3 Int8
Converts the argument into a Int8

Function In8(a : type) : int8;

i:= Int8 (x);

4.10.5.4 CHAR
Converts the argument into a char

Function Char (a : type) : char;

ch:= char (x);

 AVRco Compiler-Manual

E-LAB Computers System Library - Standard - 91

4.10.5.5 WORD
Converts the argument into a word

Function Word (a : type) : word;

w:= word (x);

4.10.5.6 INTEGER
Converts the argument into an integer

Function Integer (a : type) : integer;

i:= Integer (x);

4.10.5.7 LONGWORD
Converts the argument into a LongWord

Function LongWord (a : type) : longword;

ww:=longword (x);

4.10.5.8 LONGINT
Converts the argument into LongInt

Function LongInt (a : type) : longint;

Li:= LongInt (x);

4.10.5.9 FLOAT
Converts the argument into a float

Function Float (a : type) : float;

f:= Float (x);

4.10.5.10 FLOATASLONG
Converts the argument into a LongWord. But there is no converting or processing at all.

Function FloatAsLong (f : float) : longword;

 structconst
 lws : longword = FloatAsLong (1.234);

 const
 lwc : longword = FloatAsLong (1.234);

// var
 lw:= FloatAsLong (fc);
 lw:= FloatAsLong (fs);

AVRco Compiler-Manual

92 – System Library - Standard E-LAB Computers

4.10.5.11 LONGASFLOAT
Converts the argument into a Float. But there is no converting or processing at all.

Function LongAsFloat (L : LongWord) : float;

strutconst
 fs : Float = LongAsFloat ($12345678);

const
 fc : Float = LongAsFloat ($12345678);

// var
 f:= LongAsFloat (lws);
 f:= LongAsFloat (lwc);

4.10.5.12 POINTER
Converts the argument into a pointer

Function Pointer (a : type) : pointer;

p:= Pointer (x);

4.10.6 Character and String Functions

4.10.6.1 ORD
Ordinal number of a symbol/character.

Function Ord (ch : char) : byte;

b:= ord (‘a’); { $61 }

4.10.6.2 UPCASE
Converts char into capitals.

Function Upcase (ch : char) : char;

ch:= UpCase (ch);

4.10.6.3 LOWCASE
Converts char into lowercase letters.

Function LowCase (ch : char) : char;

ch:= LowCase (ch);

4.10.6.4 UPPERCASE
Converts String into capitals.

Function Uppercase (st : string) : string;

st:= UpperCase (st);

 AVRco Compiler-Manual

E-LAB Computers System Library - Standard - 93

4.10.6.5 LOWERCASE
Converts String into lowercase letters.

Function LowerCase (st : string) : string;

st:= LowerCase (st);

4.10.6.6 COPY
Returns a string which is a substring from the source, beginning at “pos“ and has the length “count“. The
destination must be a string var. Can be used in conjunction with concatenate.

Function Copy (st : string; pos, count : byte) : string;

st:= Copy (st, 2, 3);

4.10.6.7 STRREPLACE
The string src overwrites the destination string dest at position pos.
The length of the destination string remains as previous.

Procedure StrReplace (src : string; var dest : string; pos : byte);

4.10.6.8 TRIM
Removes leading and trailing spaces from the string.

Function Trim (const st : string) : string;

4.10.6.9 TRIMLEFT
Removes leading spaces from the string.

Function TrimLeft (const st : string) : string;

4.10.6.10 TRIMRIGHT
Removes trailing spaces from the string.

Function TrimRight (const st : string) : string;

4.10.6.11 PADLEFT
Inserts leading spaces (or the optional Pad Char) into the string. The string becomes extended so that the
new length is now len. If the origin length >= len then nothing changes.

Function PadLeft (const st : string; len : byte [;pad : char]) : string;

4.10.6.12 PADRIGHT
Appends spaces (or the optional Pad Char) to the string. The string becomes extended so that the new
length is now len. If the origin length >= len then nothing changes.

Function PadRight (const st : string; len : byte [;pad : char]) : string;

AVRco Compiler-Manual

94 – System Library - Standard E-LAB Computers

4.10.6.13 LENGTH
Function returns the actual length of a string.

Function Length (s : string) : byte;

x:= length (st1);

4.10.6.14 SETLENGTH
This procedure changes the length of a string to the desired length, in the limits of the underlying string type.

Procedure SetLength (st : string; len : byte);

SetLength (st, 6);

4.10.6.15 POS
Function returns the position of a character within a string.

Function Pos (a : char; s : string) : byte;

x:= Pos (ch1, st1);

4.10.6.16 POSN
Function returns the position of a character within a string. Search starts at a given position.

Function PosN (a : char; s : string; start : byte) : byte;

This is a non-standard Pascal function. It is functionally similar to the “POS” function in that it can be used to
find a char in a string. POS searches for the char starting at the beginning of the string to search. It can find
only one occurrence of the char. POSN on the other hand allows you to start the search from any position
inside the string, thus POSN can be used to find multiple occurrences of the char.

POSN returns the position of “char” in “string”. The first possible position in string is “1”. The result is of type
byte. If “char” cannot be found, the function returns a “0”. “position” may be any number from 1 to 255 subject
to the actual string length. A search past the end of the string will return a “0” result.
POSN(char, string, 1) is the equivalent of POS(char, string).
“string” must refer to an existing string variable. It may not be a string expression.

var
 S : string[30];
 N : byte;
begin
 S:= ’Hello World Hello World’;
 N:= PosN (‘W’, s, 10); //N will be set to 19
end;

 AVRco Compiler-Manual

E-LAB Computers System Library - Standard - 95

4.10.6.17 APPEND
Procedure, appends the string "src" to the end of the string "dst" (concat).

Procedure Append (src : string; var dst : string);

The maximum length of "dst" will be not exceeded.

4.10.6.18 INSERT
Procedure, inserts a string into a string.

Procedure Insert (src : string; var dst : string; p : byte);

Insert (‘abc’, st1, 4);

4.10.6.19 DELETE
Procedure, deletes a number of characters within a string.

Procedure Delete (var s : string; pos, count : byte);

Delete (st1, 3, 2);

4.10.6.20 STRCLEAN
Function, removes/replaces control characters from a string.

Function StrClean (const st : string; gt127 : boolean; subst : char) : string;

The string "st" is scanned for chars < $20 (space) and if the boolean "gt127" is true,
also chars > $7F (> #127) are scanned for. If such a char id found it will be replaced by the char "subst" in
case subst is > #0. If subst = #0 then char found will be deleted and not replaced.

4.10.6.21 STRTOINT
Function, converts a string to a Byte, Word, Int8, Integer, LongWord, LongInt, Word64 or Int64 depending on
the destination variable. The function accepts variables in RAM or EEPROM. Strings in flash are not
supported.

Function StrToInt (st : string) : byte; {integer ..}

w:= StrToInt (st);

string formats:
decimal string: "1234"
hexadecimal string: "$ABCD"

AVRco Compiler-Manual

96 – System Library - Standard E-LAB Computers

4.10.6.22 HEXTOINT
With StrToInt the hexadecimal string has to begin with a dollar sign "$".
But there are already fixed strings, for example out of a communication, which receive without a "$".
So it makes sense to convert these strings without the insertion of a "$" at string[1]:

Function HexToInt (st : string) : integer [byte, int8, word, longint, longword];

expects a hex-string but without a leading "$"

4.10.6.23 STRTOFLOAT
Converting of a string into a float value. The decimal point is defined by the global constant “DecimalSep“
default “.“, which can be redefined

Function StrToFloat (st : string) : float;

f:= StrToFloat (st);

4.10.6.24 STRTOARR
Generation of Null-terminated strings (C Strings).

Function StrToArr (var st : string) : array of char

copies characters out of the string into the array until either the strings end is reached or the array is full.
In both cases the last transferred character is always a null. This function is only applicable in an
assignment.

array:= StrToArr (st);

The string as the source must reside either in RAM, Flash or EEprom. Functions as a source are not
allowed.

4.10.6.25 ARRTOSTR
Processing of Null-terminated Strings (C Strings).

Function ArrToStr (arr : array of char) : string;

copies characters out of the array into the string until either a null is found or the end of the array is reached
or the string is full.
The null is not transferred. This function is only valid in an assignment statement:

string:= ArrToStr (ar);

The string as the source must reside either in RAM, Flash or EEprom. Functions as a source are not
allowed.

4.10.6.26 EXTRACTFILEPATH
returns the path-part of a FileName if present.
 "A:FName.ext" -> "A:" "ppp\nnnn" -> "ppp\"

Function ExtractFilePath (FName : string) : string;

 AVRco Compiler-Manual

E-LAB Computers System Library - Standard - 97

4.10.6.27 EXTRACTFILENAME
returns the name-part of a FileName
"A:FName.ext" -> "FName" "ppp\nnnn" -> "nnnn"

Function ExtractFileName (FName : string) : string;

4.10.6.28 EXTRACTFILEEXT
returns the extension-part of a FileName if present.
"A:FName.ext" -> "ext" "nnnn.ee" -> "ee"

Function ExtractFileExt (FName : string) : string;

4.10.7 Access to Parts of Variable / Constants

4.10.7.1 SWAP

Swaps LoByte with a HiByte of Word or Integer or the LoNibble with the HiNibble of a Byte respective a
Char. For 32bit types the low-word is swapped with the high-word.

Function Swap (x : type) : type;

X:= Swap (i);

4.10.7.2 SWAPLONG
Sometimes it is necessary to make a mirrored value of a 32bit value.
The first and the last byte exchange their position. The same is true for the two middle bytes.

Function SwapLong (const x : LongWord|LongInt) : LongWord|LongInt;

longVal:= SwapLong (longVal);

If the variable "longVal" had the value $12345678 before the operation, so after the function call it contains
the value $78563412.

Attention: don't confuse with Swap (longVal) !!

4.10.7.3 MIRROR8
Mirrors the argument. Exchange bit7 <-> bit0, bit6 <-> bit1, ...

Function Mirror8 (b : byte|int8|char) : byte|int8|char;

4.10.7.4 MIRROR16
Mirrors the argument. Exchange bit15 <-> bit0, bit14 <-> bit1, ...

Function Mirror16(w : word|integer) : word|integer;

4.10.7.5 MIRROR32
Mirrors the argument. Exchange bit31 <-> bit0, bit30 <-> bit1, ...

Function Mirror32(Lw : longword|longint) : longword|longint;

AVRco Compiler-Manual

98 – System Library - Standard E-LAB Computers

4.10.7.6 LONIBBLE
returns the Low-nibble of a byte (lower 4bits)

Function LoNibble (b : byte|Int8) : byte|int8;

4.10.7.7 LO (Function)
returns least significant byte of a 16bit value

Function Lo (w : word) : byte;
Function Lo (i : integer) : byte;

a:= lo (i);

4.10.7.8 LO (Assignment)
assignment to the Low byte of a word

LO (word):= byte;

4.10.7.9 LOWORD (Function)
returns the Low word of a 32bit value (LongInt or LongWord)

Function LoWord (ww : Longword) : word [integer];
Function LoWord (ii : LongInt) : integer [word];

a:= loWord (i);

4.10.7.10 LOWORD (Assignment)
assignment to the Low Word of a LongWord

LOWORD (long):= word;

4.10.7.11 HINIBBLE
returns the High-nibble of a byte (higher 4bits)

Function HiNibble (b : byte|int8) : byte|int8;

4.10.7.12 HI (Function)
returns most significant byte of a 16bit value

Function Hi (w : word) : byte;
Function Hi (i : integer) : byte;

a:= hi (i);

4.10.7.13 HI (Assignment)
assignment to the High byte of a word

HI (word):= byte;

 AVRco Compiler-Manual

E-LAB Computers System Library - Standard - 99

4.10.7.14 HIWORD (Function)
returns the High word of a 32bit value (LongInt or LongWord)

Function HiWord (ww : Longword) : word [integer];
Function HiWord (ii : LongInt) : integer [word];

a:= hiWord (i);

4.10.7.15 HIWORD (Assignment)
assignment to the High Word of a LongWord

HIWORD (long):= word;

4.10.8 ABS

Absolute value of an Int8, Integer, Longint or Float value

Function Abs (i : integer) : integer;
Function Abs (f : float) : float;

a:= abs (a);

4.10.9 Negate

The negative value (Two’s Complement) of a Byte, Int8..Longword, LongInt or Float value

Function Negate (v : type) : type;

a:= Negate (a);

4.10.10 INC

Variables only increment for byte, int8, word, integer, longword and longint. Argument is wrapped if the limits
are exceeded.

Procedure Inc (var v [, step] : type);

inc (a);

4.10.11 INCTOLIM

Function IncToLim (var v : ordinal [, limit : ordinal[; val : ordinal]]) : boolean;

The argument "v" is incremented, provided that "v" has not reached it's natural limit.
If the optional parameter "limit" is given, then this serves as the limit. If the function was successful, this
means there was an increment, and the function returns true. Otherwise it returns false.
The optional parameter "val" specifies the increment value.
Type = Enum, Byte, Int8, Char, Word, Integer, Longword, Longint
The function is extremely fast and short. It is very well suited for loop implementations.

var i : integer;
repeat
 ...
until not IncToLim (i, 1000);

The loop will be repeated until "i" becomes the value 1000.

AVRco Compiler-Manual

100 – System Library - Standard E-LAB Computers

4.10.12 INCTOLIMWRAP

Function IncToLimWrap (var value, lim, pres : type) : boolean;

Increments the variable "value" by 1. If this exceeds the value of "lim" the variable "value" is reset to the
content of "pres" and the result returns true. Otherwise the result is false.
Type = Enum, Byte, Int8, Char, Word, Integer, Longword, Longint

4.10.13 DEC

Variables only decrement for byte, Int8, word, integer, longword and longint. Argument is wrapped if the
limits are exceeded.

Procedure Dec (var v [, step] : type);

dec (b);

4.10.14 DECTOLIM

Function DecToLim (var v : ordinal [, limit : ordinal[; val : ordinal]]) : boolean;

The argument "v" is decremented, provided that "v" has not reached it's natural limit.
If the optional parameter "limit" is given, then this serves as the limit. If the function was successful, this
means there was a decrement, and the function returns true. Otherwise the function returns false.
The optional parameter "val" specifies the decrement value.
Type = Enum, Byte, Int8, Char, Word, Integer, Longword, Longint
The functions is extremely fast and short. It is very well suited for loop implementations.

var i : integer;

while DecToLim (i) do
 ...
endwhile;

The loop will be repeated until "i" becomes the value -32768.

4.10.15 DECTOLIMWRAP

Function DecToLimWrap (var value, lim, pres : type) : boolean;

decrements the variable "value" by 1. If this exceeds the value of "lim" the variable "value" is reset to the
content of "pres" and the result becomes true, otherwise false.
Type = Enum, Byte, Int8, Char, Word, Integer, Longword, Longint

4.10.16 VALUETRIMLIMIT

Function ValueTrimLimit (value, vmin, vmax : type) : type;

compares the content of "value" to the two limits "vmin" and "vmax", where vmin must always be smaller
than vmax. If one of the two limits is exceeded the result becomes the content of this limit, otherwise
the origin content of value is returned.
Type = Enum, Byte, Int8, Char, Word, Integer, Longword, Longint, Float

 AVRco Compiler-Manual

E-LAB Computers System Library - Standard - 101

4.10.17 VALUEINTOLERANCE

Function ValueInTolerance (value, ref, tol : type) : boolean;

compares the content of "value" to the limit "vmin" which is build from (ref - tol) and "vmax",
build from (ref + tol). If one of the two limits is exceeded the result returns false. Otherwise it returns true.
Type = Byte, Int8, Word, Integer, Longword, Longint, Float

4.10.18 VALUEINTOLERANCEP

Function ValueInToleranceP (value, ref : type; tol : byte) : boolean;

compares the content of "value" with the limit "vmin" which is build from (ref - (ref div 100) * tol) and "vmax",
build from (ref + (ref div 100) * tol). If one of the two limits is exceeded the result is false. Otherwise it is a
true.
The value "tol" must be in the range of 0..100 because it is used as "percent". This function is the same as
the function "ValueInTolerance" except that here the tolerance is not absolute but relative in percent.
Type = Byte, Int8, Word, Integer, Longword, Longint, Float

4.10.19 VALUEINRANGE

Function ValueInRange (value, vmin, vmax : type) : boolean;

compares the variable "value" with the two limits "vmin" and "vmax" where vmin must be smaller than vmax.
If value exceeds one of two limits the function returns False. Otherwise it returns true.
Type = Enum, Byte, Int8, Char, Word, Integer, Longword, Longint, Float

4.10.20 MULDIVBYTE

With division of bytes the result is imprecise in many cases. Only with the help of a trick it's possible to
multiply a byte by a non-integer value. The following is not possible, normally:

b:= b * 0.2;

But one can replace the above by:

b:= (b * 10) div 50;

This works in many cases, but fails if the result of the multiplication is greater as the bounds of a byte
(0..255).

b:= (100 * 100) div 250;

The multiplication results in an byte-overflow and the total result is completely wrong. To avoid this problem,
one can do the whole operation in word. But this means that the values used must be converted to word,
which results in a larger and slower program.

Function MulDivByte (a1, a2, d : byte) : byte;

The function calculates the 16bit result of the multiplication and divides this result by the 8bit divisor. This
assures that an overflow error is impossible. The result of this function must fit into a byte.

bb:= 100; // byte
bb:= MulDivByte (ww, 99, 100); // -> bb:= bb * 0.99

AVRco Compiler-Manual

102 – System Library - Standard E-LAB Computers

4.10.21 MULDIVINT8

Similar function as MulDivByte or MulDivInt but for ShortInt = Int8.

Function MulDivInt8 (a1, a2, d : Int8) : Int8;

4.10.22 MULDIVINT

With division of integers the result is imprecise in many cases. Only with the help of a trick it's possible to
multiply an integer or Word by a non-integer value.
The following is not possible, normally:

i:= i * 0.27;

But one can replace the above by:

i:= (i * 100) div 370;

This works in many cases, but fails if the result of the multiplication is greater as the bounds of and integer
(+/- 32767).

i:= (1000 * 100) div 370;

The multiplication results in an integer-overflow and the total result is absolutely wrong. To avoid this
problem, one can do the whole operation in LongInt. But this means that longints must be imported, which
results in a larger and slower program.

Function MulDivInt (a1, a2, d : integer) : integer;
Function MulDivInt (a1, a2, d : word) : word;

The function calculates the 32bit result of the multiplication and divides this result by the 16bit divisor. This
assures that an overflow error is impossible. The result of this function must fit into an integer or Word.
The first parameter defines the principal operation. If it is an integer, a signed calculation is executed,
otherwise it is an unsigned one.

ww:= 1000; // word
ww:= MulDivInt (ww, 2, 3); // -> ww:= ww * 0.666

ii:= -1000; // integer
ii:= MulDivInt (ii, 100, 125); // -> ii:= ii * 0.8

4.10.23 SQUAREDIVBYTE

Function SquareDivByte (val, divfact : byte) : byte;

Calculate the square of a value and divide the result by another value. The advantages of these functions
are that an overflow of the square result does not matter

4.10.24 SQUAREDIVINT8

Function SquareDivInt8 (val, divfact : int8) : int8;

Calculate the square of a value and divide the result by another value. The advantages of these functions
are that an overflow of the square result does not matter

 AVRco Compiler-Manual

E-LAB Computers System Library - Standard - 103

4.10.25 SQUAREDIVINT

Function SquareDivInt (val, divfact : word|integer) : word|integer;

Calculate the square of a value and divide the result by another value. The advantages of these functions
are that an overflow of the square result does not matter

4.10.26 INTEGRATEB

Function IntegrateB (oldVal, newVal, fact : byte) : byte;

Integrate a new value with an existing.
Calculation: result:= ((oldVal * fact) + newVal) div (fact + 1);
An overflow in the multiplication cannot happen because the internal maths is done with the next bigger type.

4.10.27 INTEGRATEI8

Function IntegrateI8 (oldVal, newVal : int8; fact : byte) : int8;

Integrate a new value with an existing.
Calculation: result:= ((oldVal * fact) + newVal) div (fact + 1);
An overflow in the multiplication cannot happen because the internal maths is done with the next bigger type.

4.10.28 INTEGRATEI

Function IntegrateI (oldVal, newVal : integer; fact : byte) : integer;

Integrate a new value with an existing.
Calculation: result:= ((oldVal * fact) + newVal) div (fact + 1);
An overflow in the multiplication cannot happen because the internal maths is done with the next bigger type.
.

4.10.29 INTEGRATEW

Function IntegrateW (oldVal, newVal : word; fact : byte) : word;

Integrate a new value with an existing.
Calculation: result:= ((oldVal * fact) + newVal) div (fact + 1);
An overflow in the multiplication cannot happen because the internal maths is done with the next bigger type.

4.10.30 Even

Tests the value for even. Function returns True if the argument is even.
Only for byte, int8, word, integer, longword and longint

Function Even(x : type) : boolean;

If Even(V1) then ..

4.10.31 ODD

Tests the value for odd. Function returns True if the argument is odd.
Only for byte, int8, word, integer, longword and longint

Function Odd (x : type) : boolean;

If Odd (V1) then ..

AVRco Compiler-Manual

104 – System Library - Standard E-LAB Computers

4.10.32 PARITY

Function, returns the parity, even/odd of a byte or char. True, if parity is odd

Function Parity (const b : byte|char) : boolean;

Bool:= Parity (bb);

4.10.33 ISPOWOFTWO

This function checks the number "n" whether is a power of 2. Valid parameters are Byte..LongInt.

Function IsPowOfTwo (n : type) : boolean;

4.10.34 SIGN

Function, returns the sign of a number as a boolean:

Function Sign (const num : integer[int8, longint, float]) : boolean;

If the argument is positive the function returns a true otherwise a false.

4.10.35 SGN

Function, returns the sign of a number as an integer:

Function Sgn (const num : integer[int8, longint, float]) : integer;

If the argument is > 0 the function returns a '1'. If the argument is zero the function returns a zero
otherwise a '-1'.

4.10.36 PRED

The function returns the next-lower value of a variable. The type has to be ordinal, for example byte, word,
integer. The limits of the type given are not exceeded. There is no “wrap“. The predesessor of Byte 0 is
always 0.

Function Pred (x : type) : type;

x:= Pred (y);

4.10.37 SUCC

The function returns the next-higher value of a variable. The type has to be ordinal, for example byte, word,
integer. The limits of the type given are not exceeded. There is no “wrap“. The successor of Byte 255 is
always 255.

Function Succ (x : type) : type;

x:= Succ (y);

 AVRco Compiler-Manual

E-LAB Computers System Library - Standard - 105

4.10.38 MIN

Returns the lowest possible value of the type.

Function Min (x: type) : type;

x:= min (a);

4.10.39 MAX

Returns the highest possible value of the type.

Function Max (x: type) : type;

x:= max (a);

4.10.40 SIZEOF

Function returns the required memory of an object in bytes.

Function SizeOf (x : type) : word;

x:= SizeOf (a);
x:= SizeOf (st1); {whole memory area of a string}

4.10.41 BitCountOf

Function returns the count of bits of an ordinal which have the value of “1”.

Function BitCountOf (x : ordinal) : byte;

n:= BitCountOf (a);

4.10.42 ADDR

p:= Addr (a); {Address of the memory location}

Valid operands are only variables, procedures and functions because only these have a physical address.
The result is a typed pointer. After the operation 'p' contains the address of 'a'.
The target is usually a pointer.

AVRco Compiler-Manual

106 – System Library - Diverse Functions E-LAB Computers

4.11 System Library - Bit Processing

Bit processing is an essential part of controller applications. Pascal only knows the bit-mask,
e.g. if (x and 1) > 0 then ..

The remedy is the well-known bit processing of Modula-2 incl(bit), excl(bit) and bit(bit). For simplification the
TYPE BIT was introduced (see also the description of type bit above). This type can be used for all 5 Bit-
functions (Incl, Excl, Toggle, SetBit, Bit).

The declaration of a bit-variable always consists of two levels: first the memory location of the variable, in
which the bit is located, has to be defined. This happens with a normal VAR-statement:

var Leds[$05] : byte; or

bits16 : word;

The type of the memory location (byte, word) determines if 8 or 16 bits are at the disposal of the
programmer. After the declaration of the common variable follows the actual bit-declaration. Thereby the first
parameter indicates a memory location, the second parameter indicates the corresponding bit at this
location.

Const LedBit2 = 3;
var port6[6] : byte;
 Led2[@port6, Led2Bit] : bit;

if BIT(Led2) then ...
Toggle(Led2);

Bits also can be dynamically generated within the program.

Toggle (Leds, 3); {Bit3 innerhalb 8 Bits}
Incl (bits16, 12); {Bit12 innerhalb 16 Bits}

Further bits can be accessed as usual with 8051 tools in the way "variable.bit".

PortB.0:= true;
bool:= PortA.5;
Toggle(PortC.2);

"BIT" must be a constant in the range of 0..7.
This works also with local variables in procedures/functions.

With all bit-write-operations it is also possible to use a number "0" or "1" instead of "False" or "True".

PortB.0:= 0;
BitX:= 1;

4.11.1 INCL

Set Bit

Incl (port6, 3); {This instruction is identical with}
Incl (Led2); {this instructions provided above definition}

Under certain conditions using the procedure SetBit is preferred.

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 107

INCL with BitSets:

Procedure Incl (SrcDest : BitSet; op : BitSet);
Where "SrcDest" is the BitSet to change and "op" contains the bits which must be changed.
"op" can be either a BitSet variable of the same type or a BitSet constant "[aa, bb, cc, ...]" of the same type.

4.11.2 EXCL

Reset Bit

Excl (Leds, a); {Leds is a byte-variable}
Excl (b); {Symbol b is a Bit declaration}

Under certain circumstances using the procedure SetBit is preferred.

EXCL with BitSets:

Procedure Excl (SrcDest : BitSet; op : BitSet);
Where "SrcDest" is the BitSet to change and "op" contains the bits which must be changed.
"op" can be either a BitSet variable of the same type or a BitSet constant "[aa, bb, cc, ...]" of the same type.

4.11.3 TOGGLE

Switch Bit

Toggle (Leds, 3);
Toggle (Led2);

TOGGLE with BitSets:

Procedure Toggle (SrcDest : BitSet; op : BitSet);
Where "SrcDest" is the BitSet to change and "op" contains the bits which must be changed.
"op" can be either a BitSet variable of the same type or a BitSet constant "[aa, bb, cc, ...]" of the same type.

4.11.4 SETBIT

Set/Reset Bit

SetBit (BitType, boolean);

SetBit sets, depending on the parameter boolean, the bit, which is described in the first parameter, to 1 or 0.
There is an access to 8 or 16 bits, depending on the used variable.
To find the definition of the type BIT see also type bit.

AVRco Compiler-Manual

108 – System Library - Diverse Functions E-LAB Computers

SetBit is a combination of Incl(bit) and Excl(bit). So it is slower and essential bigger (with the number of
assembler commands) as a singular Incl(bit), for example. SetBit should only be used, if speed and/or
program size are necessary, to replace the following construction:

if boolean then
 Incl (bit);
else
 Excl (bit);
endif;

Here it is better faster and shorter:

SetBit (bit, boolean);

but instead of the following construction:

SetBit (bit, true);

it is better to use this construction:

Incl (bit);

const a = 7;
 c = 5;

var v1 = byte;
 Led1 = [@V1, a];

Function TestB : boolean;
begin
 ...
 return(x);
end;

SetBit (v1, c, TestB);
SetBit (Led1, TestB);

SETBIT with BitSets:

Procedure SetBit (SrcDest : BitSet; op : BitSet|Enum; bool : boolean);
Where "SrcDest" is the BitSet to change and "op" contains the bits which must be changed.
"op" can be either a BitSet variable of the same type or a BitSet constant "[aa, bb, cc, ...]" of the same type.
Also the basic underlying enumeration can be used.

SetBit (myBitSet, [a, b, c], true);
SetBit (myBitSet, myBitSet1, true);
SetBit (myBitSet, a, false);

4.11.5 BIT

Test Bit

if Bit (a, 0) then ... ; endif;
if Bit (b) then ... ; endif;

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 109

4.12 System Library - Diverse System Functions

4.12.1 SYSTEM_RESET

Resets and restarts the whole system. The effect is almost the same as a Hardware Reset, but here
some bits within control registers assume a certain value, this is not the case within a system reset.
Here interrupts are disabled, followed by a jump to the beginning of the program

If the special function System_Init has been defined, it is naturally executed, too.

System_Reset;

4.12.2 DELAY

4.12.2.1 mDelay
Software Delay in msec. The procedure returns after a delay of x msec. The passed parameter has to be
between 1 and 65000 (word). Depending on the system the accuracy is about +/-20%. To get an accurate
timing SysTimer or SysTimer8 should be used.
Sleep should be used in MultiTasking systems, so there is no wastage of runtime.

Procedure mDelay (d : word);

mDelay (100); {wait for 100 msec}

4.12.2.2 uDelay
Software Delay in microseconds x 10. The procedure returns after a passing of n x 10 microseconds. The
passed parameter has to be between 1 and 255 (byte). Depending on the system the accuracy is about +/-
20%. With CPU-Clocks lower than 2MHz the accuracy is extremely poor.
To get an accurate timing the type SysTimer or SysTimer8 should be used.

Procedure uDelay(d : byte);

uDelay(10); {waiting for100 usec}

4.12.2.3 uDelay_1
Software Delay in 1 usec. "uDelay_1" works precisely only if the CPU Clock is >= 8MHz. If interrupts occur
while the Delay is running, the resulting time is stretched, possibly dramatically

Procedure uDelay_1 (d : byte);

4.12.2.4 sDelay
Software Delay in CPU cycles. The procedure returns after a passing of n CPU cycles. The passed
parameter has to be between 1 and 255 (byte). An accuracy can not be defined. Useable for very short
delays in the micro second range.

Procedure sDelay (d : byte);

sDelay (10); {wait for about 10 cycles}

AVRco Compiler-Manual

110 – System Library - Diverse Functions E-LAB Computers

4.12.3 SYSTIMER

4.12.3.1 SetSysTimer
This procedure loads a SysTimer with the passed value. Therefore the interrupt must be disabled and then
enabled again. Because of this a continuous writing to a Systimer should be avoided.

var Timer1 : SysTimer8; {variable of type SysTimer 8bit}

SetSysTimer (Timer1, 50);

Also for SysTimer in UpCount mode.

4.12.3.2 SetSysTimerM

Procedure SetSysTimerM (tm : SysTimer; time : byte|word);

Define the timeout in milli second values. The internal resolution is still in SysTick values.
This means that with a SysTick of 10msec a parameter value of 27 results in a timer value of 30msec.
(TimerValue:= time div SysTickTime).
With a SysTimer8 also floating point SysTick values are allowed, for example 2.5.
The result of the function (in SysTicks) must not exceed 255 ticks.
With the SysTimer (16bit) floating point SysTick times are rounded

4.12.3.3 GetSysTimer
This function reads out a SysTimer and returns it’s actual value. Therefore the interrupt must be disabled
and then enabled again. Because of this a continuous writing to a Systimer should be avoided.

var Timer1 : SysTimer; {variable of type SysTimer 16bit}

Ww:= GetSysTimer (Timer1);

Also for SysTimer in UpCount mode.

4.12.3.4 ResetSysTimer
This procedure resets a SysTimer to a zero value. Therefore the interrupt must be disabled and then
enabled again. Because of this a continuous writing to a Systimer should be avoided.

var Timer1 : SysTimer8; {variable of type SysTimer 8bit}

ResetSysTimer (Timer1);

Also for SysTimer in UpCount mode.

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 111

4.12.3.5 IsSysTimerZero
If SystemTick is imported and a SysTimer is defined, then a timer can be polled for zero. Because with each
normal access to a timer the interrupt must be disabled and enabled again, which leads to a waste of CPU
power and slows down the interrupt system, a better way is to poll the state of such a timer with the function
“IsSysTimerZero“. This is much faster and interrupts aren’t disabled. If the timer = 0 the function returns a
true, otherwise a false.

var Timer1 : SysTimer; {variable of type SysTimer 16bit}

SetSysTimer (Timer1, 50000);

repeat until isSysTimerZero (Timer1);

Not for SysTimer in UpCount mode.

4.12.4 LOWER

The function returns the lower of two values. The types of both arguments have to be identical,
for example Byte, Int8, word, integer, float.

Function Lower (x, y : type) : type;

x:= lower (y, z);

4.12.5 HIGHER

The function returns the higher of two values. The types of both arguments have to be identical, for example
Byte, word, Int8, integer, float.

Function Higher (x, y : type) : type;

x:= higher (y, z);

4.12.6 WITHIN

Function, checks against bounds:
The function checks a number against two bounds. The first value is the lower limit, the second value is the
value, which has to be checked, and the third is the higher limit. If the second value is within these limits, so
it is the result. If it is too low, the result is the lower limit, otherwise it is the higher limit. All types have to be
identical, for example Byte, Int8, word, integer, float.

Function WithIn (lo, x, hi : type) : type;

x:= WithIn (low, a, high);

4.12.7 VAL

In standard Pascal the procedure Val converts a string-value into its numeric statement.
This general procedure is very complex and would need much code space in flash.
For that reason val is in AVRco Pascal not implemented but was replaced by several shorter procedures.
See chapter "System Library –Standard, Character and String Functions".

AVRco Compiler-Manual

112 – System Library - Diverse Functions E-LAB Computers

4.12.8 Block Functions

4.12.8.1 FILLBLOCK
Fills a memory area with a byte or char. P can be any pointer. A check of the area for validity does not take
place. Fill can be a byte or a char.

Procedure FillBlock p : pointer; cnt : word; fill : byte);

FillBlock (@Start, len, fill);
FillBlock (@array1, SizeOf (array1), 0);
FillBlock (@w1, 2, ’1’);

4.12.8.2 FILLRANDOM (*4*)
Fills a memory area with a random value. P can be any pointer. A check of the area for validity does not take
place. The Random function must be imported from the system.

Procedure FillRandom (p : pointer; cnt : word);

FillRandom (@Start, lenl);
FillRandom (@array1, SizeOf (array1));
FillRandom (@w1, 2);

4.12.8.3 COPYBLOCK
Copies a memory area to another. The blocks should not overlap. A check of the area for validity does not
take place. Source and dest can be any pointer.

Procedure CopyBlock (Source, Dest, len : word);

CopyBlock (@array1, @array2, SizeOf (array1));
CopyBlock (@w1, @w2, 2);

4.12.8.4 COMPAREBLOCK
Two memory areas can be compared for equal/same content. If the content is the same a true is returned,
otherwise a false.

Function CompareBlock (const addr1, addr2 : pointer; const len : word) : boolean;

Mögliche Bereiche:

RAM <--> RAM
EEprom <--> EEprom
ROM <--> RAM
ROM <--> EEprom
RAM <--> Eeprom

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 113

4.12.9 Pointer Access Outside the Linear Adress Range

Pointers are always 16 bit und there is no information about the memory area where they should point to.
So a pointer implies always an access into the linear CPU address range $0000..$FFFF.
To access the Flash, the EEProm or a Banked Device with a pointer the following functions must be used:

4.12.9.1 FlashPtr
Redirects the access to the Flash

Function FlashPtr (p:pointer): pointer;

Ptr1 := @FlashByte;
bb := FlashPtr (Ptr1)^;

4.12.9.2 EEPromPtr
Redirects the access to the EEProm

Function EEPromPtr (p:pointer): pointer;

Ptr1 := @EEPromByte;
bb := EEPromPtr (Ptr1)^;

4.12.9.3 UsrDevPtr
Redirects the access to the User Device

Function UsrDevPtr (p:pointer): pointer;

Ptr1 := @UsrDevByte;
bb := UsrDevPtr (Ptr1)^;

4.12.9.4 BankDevPtr
Redirects the access to the Banked Device

Function BankDevPtr (b:byte; p:pointer): pointer;

Ptr1 := @BankDevByte;
bb := BankDevPtr (2, Ptr1)^; //bank #2

4.12.10 FLUSHBUFFER

Deletes the content of the buffer of a serial interface. As argument RxBuffer, TxBuffer, RxBuffer1, TxBuffer1,
RxBuffer2, TxBuffer2, RxBuffer3, TxBuffer3 are possible.

Procedure FlushBuffer (Buffer : tBuffer);

FlushBuffer (RxBuffer);

4.12.11 CRC Checksum

4.12.11.1 CRC CHECK
A block of data with the appended CRC-word results in a zero, if this block is again checked by this
CRC-function

AVRco Compiler-Manual

114 – System Library - Diverse Functions E-LAB Computers

Function CRCcheck (p : pointer; count : word) : word;

Notes:
This conform to the CCITT Standard: CrcCCITT = x^16+x^12+x^5+1 with a seed value of $0810.
The programmer can build CRC from RAM, EEPROM and FLASH. It is required that the passed pointer to
the memory is defined with the address-of-operator @:

xx:= CRCcheck (@EEprom, sizeOf (EEprom));

4.12.11.2 CRC STREAM
A CRC stream can be used to repeatedly add bytes/chars of an Input/Output stream into a CRC sum and
finally get a 16bit CRC sum calculated over the whole stream.

Implementation
The driver must be imported:

Import SysTick, CRCstream, ...

Procedures and Functions
The driver provides three functions:

Procedure CRCstreamInit (seed : word);

This function clears the CRC start value to 0 and "seed" is the initial operating value, in most cases it should
be $0810.
After the call of this init function the byte/char stream can be continuously added to the checksum with

Function CRCstreamAdd (value : byte) : word;

This function adds the byte always returns the current CRC checksum.

Function CRCstreamAddP (ptr : pointer; count : word) : word;

This function adds a memory block (RAM) always returns the current CRC checksum.

4.12.11.3 FLASH CHECKSUM
The Compiler offers two 16bit checksum calculations at compile-time which can be checked at runtime.
The destination address of the checksum must be defined:

Define FlashChkSum = $1ffe; // Byte address
or
Define FlashChkSum = ProgEnd; // Program end

The checksum will be placed into the absolute address location or at the end of the program. The area of the
check starts at address $0000 and continues up to either the program end or up to the destination address.
The DEFINE must be used to set the upper checklimit. Please note that the boot area if present can not be
checked for several reasons so the check must end below this area. The number counts in bytes.

The function

Function CalcFlashCheck : boolean;

generates at runtime checksum and compares it with the value stored in the Flash.
The result of this compare is returned as ok/true or failed/false.

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 115

Note:
This function is not applicable with devices > 128kB Flash. Furthermore the interrupts are disabled while this
function runs.

(*4*) In order to support also devices with more than 128kB and also to limit the time the interrupts are
disabled the following function should be used:

Function CalcFlashCheck_S(count : word) : byte;

This is a so called sequential or partial flash check. It must be called repeatedly until the result is non zero.
So the check can be splitted into any partitions and the interrupts are only disabled for a short time.
The driver must be imported with:

From System Import FlashCheck_S;

The function parameter defines the amount of bytes to be checked.

The function returns a zero if the end is not reached yet. If finished a non-zero result is returned:
1 = check finished and ok
2 = check finished but failed.

After a non zero value is returned the check parameters are setup to default values so that a check can be
restarted.

Example:

 repeat
 bb:= CalcFlashCheck_S($1000);
 until bb <> 0;

If a BootBlock is defined a separate boot checksum can be imported:

From System Import FlashCheck_B; (*4*)

Then it is possible to execute an extra Flash check over the entire boot area:

Function CalcFlashCheck_B: boolean;

4.12.11.4 EEPROM CHECKSUM
Calculates the sum of all bytes in the passed area and returns the negated result.

Function calcCheckSum (const start, end : pointer) : word;

{$EEPROM}
structconst

 eInt : word = 1;
 eStr : string = 'eeprom';
 eWord : word = $1234;
 eByte : byte = $AA;
 ...
check:= CalcCheckSum (@eStr, @eByte);

The address of "eByte" is used as the end-pointer but the value of "eByte" itself is not included into the
calculation.

It's also possible to build an EEprom checksum at compile-time and store it into the EEprom as a structured
const:

AVRco Compiler-Manual

116 – System Library - Diverse Functions E-LAB Computers

{$EEPROM}
structconst

 eInt : word = 1;
 eStr : string = 'eeprom';

 eWord : word = $1234;
 eByte : byte = $AA;
 eCheck : word = CalcCheckSum (@eStr, @eByte);

The memory location "eCheck" now contains the checksum of all EEprom bytes from "eStr" (inclusive) to
"eByte" (exclusive). A special construction allows to use the destination of the function result as the end
pointer with using the "$" sign:

eCheck : word = CalcCheckSum (@eStr, $);

Both operations are only valid if placed in the "StructConst" area of the EEprom.

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 117

4.12.12 RANDOM

Function, returns a random number of the type Word. Random must be imported.

From System import Random…

Function Random : word;

W:= Random;

4.12.13 RANDOMRANGE (*4*)

Function, returns a random number of the type Word. The value is limited by min and max. Random must be
imported.

From System import Random…

Function RandomRange(min, max : word) : word;

W:= RandomRange(100, 500);

4.12.14 SQR, (*4*)(*P*): SQR_D

Functions, return the square of the float/double argument

Function Sqr (f : float) : float;
Function Sqr_D (f : double) : double;

f:= Sqr (f);

4.12.15 SQRT, (*4*)(*P*): SQRT_D

Functions, return the square root of a float/double argument

Function Sqrt (f : float) : float;
Function Sqrt_D (f : double) : double;

f:= Sqrt (f);

4.12.16 POW, (*4*)(*P*): POW_D

Functions, return the result of x power of y. The base (x) must always be positive!

Function Pow (x, y : float) : float;
Function Pow_D (const x, y : double) : double;

f:= Pow (x, y);

AVRco Compiler-Manual

118 – System Library - Diverse Functions E-LAB Computers

4.12.17 POW10, (*4*)(*P*): POW10_D

Functions, return the result of 10 power of x

Function Pow10 (f : float) : float;
Function Pow10_D(const x : double) : double;

f:= Pow10 (x);

4.12.18 EXP, (*4*)(*P*): EXP_D

The functions Exp and Exp-D return the power of X (float).
The return value is e power of X, and e is the base of the natural logarithm.

Function Exp (f : float) : float;
Function Exp_D (const f : double) : double;

f:= Exp (x);

4.12.19 LogN, (*4*)(*P*): LogN_D

The functions LogN and LogN_D return as result the nature logarithm of X.
The log naturalis is based on the Euler number e = 2.71…

Function LogN(f : float) : float;
Function LogN_D(const f : double) : double;

f:= LogN(x);

4.12.20 Log10, (*4*)(*P*): Log10_D

The functions Log10 and Log10_D return as result the logarithm to base 10 of X.

Function Log10 (f : float) : float;
Function Log10_D (const f : double) : double;

f:= Log10 (x);

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 119

4.12.21 Trigonometrical Functions

4.12.21.1 TAN, (*4*)(*P*): TAN_D
The functions return as result the tangent of an angle w (in radians).

Function Tan (w : float) : float;
Function Tan_D (const f : double) : double;

t:= Tan (w);

4.12.21.2 TAND, (*4*)(*P*): TAND_D
The functions return as result the tangent of the angle w (in degrees).

Function TanD (w : float) : float;
Function TanD_D (const f : double) : double;

t:= TanD (w);

4.12.21.3 ARCTAN, (*4*)(*P*): ARCTAN_D
The functions return the arctangent in radians.

Function ArcTan (w : float) : float;
Function ArcTan_D (const f : double) : double;

a:= ArcTan (w);

4.12.21.4 SIN, (*4*)(*P*): SIN_D
The functions return the sine of the argument.
w is a term of the type float/double. Return the sine of the angle w in radians.

Function Sin (w : float) : float;
Function Sin_D (const w : double) : double;

s:= Sin (w);

4.12.21.5 SININT
The function returns the Sine of the angle multiplied by the Integer argument.
Very fast and short!!

Function SinInt (angle, v : integer) : integer;

4.12.21.6 SININT16
This function calculates the sine of an angle, multiplies the result by 10000 and returns the result as an
integer value. The angle must be passed in tenths of a degree (2.5deg -> 25).
The result for the angle 90deg (parameter angle = 900) is then 10000.

Function SinInt16 (angle : integer) : integer; // angle in 0.1deg
// result:= round (Sin (angle / 10) * 10000);

Provides much more precise results without needing much more runtime.
Disadvantage of this version:
there must be a sine table in ROM/Flash of about 2kByte size.

AVRco Compiler-Manual

120 – System Library - Diverse Functions E-LAB Computers

4.12.21.7 SIND, (*4*)(*P*): SIND_D
The functions return the sine of the argument.
w is a term of the type float/double. Return the sine of the angle w in degrees.

Function SinD (w : float) : float;
Function SinD_D (w : double) : double;

s:= SinD (w);

4.12.21.8 COS, (*4*)(*P*): COS_D
The functions return the cosine of the argument.
w is a term of the type float/double. Return the cosine of the angle w in radians.

Function Cos (w : float) : float;
Function Cos_D (w : double) : double;

c:= Cos (w);

4.12.21.9 COSINT
The function returns the Cosine of the angle multiplied by the Integer argument.
Very fast and short!!

Function CosInt (angle, v : integer) : integer;

4.12.21.10 COSINT16
This function calculates the cosine of an angle, multiply the result by 10000 and return the result as an
integer value. The angle must be passed in tenths of a degree (2.5deg -> 25).
The result of the angle 45deg (parameter angle = 450) for the cosine then is 7071.

Function CosInt16 (angle : integer) : integer; // angle in 0.1deg
// result:= round (Cos (angle / 10) * 10000);

Provides much more precise results without needing much more runtime.
Disadvantage of this version:
there must be a sine table in ROM/Flash of about 2kByte size.

4.12.21.11 COSD, (*4*)(*P*): COSD_D

The functions return the cosine of the argument.
w is a term of the type float/double. Return the cosine of the angle w in degrees.

Function CosD (w : float) : float;
Function CosD_D (w : double) : double;

c:= CosD (w);

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 121

4.12.21.12 DEGTORAD, (*4*)(*P*): DEGTORAD_D
The functions turn an angular value, which is in degrees, into radians.
360 degrees corresponds to 2 Pi radians.
{ rad := degree * Pi / 180 }

Function DegToRad (w : float) : float;
Function Deg2Rad_D (const f : double) : double;

r:= DegToRad (w);

4.12.21.13 RADTODEG, (*4*)(*P*): RADTODEG_D
The functions turn an angular value in radians into degrees.
{ degree := rad * 180 / Pi }

Function RadToDeg (w : float) : float;
Function Rad2Deg_D (const f : double) : double;

w:= RadToDeg (r);

4.12.21.14 ROTATEPNTi
The point(XPo, YPo) is rotated by angle (degrees). The result is returned in XPd, YPd.

Procedure RotatePnti (angle, XPo, YPo : integer; var XPd, YPd : integer);

4.12.22 TRUNC, (*4*)(*P*): TRUNC_D

The functions truncate a value of the type Float/Double to an Integer value.
f is a term of the type Float/Double. Trunc returns the type (integer or longint) corresponding to the
destination.

Function Trunc (f : float) : integer; {LongInt}
Function Trunc_D (const f : double) : Integer [LongInt];

i:= Trunc (f);

4.12.23 ROUND, (*4*)(*P*): ROUND_D

The functions round a value of the type Float/Double to a value of the type integer (Byte, Word,
Longint, Longword).
f is a term of the type float/double. Return an int-value, which describes the value of f rounded to the next
integer number. If f is exactly in the middle of two integer numbers, in the result the number with the highest
absolute value is returned.

Function Round (f : float) : integer; {Byte,Word,LongInt,LongWord}
Function Round_D (const f : double) : integer [LongInt];

i:= Round (f);

AVRco Compiler-Manual

122 – System Library - Diverse Functions E-LAB Computers

4.12.24 FRAC, (*4*)(*P*): FRAC_D

The functions return the fractional part of the argument of x. X is a term of the type float/double. The result is
the fraction part of x; i.e. Frac(x) = x - Int(x).

Function Frac (f : float) : float;
Function Frac_D (const f : double) : double;

f:= Frac (x);

4.12.25 INT, (*4*)(*P*): INT_D

The functions return the integer part of the argument. X is a term of the type Float/Double. The result is the
integer part of X; i.e., X is rounded to 0.

Function Int (f : float) : float;
Function Int_D (const f : double) : double;

f:= Int (x);

4.12.26 GETTABLE

The function GetTable returns a member of a LookUp-Table.

Function GetTable (t : Table; index : byte) : type;

x:= GetTable (Table1, b);

4.12.27 SETTABLE

The procedure SetTable changes a member in a LookUp-Table.

Procedure SetTable (t : Table; index : byte; new : type);

SetTable (Table1, b, x);

4.12.28 Conversion to Strings

With all this kinds of conversion do not underestimate the frame usage.
This is also true for Processes and Tasks where these functions are used.

e.g.:
ByteToStr > 12 bytes
IntToStr > 17 bytes
LongToStr > 37 bytes !
Int64ToStr > 70 bytes !!!

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 123

4.12.28.1 BYTETOSTR
Converts a numeric 8bit value into a string. The parameter can be an ordinal numeric constant (byte, Int8,
Enum) or a variable of this type.

Function ByteToStr (b : byte[Int8, Enum]) : string;

const st = '1234' + 'R' + #7 + ^L;
var st1 : string[9];

 bb : byte;

write (LCDout, ByteToStr (100));
write (SERout, ByteToStr (100:6)); {-> ' 100'}
bb:= 10;
st1:= ByteToStr (bb); { -> '10'}
st1:= ByteToStr (bb:6); { -> ' 10'}
st1:= ByteToStr (bb:6:1); { -> ' 1.0'}
st1:= ByteToStr (bb:6:1:'_'); { -> '___1.0'}
st1:= ByteToStr (bb:6:'_'); { -> '____10'}

4.12.28.2 INTTOSTR
Converts a numeric 16bit value into a string. The parameter can be an ordinal numeric constant (integer,
word) or a variable of this type.

Function IntToStr (i : word) : string;

write (LCDout, IntToStr (100));
write (SERout, IntToStr (i:6:2)); {-> ' 1.00'}
st1:= IntToStr (123:4); {-> ' 123'}
ii:= -1;
st1:= IntToStr (ii); {-> '-1'}
st1:= IntToStr (ii:10); {-> ' -1'}
st1:= IntToStr (ii:10:2); {-> ' -0.01'}
st1:= IntToStr (ii:10:2:'x'); {-> 'xxxxx-0.01'}
st1:= IntToStr (ii:10:'x'); {-> 'xxxxxxxx-1'}

4.12.28.3 LONGTOSTR
Converts a numeric 32bit value into a string. The parameter can be an ordinal numeric constant (Longint,
Longword) or a variable of this type.

Function LongToStr (ii : longword) : string;

write (LCDout, LongToStr (100000));
write (SERout, LongToStr (ii:6:2)); {-> ' 1.00'}
st1:= LongToStr (123456:8); {-> ' 123456'}
Li:= 100;
st1:= IntToStr (Li); {-> '100'}
st1:= IntToStr (Li:10); {-> ' 100'}
st1:= IntToStr (Li:10:2); {-> ' 1.00'}
st1:= IntToStr (Li:10:2:'x'); {-> 'xxxxxx1.00'}
st1:= IntToStr (Li:10:'x'); {-> 'xxxxxxx100'}

AVRco Compiler-Manual

124 – System Library - Diverse Functions E-LAB Computers

4.12.28.4 FLOATTOSTR
Converts a Floating Point value into a string. The parameter can be a float constant or a variable of this type.

Function FloatToStr (f : float) : string;

write (LCDout, FloatToStr (1000.00));
write (SERout, FloatToStr (f:6:2)); {-> ' 1.00'}
st1:= FloatToStr (123.456:8); {-> ' 123'}
f:= -100.1;
st:= FloatToStr (f); {-> '-100.1'}
st1:= FloatToStr (f:11); {-> ' -100'}
st:= FloatToStr (f:11:0); {-> ' -100'}
st:= FloatToStr (f:11:2); {-> ' -100.10'}
st:= FloatToStr (f:11:2:'='); {-> '====-100.10'}
st1:= FloatToStr (f:11:'='); {-> '======-100'}
st1:= FloatToStr (f:'E'); {-> '-1.001E2'}
st1:= FloatToStr (f:'E':11); {-> ' -1.001E2'}
st1:= FloatToStr (f:'E':11:'='); {-> '===-1.001E2'}

If no formatting is given "FloatToStr(f)" then the resulting string contains
all digits.

If there is one parameter given "FloatToStr(f:n)" then the length of the string is
at least "n" characters, if necessary with leading spaces. Digits after the decimal
point are discarded. It is the same as with "FloatToStr(f:n:0)"

If two parameters are given the second one can either be numeric or a character.
If numeric it defines the count of the digits after the decimal point.
If it is a character it defines the fill character and there are no digits and no
decimal point.
a. FloatToStr(f:n:3) returns a string with the total length of "n" with 3 digits
after the decimal point. Leading digits are filled with spaces.
b. FloatToStr(f:n:'x') returns astring with the total length of "n" where leading
spaces are replaced by an "x". No decimal digits.

If 3 parameters are given "FloatToStr(f:n:k:'x')" a string with the total length
of "n" with "k" decimals is returned. Leading spaces are replaced by 'x'

Attention:
This system function requires additional 20 bytes on the frame.

Note:
The functions ByteToStr, IntToStr, LongToStr and FloatToStr accept also byte variables for the digits and
decimal parameter.
But please note that range checking by the compiler of these parameters not possible. The programmer
himself is responsible for valid values. With illegal parameter unexpected results can occur. Even a system
crash is possible

Example for variable parameters:

var digs,
 dec : byte
 ii : integer;

 ...
st:= IntToStr (ii:digs:dec);

4.12.28.5 BOOLTOSTR
Converts a boolean value to it's corresponding string value.

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 125

Two functions are implemented. The first converts the boolean argument into the string 'true' or 'false'.
The second function returns either the TrueStr or FalseStr, dependant of the value of the boolean argument.

Function BoolToStr (bool : boolean) : string;
Function BoolToStr (bool : boolean; TrueStr, FalseStr : string) : string;

4.12.28.6 LONG64TOSTR (*4*)(*P*)
Converts a numeric 64bit value into a string. The parameter can be an ordinal numeric constant (Int64,
Word64).

Function Long64ToStr (const ii : Int64|Word64[: const len : byte[: const space : char]]) : string;

4.12.28.7 BYTETOHEX
Converts a numeric 8bit value into a hex-string. The parameter can be an ordinal numeric constant (byte,
Int8, Enum) or a variable of this type.

Function ByteToHex (b : byte[Int8, Enum]) : string;

x:= 48;
st1:= ByteToHex (x) + 'h'; {st1 contains '30h'}

4.12.28.8 INTTOHEX
Converts a numeric 16bit value into a hex-string. The parameter can be an ordinal numeric constant (integer,
word) or a variable of this type.

Function IntToHex (i : integer) : string;

st1:= IntToHex (123); {st1 contains '7B'}

4.12.28.9 LONGTOHEX
Converts a numeric 32bit value into a hex-string. The parameter can be an ordinal numeric constant
(Longint, Longword) or a variable of this type.

Function LongToHex (w : longword) : string;

st1:= LongToHex (123456); {st1 contains '1E240'}

4.12.28.10 LONG64TOHEX (*4*)(*P*)
Converts a numeric 64bit value into a hex-string. The parameter can be an ordinal numeric constant (Int64,
Word64).

Function Long64ToHex (const ii : Int64|Word64) : string;

4.12.28.11 BYTETOBIN

Function ByteToBin (value : byte[Int8}) : string;

The result of the functions is the representation of the bits of the arguments by '0' or '1' in the resulting string.
A byte with the value 5 then results in '00000101'.

4.12.28.12 INTTOBIN

AVRco Compiler-Manual

126 – System Library - Diverse Functions E-LAB Computers

Function IntToBin (value : word|integer) : string;

The result of the functions is the representation of the bits of the arguments by '0' or '1' in the resulting string.
A word with the value 257 then results in '0000000100000001'.

4.12.29 BYTETOBCD

Function ByteToBCD (b : byte) : byte;

Real Time Clocks frequently use what is known as Packed BCD values:
BCD numbers represented in the highest 4bits are the tens digits and in the lowest 4 bits ones digits.
Each digit can only represent a number of 0..9.
This function converts a byte value into the BCD format. Please note that max. number that can be passed to
this function is 99. A value of $10 (16dec) is returned as $16.

4.12.30 WORDTOBCD

Function WordToBCD (w : word) : word;

This function converts a word value into the BCD format. Please note that max. number that can be passed
to this function is 9999. A value of $270F (9999dec) is returned as $9999.
In the highest 4bits are the thousands digits, in the next 4bits the handreds digits, then the tens digits and
in the lowest 4 bits the ones digits. Each digit can only represent a number of 0..9.

4.12.31 BCDTOBYTE

Function BCDtoByte (b : byte) : byte;

Real Time Clocks frequently use what is known as Packed BCD values:
BCD numbers represented in the highest 4bits are the tens digits and in the lowest 4 bits ones digits.
Each digit can only represent a number of 0..9.
This format will be read out.
The function expects a packed BCD value and converts it to a decimal Byte $16 -> $10 (=16dec).

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 127

4.12.32 PCU SI-Conversion (*P*)

by Tassilo Heinrich

4.12.32.1 Utility Functions

Function CountsToVolts (Counts:Word; VRef:Float; Res:word; Gain:Float):Float;
Converts AD-Counts to Volts.
Volt := CountsToVolts (512, 5.0, 1024,1.0): Float; //= 2.5Volt

Function MX_B (m:Float; x:Float; b:Float): Float;
Y = mX+t

Function ByteToBcd (byteVal : Byte) : Byte;
Converts Byte to BCD.

Function BcdToByte (bcdVal : Byte) : Byte;
Converts BCD to Byte.

4.12.32.2 Temperature

Function F_CelsiusToKelvin (Cel:Float): Float;
Converts °C to Kelvin.

Function F_KelvinToCelsius (Kelvin:Float): Float;
Converts Kelvin to °C.

Function F_FahrenheitToCelsius (Fahrenheit:Float): Float;
Converts Fahrenheit to °C.

Function F_CelsiusToFahrenheit (Celsius:Float): Float;
Converts °C to Fahrenheit.

4.12.32.3 Volume

Function F_LiterToGal (Liter:Float): Float;
Converts Litres to US Galons.

Function F_GalToLiter (Gal:Float): Float;
Converts US Galons to Litres.

Function F_LiterToCuFt (Liter:Float): Float;
Converts Litres to Feet³ .

Function F_CuFtToLiter (CuFt:Float): Float;
Converts Feet³ to Litres.

Function F_CuFtToCuIn (CuFt:Float): Float;
Converts Feet³ to Inches³.

CunctiosCuInToCuFt (CuIn:Float): Float;
Converts Inches³ to Feet³.

AVRco Compiler-Manual

128 – System Library - Diverse Functions E-LAB Computers

4.12.32.4 Pressure

Function F_PSITomBar (PSI:Float): Float;
Converts PSI to Bar.

Function F_mBarToPSI (mBar:Float): Float;
Converts Bar to PSI.

Function F_mmHgTomBar (mmHg:Float): Float;
Converts mmHg to Bar.

Function F_mBarTommHg (mBar:Float): Float;
Converts Bar to mmHg.

Function F_cmH2OtomBar (cmH2O:Float): Float;
Converts cmH2O to Bar.

Function F_mBarTocmH2O (mBar:Float): Float;
Converts Bar to cmH2O.

4.12.32.5 Length

Function F_MeterToFeet (Meter:Float): Float;
Converts Meter to Feet.

Function F_FeetToMeter (Feet:Float): Float;
Converts Feet to Meter

Function F_InTocMeter (Inch:Float): Float;
Converts Inches to Meter.

Function F_cMeterToIn (cMeter:Float): Float;
Converts Meter to Inches.

Function F _ydToMeter (yd:Float): Float;
Converts Yards to Meter.

Function F_MeterToyd (Meter:Float): Float;
Converts Meter to Yards.

Function F_miTokMeter (mi:float): Float;
Converts Miles to Kilometer.

Function F_kMeterTomi (kMeter:Float): Float;
Converts Kilometer to Miles.

Function F_nmiTokMeter (nmi:float): Float;
Converts Nautical Miles to Kilometer.

Function F_kMeterTonmi (kMeter:Float): Float;
Converts Kilometer to Nautical Miles.

4.12.32.6 Area

Function F_SqrMeterToSqrFeet (Meter:Float): Float;

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 129

Converts Meter² to Feet².

Function F_SqrFeetToSqrMeter (Feet:Float): Float;
Converts Feet² to Meter².

Function F_SqrInToSqrcMeter (Inch:Float): Float;
Converts Inches² to Centimeter²

Function F_SqrcMeterToSqrIn (cMeter:Float): Float;
Converts Centimeter² to Inches²

Function F_SqrydToSqrMeter (yd:Float): Float;
Converts Yards² to Meter²

Function F_SqrMeterToSqryd (Meter:Float): Float;
Converts Meter² to Yards²

Function F_SqrmiToSqrkMeter (mi:float): Float;
Converts Miles² to Kilometer²

Function F_SqrkMeterToSqrmi (kMeter:Float): Float;
Converts Kilometer² to Miles²

4.12.32.7 Weight

Function F_KaratToGramm (Karat:Float): Float;
Converts Carat to Gram

Function F_GrammToKarat (Gramm:Float): Float;
Converts Gram to Carat

Function F_GrainsToGramm (Grains:Float): Float;
Converts Grains to Gram

Function F_GrammToOunces (Gramm:Float): Float;
Converts Gram to Ounces.

Function F_OuncesToGramm (Ounces:Float): Float;
Converts Ounces to Gram

Function F_GrammToOuncesTroy (Gramm:Float): Float;
Converts Gram to Ounces troy.

Function F_OuncesTroyToGramm (OuncesTroy:Float): Float;
Converts Ounces troy to Gram.

Function F_kGrammToStones (kGramm:Float): Float;
Converts Kilograms to Stones.

Function F_StonesTokGramm (Stones:Float): Float;
Converts Stones to Kilogram.

Function F_kGrammToPounds (kGramm:Float): Float;
Converts Kilogram to Pound.

Function F_PoundsTokGramm (Pounds:Float): Float;
Converts Pounds to Kilograms.

AVRco Compiler-Manual

130 – System Library - Diverse Functions E-LAB Computers

4.12.32.8 Energy

Function F_kWToPS (kW:Float): Float;
Converts Kilowatts to PS.

Function F_PSTokW (PS:Float): Float;
Converts PS to Kilowatts.

Function F_CalToJ (Cal:Float): Float;
Converts Calories to Joule.

Function F_JtoCal (J:Float): Float;
Converts Joule to Calories.

4.12.32.9 Integer Functions

Function I_CelsiusToKelvin (Cel:Integer): Integer;

Function I_KelvinToCelsius (Kel:Integer): Integer;

Function I_FahrenheitToCelsius (Fahrenheit:Integer): Integer;

Function I_CelsiusToFahrenheit (Celsius:Integer): Integer;

4.12.32.10 Constants

ZeroPoint : Float = -273.16;

MSL_Pressure_PSI : float = 14.697;

MSL_Pressure_InHg : float = 29.92;

MSL_Pressure_mBar : float = 1013.25;

Euler : Float = 2.7182818284;

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 131

4.12.33 Interpolation

Many sensors and other functions show a nonlinear curve. This means that the relation between an input
value and the corresponding output value is not linear.
Examples: PT100, PTC, NTC, light-detectors, and also diodes.
This is only a very small count of nonlinear sensors. Normally the measured result has a fixed relation to the
external events, but in many cases this relationship is not linear, but logarithmic, cubic etc. A PT100 shows a
resistance of 100 Ohms at 0degC, at 50degC 124Ohms and at 100degC 143Ohms. The relation between
temperature and the resistance value is nonlinear.

There are two ways to calculate the temperature from the resistance:
1. With a proper formula, which is usually a complex thing, one can calculate the temperature which

corresponds with the resistance.
2. Build a so called LookUp-Table. Insert in steps resistance values and the related temperature values.

Access the table with the resistance value as an index. The result is the temperature. If the input value
ranges from 100 to 200 there must be 100 value pairs in the table. More difficult is a large span of the
input values (0 to 1023). Then the table must have 1024 entries

The following implementation is table based, with paired values (search/result).
The LookUp algorithm searches with a known value in the table until either this value is found or this
argument fits between two values.
The search is done with a binary search function for best speed results.

If a proper value(s) is found it will be linearly interpolated. This method allows short tables, dependent of the
required accuracy. If the count of the value pairs is relative high, the linear interpolation results in an
acceptable accuracy.

4.12.33.1 InterPolX, InterPolY

Function InterPolX (const LookUp : pointer; x: integer; var y: integer) : boolean;
Function InterPolX (const LookUp : pointer; x: longint; var y: longint) : boolean;
Function InterPolX (const LookUp : pointer; x : float; var y : float) : boolean;

Function InterPolY (const LookUp : pointer; y: integer; var x: integer) : boolean;
Function InterPolY (const LookUp : pointer; y: longint; var x: longint) : boolean;
Function InterPolY (const LookUp : pointer; y : float; var x : float) : boolean;

The pointer must point into a table in the ROM or EEprom. The first argument is the search value. The result
is placed into the location of the second argument, if the function was successful.

As a support tool for the creation of the lookup table a Table Generator "CurveGen" is included. With it's help
one can interactive and graphically create a curve and then store it into a binary file which can be imported
into the application.

Example Program:

An example program can be found in the directory ..\E-Lab\AVRco\Demos\Interpol.
Here an optical distance/proximity sensor (Sharp) is sampled by the ADC and then linearised.

A Datasheet can be found in ..\E-Lab\DOCs\Sharp.pdf
A detailed description of the above functions and also of the support tool "CurveGen" is in the Tools Manual.
An schematic example can be found in ..\E-Lab\DOCs\NonLinSensSch.pdf

AVRco Compiler-Manual

132 – System Library - Diverse Functions E-LAB Computers

4.12.34 Moving Average Filter

Build an average for example over the last 16 measure results.
The results are stable values which nevertheless are changing too fast to follow changing input values.
The filter is constructed like an array of Byte/Word/Integer etc. If a new value is inserted, this value
replaces the oldest value in the array. By adding all values and then dividing the sum by the value count the
resulting average is built.

The filter (Array) must be declared as a variable in standard RAM. Banks, EEprom, procedure-local variables
or records etc. are not allowed.
The filter can consist of Bytes, Words, Integer, LongWords, LongInts or Float. The size/count runs from 0 to x
- 1, where x is always a power of 2 in the range 4..256. With the declaration the upper limit must be one less
than the sample count.

var Filter : AVfilter[0..15] of integer;

4.12.34.1 PresetAVfilter

Procedure PresetAVfilter (var Filter : AVfilter; val : type);
Populates the entire filter with "val".

4.12.34.2 SetAVfilter
Function SetAVfilter (var Filter : AVfilter; val : type) : type;
Replaces the oldest entry with "val" and returns with the new build average value.

4.12.34.3 AddAVfilter
Procedure AddAVfilter (var Filter : AVfilter; val : type);
Sometimes it is not necessary that a new average must be build when a new value is inserted.
This function works in the same way as "SetAVfilter" except that no new average value is calculated and
returned.

4.12.34.4 GetAVfilter
Function GetAVfilter (var Filter : AVfilter) : type;
Computes the current averages without changing the content of the filter.

4.12.34.5 DeclAVfilter
Function DeclAVfilter (var Filter : AVfilter) : type;
Calculates the gradient between the oldest and the youngest entry.
The result is always signed. This means that with a Byte, Integer or Word filter the result is always an
integer. With a LongWord or LongInt filter the result is always an LongInt

Example Program:

An Example can be found in the directory ..\E-Lab\AVRco\Demos\AVfilter.

 AVRco Compiler-Manual

E-LAB Computers System Library - Diverse Functions - 133

4.12.35 Network-Functions

4.12.35.1 Predefined Types

type TIPAddr = array[0..3] of Byte;
type TMACAddr = array[0..5] of Byte;

4.12.35.2 Converting Functions

Procedure STRtoIP (IPstr : String[15]; var Result : TIPAddr);
Converts an IP-address string "aaa:bbb:ccc:ddd" to a byte array

Procedure STRtoMAC (MACstr : String[17]; var Result : TMACAddr);
Converts a MAC-address string "aa:bb:cc:dd:ee:ff" to a byte array

Function IPtoSTR (IP : TIPAddr) : String[15];
Converts an IP-address array to a string "aaa:bbb:ccc:ddd"

Function MACtoSTR (MAC : TMACAddr) : String[17];
Converts a MAC-address array to a string "aa:bb:cc:dd:ee:ff"

4.12.35.3 Compare Functions

Function CompareNet (a1, a2, mask : TIPAddr) : boolean;
Compares the network part of two IP-address arrays

Function CompareIP (ip1, ip2 : TIPAddr) : boolean;
Compares two IP-address arrays

Function CompareMAC (mac1, mac2 : TMACAddr) : boolean;
Compares two MAC-address arrays

4.12.35.4 Miscellaneous Functions

Procedure SwapIPaddr (var ip : TIPAddr);
Mirrors an IP-address. Converts A3-A2-A1-A0 to A0-A1-A2-A3.

Procedure SwapMACaddr (var mac : TMACAddr);
Mirrors a MAC-address. Converts A5-A4-A3-A2-A1-A0 to A0-A1-A2-A3-A4-A5.

AVRco Compiler-Manual

134 – System Library - String Formatting E-LAB Computers

4.13 System Library - String Formatting

The destination of a string conversion can be a string variable or the procedure WRITE as shown in the
description of ByteToStr and IntToStr above.

A conversion of values (variables) within strings as well as the formatting the output is necessary to handle, for
example, an LCD-display.

The conversion routines in co-operation with WRITE solve this need.

The Formatting is almost the same as in Turbo Pascal. The parameter after the first colon specifies the
required overall length. Be careful, as the string can get longer, but not shorter than the format specified. For
example “100:0“ results in the string “100“, so the length is three not zero.

The parameter after the second colon is not identical with TurboPascal within ByteToStr and IntToStr. This
parameter specifies the number of the post decimal positions. But integers do not possess any decimal
positions! That is true, but often integers with a fixed point are used and then there is the problem to get the
correct representation.
Take care, the decimal point is counted, too! Thus “100:6:2“ results “ 1.00“ with two leading spaces, so
altogether the length is 6.
Leading spaces can be replaced by another character, which must be defined after the last colon.

4.13.1 Decimal Separator

Some of the string conversions above work with a decimal point. This character is by default a “.“ This constant
can be redefined e.g. to a “,“ to fit for some requirements. For this the following statement must be inserted
into the Define Block:

Define DecimalSep = ‘.‘;

4.13.2 WRITE

String or number output by a procedure with conversion. The first parameter of Write must be a procedure.

The first parameter is called as a procedure (Device) once for every character in the second parameter,
passing each character in urn as a parameter to the first procedure. The procedure must have the following
form:

proc (b : byte);

A simple output to external devices is possible, because the procedure can access any hardware.

const st = '1234' + 'R' + #7 + ^L;
var st1 : string[5];

Write (proc, 'x'); {‘x’ is returned }
Write (proc, st1); {st1 is returned }
Write (LCDout, ByteToStr (100));
Write (LCDout, st[0]); {Length byte}
Write (SerOut, st); {Output of compl. string}
Write (LCDout, st[1]); {1. char in st}
Write (LCDout, '1234');
Write (SERout, ByteToStr (100:6)); {-> ' 100'}
Write (SERout, ByteToStr (100:6:2)); {-> ' 1.00'}
Write (SERout, IntToStr (i:6:1)); {-> ' 10.0'}
Write (DispOut, #13 + 'Hallo');

 AVRco Compiler-Manual

E-LAB Computers System Library - String Formatting - 135

Write is able to access user-defined device-drivers. Pay attention to some special requirements:

This procedure must have a passing parameter of the type byte or Char, it may not have a local variable and
hence no frame. Further only the pseudo-accumulators “_ACCA, _ACCB, _ACCCHI and _ACCCLO = Z“
may be used within the procedure. That excludes a calling of other procedures and functions as well as the
system functions.

If additional ACCUs for intermediate memory are used anyhow, they have to be saved with help of
Push/Pop. These restrictions mean that in practice this procedure must be written completely in assembler.
The passing parameter is via _ACCA. The compiler switch {$NOFRAME} is essential

{$NOFRAME}
Procedure TestDriver (const b : byte);
begin
 ASM;
 OUT SPDR, _ACCA; { SPI Data reg }
 ENDASM;
end;

4.13.3 WRITELN

WriteLn appends a CarriageReturn/LineFeed $0D+$0A to the output line.

Procedure WriteLn (DeviceFunc : function; var str : string);

WriteLn (SerOut, 'Test');
WriteLn (SerOut); // write an empty line

4.13.4 READ

Reading of a character or string is similar to write. The first parameter is a function, which returns a character
as result. The second parameter is a string variable and the optional third is the number of the bytes, which
have to be read, or a delimiter character.

The function Read has three modes of operation:

1. read a string completely. The string gets filled completely
2. read a certain number of characters. The 3rd parameter must be of the type byte.
3. read bytes/chars until a limiter char appears that must be specified as 3rd parameter.

The received delimiter char is appended to the string, but the string length is not incremented, so the
delimiter disappears, but is still present (invisible). The 3rd parameter must be of the type char.

AVRco Compiler-Manual

136 – System Library - String Formatting E-LAB Computers

I If the string is shorter then the byte number specified, the string gets filled to the whole length. The
additional bytes are read, but they are not stored. The length byte of the string is set to the number of the
read bytes, but limited to the sizeOf(str).

Function Read (p : Function; var st : string);
Function Read (p : Function; var st : string; count : byte);
Function Read (p : Function; var st : string; limiter : char);

Read (proc (2), st1, 4); {st1 is filled}
Read (proc, st2, 20}; {st2 is filled with 20 chars}
Read (proc, st2, #0}; {st2 is filled until a #0 appears}

The function, which is called, may have a parameter. In this case it has to be a constant.

4.13.5 READLN

ReadLn reads from a Device until either a CarriageReturn/LineFeed $0D+$0A (#13+#10) is found or
the supplied string is full..

Procedure ReadLn (DeviceFunc : function; var str : string);

ReadLn (SerInp, st);

 AVRco Compiler-Manual

E-LAB Computers Error Handling - 137

4.14 Error Handling

4.14.1 RUNERR

Function. Reading resets the error flag. Many operations set the variable RunErr depending on their result. A
RunErr is not absolutely critical, so the program continues run. An error can be an integer-overflow after a
multiplication, for example. All operations, which may cause a RunTimeError, set the Flag if necessary. As
opposed to the procedure RunTimeError the RunErr can not be switched off and is always active.

The following operations are able to set the flag RunErr:

Division
With a zero-division. In this case the highest possible value is returned.
With a Float the highest possible value is returned.
With a Float underflow zero is returned.

Multiplication
With an Overflow. Result for example of byte $64 x $64 = $10
With a Float Overflow the highest possible value is returned.
With Float underflow zero is returned.

Addition
With an Overflow. Result for example of byte $84 + $84 = $08
With a Float Overflow the highest possible value is returned.

SQR
With a Float Overflow the highest possible value is returned.

SQRT
With Float underflow zero is returned. For a negative argument.

Type Conversion
With overflow. Float to Word, to Int, to LongWord, to LongInt

StrToInt
With a faulty string or Overflow.

StrToFloat
With a faulty string.

Indexed String and Array Manipulation
With a wrong index

4.14.2 RUNTIMEERR

Declaration of the RunTimeError function.

If the switch RangeCheck is “on“ and the system procedure “RunTimeErr“ is imported, so it is checked after
every index access (string/array) and its calculation, if the index is valid. If the index is invalid, the procedure is
called and the error code 1 is passed within the working register (_ACCB). The error code 2 specifies an
illegal string length-operation.

AVRco Compiler-Manual

138 – Error Handling E-LAB Computers

The size and the runtime speed can be optimized by a considered use of compiler switches (+/-). If a
compiler switch is still active at the end of the program (end.), then it is also used for the system library.

If the procedure “RunTimeErr“ is not imported, the two compiler switches have no meaning and they are
ignored. Stringcopy statements (e.g. str: = ‘abcd’;) are always processed without overrun. Here an additional
watch is not necessary.

Please also pay attention to StackSize and Compiler Switches.

Define StackSize = 32, iData; {32 bytes in iData}

procedure RunTimeErr;
begin
 DisableInts;
 {WatchDog ??}
 {_ACCB contains runtime error number}
 {0 -> software stack or Frame overflow}
 {1 -> string or array index error}
 {2 -> string length error}
 {3 -> reserved}
 {4 -> convert error float -> ordinal}
 {5 -> float overflow}
 {6 -> float underflow}
 ASM;
 ; store error
 MOV errnum, _ACCB;
 ; do not use high level instr if Stack overflow is possible
 TST _ACCB;
 ; if _ACCB = zero then stack error
 BRNE NOTSTACK;
 ; do something with stack error
 NOP
 NOP
 NOTSTACK:
 ENDASM;
end;

Attention:
RunTimeErr must not be called from the program itself !!

4.14.3 CLEARRUNERR

Resets a RunTimeError

Procedure ClearRunErr;

 AVRco Compiler-Manual

E-LAB Computers Multi Task Functions - 139

4.15 Multi-Task Functions

The AVRco contains a multitasking-system, which is supported by many functions and procedures.
Upto 15 processes and tasks can be defined. These are called periodically by the scheduler, depending on
their priority and their state.

Assignments can be done in the background without co-operation with the main program. The processes
and the main program are able to communicate with pipes and semaphores.

Tasks are specialized processes, which are called cyclically by the scheduler, whereby the time interval is
constant. So tasks can do jobs that have to run in a fixed time grid, for example the PID-controller.

Nearly all of the following functions that expect a process/task name accept also the identifier "SELF".
So it is possible forl the calling process/task to control itself.

Sleep (self, 10); //suspends the actual process for 10 ticks

Further most functions can use the process/task ID in place of the name.

Sleep (const ProzessID, Ticks: word);

ProcessID must be a numerical constant (see below).

Attention!
All suspend and wait functions can only be used if the Idle-process is imported or the application takes care
that never all processes inuding the Main are sleeping, suspended or waiting at the same time.

4.15.1 SLEEP

Process Sleep in ticks. The process or task stays inactive for n ticks and is then “woken up“ by the
scheduler.

Procedure Sleep (p : process; t : word);

Sleep (process1, 50);

4.15.2 SUSPEND

The process/task is stopped and stays inactive until there is a “resume“. Because of that a resume has to be
executed from outside the procedure or task.

Procedure Suspend (p : process);

Suspend (process1);

4.15.3 SUSPEND ALL

SuspendAll (Processes, Tasks); // disable processes + tasks
SuspendAll (Processes); // disable processes only
SuspendAll (Tasks); // disable tasks only

Subsequently the Idle Process (if defined) runs. Without Idle Process the control switches to the
Main Process.

AVRco Compiler-Manual

140 – Multi Task Functions E-LAB Computers

4.15.4 RESUME

A process/task, which is de-activated by “Suspend“ or “Sleep“ gets activated.

Procedure Resume (p : process);

Resume (process1);

4.15.5 RESUMEALL

ResumeAll (Processes, Tasks); // resume processes + tasks
ResumeAll (Processes); // resume processes only
ResumeAll (Tasks); // resume tasks only

4.15.6 PRIORITY

The importance of the run-time part of a process is specified by the priority. The process processes number
of system ticks, which is given by the priority without an interruption. The interval of task calls is specified by
the priority in case of tasks. A task runs a maximum of one SysTick without an interruption.
See also chapter Mutitasking Programming – Priority!

Process min/max Priority = 1..15 Default=3
Task min/max Priority = 1..255 Default=5

Attention:
A Task priority of 1 is only for special purposes because this task then is called every SysTick by the
Scheduler. Hence no other task must be active at the same time.

Procedure Priority (p : process; prio : byte);

Priority (process1, 12);
Priority (task1, 5);

4.15.6.1 GetPriority
returns the actual priority of a process/task

Function GetPriority (prcs : process|task) : byte;

4.15.7 MAIN_PROC

If MultiTasking is imported, the Main Program also runs as a process and it’s parameters and functions, like
processes, can be manipulated (lock, unlock, priority).
To identify the main use the fixed name Main_Proc

Priority (Main_Proc, 5); //Default=5

Lock (Main_Proc);

 AVRco Compiler-Manual

E-LAB Computers Multi Task Functions - 141

4.15.8 IDLE PROCESS

If all processes including the MAIN_PROC are stopped by SLEEP, SUSPEND or WAIT there is no process
which consumes the CPU time.
There is optional IDLE process implemented and so this problem doesn't exist anymore. All processes can
be stopped without making the system unstable. Without the IDLE process at least MAIN must always run
and take the role of the Idle process.
Because this IDLE process also must be able to handle interrupts it needs an environment with stack and
frame. Furthermore the code/Flash consumption will be increased somewhat and the Scheduler (process
handler) is also minimally increased and slowed down a few usec.
The import is done by an enhanced Scheduler Define.

The standard Define (without IDLE process) is:
Define Scheduler = DataArea;

To import the Idle process the IDLE stack and frame size must be added:
Define Scheduler = IdleStack, IdleFrame, DataArea; //use optional idle process

The minimum stack and frame size is 10 Bytes.

4.15.8.1 On Idle Process
Callback procedure. The Idle process must be defined (with the Scheduler define):

Procedure OnIdleProcess;

If the application implements the procedure

Procedure OnIdleProcess;
begin
 ...
end;

then "OnIdleProcess" is called with each restart of the Idle process.

Attention:
The Idle process always "lives" only one SysTick (like a Task). So this procedure must not last longer as a
SysTick otherwise it will be canceled by the Scheduler.

4.15.9 SCHEDULE

The process/task is suspended here and the control is passed to the scheduler. The scheduler now looks for
the next process with the highest priority, and this process gets activated.

Procedure Schedule;

Schedule;
Within a process or task or also within procedures and functions.

4.15.10 SCHEDULER ON/OFF

The Process-scheduler can be stopped with "SchedulerOff" and continued with "SchedulerOn".
If the Scheduler is stopped, only the current process runs. The Scheduler will be skipped completely.

Procedure SchedulerOff;
Procedure SchedulerOn;

AVRco Compiler-Manual

142 – Multi Task Functions E-LAB Computers

4.15.11 LOCK

The whole run-time is placed at disposal of a process. Interrupts also get processed. Also applies to the
Main_Proc.

Procedure Lock (p : process);

Lock (process1);
Lock (Main_Proc);

A Lock(Process) disables the scheduling of this process, the scheduler doesn't pass the control to another
process but Tasks are not affected. Tasks are treated like interrupts

4.15.12 UNLOCK

A locked process is released, enabling the scheduler again.

Procedure UnLock (p : process);

UnLock (process1);
UnLock (Main_Proc);

4.15.13 RESET PROCESS

This function re-initializes a process completely and suspends it.
It can not be applied to the currently running process.

Procedure ResetProcess (P : Name | i : ID);

4.15.14 SEMAPHORE

4.15.14.1 WAITSEMA
A process/task becomes itself inactive until a special semaphore is > 0. When this happens the scheduler
makes the task active again. The semaphore is automatically decremented by one.

Function WaitSema (s : semaphore [; timeout: word]) : boolean;

WaitSema (sema1);

Only within a process or task.
TimeOut is optional. If omitted, the process waits until the semaphore is > 0.
The same is true if the TimeOut is set to 0000.
If the value is > 0 the wait functions returns after (TimeOut * SysTicks). The result of the function is true
if there was no timeout.
With tasks TimeOut is not possible and is ignored.

WaitSema can only be used if the Idle-process is imported or the application takes care that never all
processes inuding the Main are sleeping, suspended or waiting at the same time.

 AVRco Compiler-Manual

E-LAB Computers Multi Task Functions - 143

4.15.14.2 ProcWaitFlag
The proper use of WaitSema can save a lot of MultiTasking process time. But this function expects a special
variable of type Semaphore which then is decremented by one if it is > 0.

If the semaphore must not be changed by the Scheduler or if a variable of any kind must be watched by the
Scheduler (var <> 0) a more general function must be used:

Function ProcWaitFlag (Flag : var[; timeout : word]) : boolean;

Here the variable Flag can be of any type. Unlike WaitSema, this variable will not be changed by the
function. The other rules are the same as with WaitSema.

4.15.14.3 SETSEMA
The content of the semaphore is set to the required value.

Procedure SetSema (sema : semaphore; v : byte);

4.15.14.4 INCSEMA
A semaphore is incremented by one.

Procedure IncSema (s : semaphore);

IncSema (sema1);

4.15.14.5 DECSEMA
A semaphore is decremented by one. If the decrement was successful (Sema was > 0) a true is returned,
otherwise a false.

Function DecSema (s : semaphore) : boolean;

DecSema (sema1);

4.15.14.6 SEMASTAT
Returns the content of a semaphore.

Function SemaStat (s : semaphore) : byte;

b:= SemaStat (sema1);

AVRco Compiler-Manual

144 – Multi Task Functions E-LAB Computers

4.15.15 PIPES

4.15.15.1 WaitPipe
A process/task makes itself inactive until a special pipe has data. When this happens the scheduler makes
the task/process active again.

Function WaitPipe (p : pipe [; timeout: word]) : boolean; {also RxBuffer and RxBuffer1, -2, -3}

WaitPipe (pipe1);
WaitPipe (RxBuffer);

Only within a process or task.
TimeOut is optional. If omitted, the process waits until the semaphore is > 0.
The same is true if the TimeOut is set to 0.
If the value is > 0 the wait functions returns after (TimeOut * SysTicks). The result of the function is true
if there was no timeout. With tasks the TimeOut is not possible and is ignored.

WaitPipe can only be used if the Idle-process is imported or the application takes care that never all
processes inuding the Main are sleeping, suspended or waiting at the same time.

4.15.15.2 PipeFlush
Empties a pipe completely.

Procedure PipeFlush (p : pipe); {also RxBuffer and RxBuffer1, -2,- 3}

PipeFlush (pipe1);
PipeFlush (RxBuffer);

4.15.15.3 PipeSend
Inserts an argument into a pipe. The result shows whether the operation was successful. If the pipe is full,
a false will be returned.

Function PipeSend (p : pipe; v : type) : boolean;

bo:= PipeSend (pipe1, value);

4.15.15.4 PipeRecv
Fetches an argument from a pipe. The function only returns if the operation was successful. In order to waste
no run-time, processes should use “PipeStat“ or better still "WaitPipe".

Function PipeRecv (p : pipe) : type;

val:= PipeRecv (pipe1);

4.15.15.5 PipeStat
The count of the number of parameters is interrogated.

Function PipeStat (p : pipe) : byte;

b:= PipeStat (pipe1);

The function PipeStat can also be used with RxBuffer, RxBuffer1, -2, -3 and TxBuffer, TxBuffer1, -2, -3
of the serial interfaces.

 AVRco Compiler-Manual

E-LAB Computers Multi Task Functions - 145

4.15.15.6 PipeFull
The full-status of a pipe is interrogated.

Function PipeFull (p : pipe) : boolean;

bo:= PipeFull (pipe1);

4.15.16 PROCESS ID

Some functions or procedures which are used by several processes or tasks have to behave differently,
depending on the calling process of task. Such a procedure must be able to establish which process/ task
is calling it. To this end following three functions are used.

The main program (Main_PROC) always has the process-ID 0 and has the process name ‘Main_Proc’.

4.15.16.1 ISCURPROCESS
Function. Interrogation if the actual process has the ID x. or the Name ‚abc‘.

Function isCurProcess (ID : byte[; Name : ProcName]) : boolean;

bo:= isCurProcess (0); { 0 = Main }
bo:= isCurProcess (Main_Proc);

4.15.16.2 GETCURPROCESS
The process ID of the actual process/task is interrogated.

Function GetCurProcess : byte;

Id:= GetCurProcess;

4.15.16.3 GETPROCESSID
The process ID of a process is interrogated.

Function GetProcessID (ProcName) : byte;

Id:= GetProcessID (Main_Proc);

4.15.17 PROCESS STATE

The state of a process or task can be found.
To this end the system exports the enumeration:

tProcessState = (eProcStop, eProcRun, eProcIdle, eProcWait, eProcSleep, eProcLock);

and the function:

Function GetProcessState (name : process|task) : tProcessState;

AVRco Compiler-Manual

146 – Multi Task Functions E-LAB Computers

if GetProcessState (ProcessA) = eProcSleep then
 ...
endif;

case GetProcessState (Main_Proc) of
 eProcStop :
 inc(bb); |
 eProcRun :
 inc(bb); |
 eProcIdle :
 inc(bb); |
 eProcWait :
 inc(bb); |
 eProcSleep:
 inc(bb); |
 eProcLock :
 inc(bb); |
endcase;

4.15.18 DEVICE LOCK

When using device drivers in a MultiTasking environment sometimes it is necessary to lock these drivers
against other processes/tasks. To this end the type "DeviceLock" was implemented (only for global Vars and
not for Arrays or Records).
Processes which access the Device should use this mechanism to signal other processes that this driver is
in use momentarily.

4.15.18.1 SetDeviceLock

Function SetDeviceLock (d : DeviceLock) : boolean;

Returns with a true if the Device is free and changes the value into locked.
If the Device is in use the function returns a false.
With a true the process now can use the Device driver. When the job is done it should free the Device
with the function ClearDeviceLock.

4.15.18.2 ClearDeviceLock

Function ClearDeviceLock (d : DeviceLock) : boolean;

Free the Device. If the Device was already released the function returns a "false", otherwise it returns a
"true".

4.15.18.3 TestDeviceLock
The function checks a device lock state without changing it. It returns a "true" if the Device is free.
Otherwise it returns a "false".

Function TestDeviceLock (d : DeviceLock) : boolean;

 AVRco Compiler-Manual

E-LAB Computers Multi Task Functions - 147

4.15.18.4 WaitDeviceFree

Function WaitDeviceFree (s : DeviceLock [; timeout: word]) : boolean;

With this function the process will be suspended until the Device is released.

TimeOut is optional. If omitted, the process waits until the device is free.
The same is true if the TimeOut is set to 0000.
If the value is > 0 the wait functions returns after (TimeOut * SysTicks). The result of the function is true
if there was no timeout. If a timeout occurred the "DeviceLock" is automatically set to locked.
With tasks the TimeOut is not possible and is ignored.

WaitDeviceFree can only be used if the Idle-process is imported or the application takes care that never all
processes inuding the Main are sleeping, suspended or waiting at the same time.

var DevSema : DeviceLock;

Procedure Init;
begin
 ClearDeviceLock(DevSema); // first free of the device
 ...
end;

Process CheckDevice(32,64 : idata);
begin
 WaitDeviceFree(DevSema);
 // enter the device driver

 // free the device driver
 ClearDeviceLock(DevSema);
 ...
end;

4.15.19 Stack and Frame Usage

4.15.19.1 GETSTACKFREE
Get the Stack usage of tasks and processes at runtime.
The function returns a word with the minimum count of unused bytes in the Stack so far.

Function GetStackFree (p : Process|Task) : word;

ww:= GetStackFree (Main_Proc);
ww:= GetStackFree (Task1);
ww:= GetStackFree (Proc1);

4.15.19.2 GETFRAMEFREE
Get the Frame usage of tasks and processes at runtime.
The function returns a word with the minimum count of unused bytes in the Frame so far.

Function GetFrameFree (p : Process|Task) : word;

ww:= GetFrameFree (Main_Proc);
ww:= GetFrameFree (Task1);
ww:= GetFrameFree (Proc1);

AVRco Compiler-Manual

148 – Multi Task Functions E-LAB Computers

4.15.19.3 CHECKSTACKVALID
Checks a stack overflow. When an overflow happend the result is $FFFF.
Without an overflow the result is the free stack size.

Function CheckStackValid (p : Process|Task) : integer;

4.15.19.4 CHECKFRAMEVALID
Checks a frame overflow. When an overflow happend the result is $FFFF.
Without an overflow the result is the free frame size.

Function CheckFrameValid (p : Process|Task) : integer;

Both functions need the System Import StackChecks
If MultiTasking is not implemented so no argument (Process/Task) must be supplied, otherwise with the main
program part the argument Main_Proc must be used.

4.15.20 SCHEDULER CALL BACK

For debugging it is sometimes necessary to know when the Scheduler needs to switch from one
process/task to another.
Because this time depends heavily on the program implementation (count of processes/tasks, priorities etc.)
this can only be evaluated at runtime. To help with this there are two predefined procedures:

Procedure OnSchedulerEntry;
Procedure OnSchedulerExit;

If the application implements these procedures:

Procedure OnSchedulerEntry;
begin
 ...
end;

Procedure OnSchedulerExit;
begin
 ...
end;

"OnSchedulerEntry" is called every time at the entry into the Scheduler and "OnSchedulerExit" is called
every time on exit of the Scheduler.
For example with the simulator it's possible the find out the time the Scheduler used. To do this a breakpoint
must be placed on each of these 2 procedures. The heavily varying results depend on the current job the
scheduler is doing, e.g. task/process-switch yes/no etc. The resulting time cycle count also represents the
total time of the disabled global interrupt whilst scheduling.

Important:

1. There must be no local parameters.
2. If Pascal statements or registers are used, the related registers must be saved before their usage and

restored afterwards.
3. Operations which change the CPU flags can only be executed after the status register of the CPU has
 been saved.

 AVRco Compiler-Manual

E-LAB Computers PID Controller - 149

4.16 PID-Controller

Pseudo-Record
A PID-controller is often used in technical applications, for example temperature regulation, servos,
rpm-controllers etc.

A PID-controller has to have entry-parameters: the nominal value = ‘Required’ and the actual value. Four
parameters, which are normally only adjusted once, are pFactor, iFactor, dFactor and sFactor. The
controller-output, which goes to the actuator (heating, motor etc.) is calculated by the function ‘Execute’

The controller type is determined by the two initializing parameters ‘iLimit’ and ‘dIntVal’.

iLimit
is of the type LongWord (0..100000) and determines the max. size of the I-part (clipping). If iLimit = 0,
the Integral-value of the controller is not calculated and is omitted (e.g. PD-controller).

dIntVal
is of the type Byte (0, 1, 2, 4, 8, 16, 32) and determines the degree step of the calculation of the D-part
(gradient). If dIntVal = 0, the Differential-value of the controller is not calculated and so is omitted (e.g. PI-
controller). If the value = 1, the gradient from the last nominal value to the actual nominal value is
calculated. In the remaining cases a corresponding array is framed, which absorbs the history of the last n
nominal values. So the gradient can be calculated over a large number of nominal values.

The controller calculates internally with LongInteger. So overflows within Execute are not expected.

Imports

As always with AVRco the driver must be imported.

Import SysTick, Pids, ..;

Var Pid1 : PIDcontrol[iLimit, dIntVal];

{Init}
Pid1.pFactor:= 1000;
Pid1.iFactor:= 2500;
Pid1.dFactor:= 678;
Pid1.sFactor:= 10000;

{Run}
Pid1.Actual:= 500;
Pid1.Nominal:= 550;
PWM1:= Pid1.Execute;

4.16.1 pFACTOR

PIDname.pFactor:= p;

Charging-factor of the P-value. The Pvalue is the difference between nominal and actual value, also known
as error. The execute operation calculates the internal pValue. PIDname.pValue

4.16.2 iFACTOR

PIDname.iFactor:= i;

Charging-factor of the I-value. The I-value is the sum of the differences between nominal and actual value. In
general: integral- value of the errors. The execute operation calculates the internal iValue.PIDname.iValue

AVRco Compiler-Manual

150 – PID Controller E-LAB Computers

4.16.3 dFACTOR

PIDname.dFactor:= d;

Charging-factor of the D-value. The D-value is the gradient of the differences between the nominal and
actual value. In general: error gradient.
The execute operation calculates the internal dValue. PIDname.dValue

4.16.4 sFACTOR

PIDname.sFactor:= s;

Charging-factor of the output-value (result). The output-value is the sum of P, I and D.
In general: ((P x pFactor) + (I x iFactor) + (D x dFactor)) div sFactor.

4.16.5 NOMINAL

PIDname.Nominal:= i;

Nominal value. Calculates, together with the actual, the deviation, which is incorporated in the P, I and D
values.

4.16.6 ACTUAL

PIDname.Actual:= i;

Actual-value. Returns, together with the nominal, the deviations, which is incorporated in the P, I and D
values.

4.16.7 EXECUTE

i:= PIDname.Execute;

Function, which is calculating the output value by using the given values (nominal, actual and factors). The
result is an integer value.

 AVRco Compiler-Manual

E-LAB Computers Functions depending on Hardware - 151

4.17 Functions depending on HardWare

4.17.1 PROCCLOCK

Processor Clock in Hertz. Is needed for Software Delays, for example Mdelay and uDelay, as well as for the
calculation of the SysTick. It has to be defined.

Define ProcClock = 4000000; {4Mhz clock}

4.17.2 STACKSIZE, RAMpage

The required stack size (Software Stack) has to be defined. It is needed for the allocation and testing of
stack- and program inter-variables. Because the stack grows and shrinks, from “above“ to “below“ during the
program execution and the used variables are established from “below“ to “above“ by the programmer, the
compiler is able to give a warning, if the stack could “grow into“ the variables.

A stack size has to be defined to help the compiler, because the actual size of the stack can only be
established during the run-time. With an overlap of program variables and stack (+StackSize) the compiler
gives a warning.

The lowest StackSize is 16. The required Ram-area of the stack also has to be specified (iData, xData).

Define StackSize = 32, iData; {32 bytes in iData}

4.17.3 FRAMESIZE, RAMpage

The required FrameSize (passing parameter and local variable) has to be defined. It is needed for
allocation and testing of passing parameters (procedures, functions) and local variables.
Because the frame grows and shrinks, from “above“ to “below“ during the program execution and the used
variables are established from “below“ to “above“ by the programmer, the compiler is able to give a warning,
if the frame could “grow into“ the variables.

A frame size has to be defined to help the compiler, because the actual size of the stack can only be
established during the run-time. With an overlap of program variables and frame (+FrameSize) the compiler
gives a warning.

The lowest FrameSize is 8. The required Ram-area for the frame also has to be specified (iData,
xData).

Define FrameSize = 32, iData; {32 Bytes in iData}

AVRco Compiler-Manual

152 – Functions depending on Hardware E-LAB Computers

4.17.4 TASKSTACK, RAMpage

The required stack size (all tasks have the same stack-area) has to be defined, if tasks have been
imported. Is needed for the allocation of the memory.
The lowest value of TaskStack is 8. The required Ram-area of the stack also has to be specified
(iData, xData).

Define TaskStack = 32, iData; {32 bytes in iData}

4.17.5 TASKFRAME

The required frame size (all tasks have the same stack-area) has to be defined, if tasks have been
imported. Is needed for the allocation of the memory.
The lowest value of TaskFrame is 8. The required Ram-area of the frame also has to be specified
(iData, xData).

Define TaskFrame = 16; {16 Byte}

4.17.6 SCHEDULER

The required memory page (iData, xData) for the process- and task administration has to be defined, if
processes or tasks have been imported.

The scheduler does the task- and process administration and switches them over. The scheduler is called by
the timer0 action of the Systick. Because it is an interrupt, the global interrupt stays blocked until the
scheduler has done its job. This time can be, depending on the jobs of the SysTick, number of processes
etc., upto 500usec. If there is the danger that, for example, fast interrupts can not be interrogated, because
the global interrupt is still blocked, the global interrupt within the timer0 can be immediately set free by using
the additional instruction “interruptible“.

Define Scheduler = iData; {Scheduler in iData}
Define Scheduler = iData, interruptible; {Scheduler in iData}

4.17.7 SYSTICK

Timer-controlled interrupt for time functions. If SysTick has been imported by the IMPORT clause, the
required tick time has to be specified. The value can be in the range of 0.1..100 (msec). This value can be
expressed in floating point, which allows a precise adjustment for the needs of the application. SysTick is
implemented as a hardware interrupt of a timer. Within the AVR normally this is the timer0 (8bit timer). If the
selected CPU has the Timer2 (also an 8bit timer) it also can be used for the SysTick. The used timer is at
then not useful for the program itself. Manipulations on the timer hardware or register can lead to a crash of
the program.

A good value for the tick is 10 (msec). So the interrupt does not make the system dense and the jobs of the
ticks, for example debouncing of the SwitchPort can be settled well. With the AVR SysTick Timer0 (or
Timer2) is the only interrupt, which is directly used and evaluated by the system. The programmer has to
initialize hardware interrupts himself from with the program. These interrupts have to be completely
processed in the pre-defined procedure Interrupt xxx;.

The Timer is loaded from the variable "SysTickTime". The application is able to manipulate the SysTick time
within certain limits at runtime by changing this variable.

 AVRco Compiler-Manual

E-LAB Computers Functions depending on Hardware - 153

SysTick is absolutely necessary for many Drivers, so normally SysTick always has to be imported and
defined.

Import SysTick;
Define ProcClock = 4000000; {4Mhz clock }
 SysTick = 10; {10msec Tick}
or
 SysTick = 5.5; {5.5msec Tick}
or
 SysTick = 8.0, Timer2; {8msec Tick}

4.17.7.1 OnSysTick
For timing jobs which must be executed through SysTick the procedure "OnSysTick" is implemented.
Because this is a call-back out of a Timer interrupt the global interrupt is disabled here. Be carefull and don’t
overload this function in order to avoid long interrupt disable time. "OnSysTick" is called with each SysTick
(Timer Interrupt).

Procedure OnSysTick;
Procedure OnSysTick (SaveAllRegs);

Implementation in the application:

Procedure OnSysTick;
begin
 ...
end;

or

procedure OnSysTick (SaveAllRegs); // not possible if MultiTasking is used!
begin
 ...
end;

Attention:
With MultiTasking import the "SaveAllRegs" option must not be used. It's not applicable here and only the
standard registers ACCA, ACCB, ACCLO, ACCHI are preserved.
With non-MultiTasking and the option "SaveAllRegs" there are no limits, but remember that saving and
restoring all regs takes time

With MultiTasking or non-MultiTasking without the option "SaveAllRegs" the following is true:
1. Local parameters are prohibited.
2. The register SREG, _ACCA/R17, _ACCB/R16, _ACCCLO/R30 and _ACCCHI/R31 are saved always.
 If Pascal statements or other additional registers are used, then these register must be saved manually
 before their usage and restored afterwards.

4.17.7.2 SysTickStop
For special purposes procedure for SysTick manipulation

Procedure SysTickStop; // Disable Timer Interrupt, STOP Timer

This function must always be used in conjunction with SysTickStart.

4.17.7.3 SysTickStart
For special purposes procedure for SysTick manipulation

Procedure SysTickStart; // Start Timer Interrupt, preset TCNT, Start Timer

This function must always be used in conjunction with SysTickStop.

AVRco Compiler-Manual

154 – Functions depending on Hardware E-LAB Computers

4.17.7.4 SysTickRestart
Re-initializes the hardware timer which triggers the SysTick.

4.17.7.5 SysTickDisable
For special purposes procedure for SysTick manipulation

Procedure SysTickDisable; // disable only Timer Interrupt, Timer keeps running

This function must always be used in conjunction with SysTickEnable.

4.17.7.6 SysTickEnable
For special purposes procedure for SysTick manipulation

Procedure SysTickEnable; // enable only Timer

This function must always be used in conjunction with SysTickDisable.

4.17.7.7 SystemTime (*4*)
Sometimes it is necessary to have a system time. This is not a clock but the count of SysTicks elapsed since
Startup/Reset. For this the the SysTick must be imported and also an import of the SystemTime:

From SysTick Import SystemTime16; // 16bit word system time
or
From SysTick Import SystemTime32; // 32bit longword system time

This import defines and exports a variable, either as a WORD or LONGWORD. This variable becomes
incremented with every SysTick and can be read or written by the application. Because of the activated
attribute locked each acces by the application is executed with disabled interrupts!

Var SystemTime16 : word; locked; // 16bit word system time
or
Var SystemTime32: longword; locked; // 32bit longword system time

4.17.8 ENABLEINTS

Enables the global interrupt. Often it is necessary, that the main program is able to do various initializations
(ports etc) before the system tick starts to run. So the global interrupt is not enabled within the system itself ,
even if interrupts have been imported/defined (SysTick, Serial etc). The application program can and has to
call the system procedure “EnableInts“ once, that interrupts are possible.

{Program Body = Main}
begin
 ...
 EnableInts:
 Loop
 ...
 EndLoop;
End.

 AVRco Compiler-Manual

E-LAB Computers Functions depending on Hardware - 155

4.17.9 START_PROCESSES

Starts processes and tasks. Resets the timer (SysTick) and sets the global interrupt free.
This procedure replaces the procedure EnableInts if processes or tasks are imported.

It is often necessary for the main program to make several initializations (ports etc.) before the system
tick/processes/tasks start. Therefore the system itself does not enable the global interrupt. Even when
processes are imported/defined (SysTick, Serial etc.). The application has to call the system-procedure
"Start_Processes" once to enable Interrupts.

{Program Body = Main}
begin
 ...
 Start_Processes:
 Loop
 ...
 EndLoop;
End.

4.17.10 DISABLEINTS

Disables the global interrupt. Now interrupts are no longer accepted. Interrupts should not be disabled for too
long. Enable the interrupts by EnableInts.

Procedure DisableInts;

4.17.11 NOINTS, RESTOREINTS

EnableInts and DisableInts have an additional function, they set/reset a system flag,so that the system
always knows which interrupt state the application has. If the system must disable the interrupt it can only re-
enable it if the interrupt was enabled before the system had disabled it. Similar is true for parts of the
application where the actual interrupt state is unknown.

This handling is supported by NoInts and RestoreInts. NoInts disables the interrupt regardless of ist actual
state but does not change the system flag. RestoreInts then re-enables the interrupt only if the system flag is
set. This means that the interrupt was enabled before NoInts was called.

Use these functions very carefully!!

4.17.12 CPUSLEEP

The CPU goes to sleep, i.e. the program is stopped and internal activities of the CPU are switched off.
The CPU awakes only with an external interrupt or a reset. The parameter is written into the corresp.
Register of the CPU (mcucr) and defines the kind of the sleep mode.

Procedure CpuSleep (sleepcmd : byte);

CPUsleep (MCUCR or $30); // absolute powerdown

Sample Program:

A sample program can be found in the directory ..\E-Lab\AVRco\Demos\Sleep
It has three separate programs that demonstrate the Sleep Modes of the AVR in a simple way.

AVRco Compiler-Manual

156 – Functions depending on Hardware E-LAB Computers

4.17.13 POWERSAVE

The CPU sleeps n SysTicks. SysTick must be imported. The parameter “mode“ is stored into the control
register of the CPU (see also CPUsleep), the parameter “ticks“ defines the time of the PowerDown,
counted in SysTick cycles. The parameter “mode“ must provide that at least the timer which is used by
SysTick runs and can generate interrupts.
The SysTick Timer wakes the CPU with each tick. The parameter “Ticks“ is decreased by one and if not
zero, the CPU again falls into the PowerDown Mode.

Procedure PowerSave (const mode : byte; const ticks : word);

4.17.14 WATCHDOG

Imports with an “Import“ the WatchDog. With “Define“ the prescaler of the timer is adjusted, if it is available.

Import SysTick, WatchDog;

Define SysTick = 4000000; { 4MHz }
 WatchDog = 7; { WatchDog Prescaler}

Possible is also a better readable definition:

Define WatchDog = msec16; // msec32, msec64, msec125, msec250, msec1000, msec2000

4.17.15 WATCHDOGSTART

Initializing and start of the WatchDog, if it is available .

Procedure WatchDogStart;

4.17.16 WATCHDOGSTOP

Stops the WatchDog, if it is available.

Procedure WatchDogStop;

4.17.17 WATCHDOGTRIG

Triggers the Hardware WatchDog of the CPU. The general enabling of the Watchdog depends on the CPU
and has to be adjusted with device or import/define if necessary.

Procedure WatchDogTrig;

4.17.18 GETWATCHDOGFLAG

Function. Returns a byte which is the copy of the "MCUSR" register content after the last reset or PowerOn.
So the application can determine what causes the last RESET by examining this byte result.
The content and it's bits can have different meaning with different CPUs

Function GetWatchDogFlag : byte;

Note: The previous function "WatchDogFlag" is replaced by the new "GetWatchDogFlag".

 AVRco Compiler-Manual

E-LAB Computers Functions depending on Hardware - 157

4.17.19 {$NOWATCHDOGAUTO}

Compiler switch. Only for special purpose. If active no automatic watchdog retriggers are done in the delays
like mDelay etc. and in system caused delays.

4.17.20 ENABLE_JTAGPORT

In order to use JTAG port of a AVR at runtime as a standard IO-port the application must be able to disable
and enable the JTAG Port.

Procedure Enable_JTAGport;

4.17.21 DISABLE_JTAGPORT

In order to use JTAG port of a AVR at runtime as a standard IO-port the application must be able to disable
and enable the JTAG Port.

Procedure Disable_JTAGport;

AVRco Compiler-Manual

158 – EEProm E-LAB Computers

4.18 EEPROM

Some of the older single chips types have an internal EEprom memory. Most of the newer versions
generally have an EEprom.

The problem is that usually access is done with an index- or address-register and additional control registers.
This contrasts to the normal addressing within a compiler. At the very least the writing of the EEprom needs
additional outlay. An access-implementation in a direct high-level-language by the application program is
possible, but it makes no sense, because the generated code would increase. An Inline-Assembler solution
is imaginable, but it is not everyone’s taste and also often faulty.

If the chosen processor has an EEprom and is this EEprom registered in the Description-File (xxx.dsc), the
the AVRco offers three possibilities for EEprom-access:

4.18.1 Structured Constant

With the compiler switch {$EEPROM} and the instruction StructConst the following constants are defined
as positioned within the EEprom. An access to the variables into the EEprom then succeeds automatically.

An indirect addressing by a pointer is possible with EEpromPtr().

This method is efficient and very clear and readable, because it can be inserted into the source without
any problems. The disadvantage is, that every single byte, which should be accessed, also has to be
defined as a constant.

A separate hex-file is generated, which contains the defined constant, and which can be programmed into
the CPU by a programmer. See also StructConst.

Important:
After the definition of the EEprom StructConst switch back to normal memory with {$DATA} or {$IDATA}.

4.18.2 Variable

With the compiler switch {$EEPROM} and the instruction VAR the following variables are defined as located
within the EEprom. An access to the variables into the EEprom then succeeds automatically.

An indirect addressing by a pointer is possible with EEpromPtr().

This method is efficient and very clear and readable, because it can be inserted into the source without any
problems. The disadvantage that every single byte which should be accessed also has to be defined as a
variable.

Important:
After the definition of the EEprom vars switch back to normal memory with {$DATA} or {$iData}.

 AVRco Compiler-Manual

E-LAB Computers EEPROM - 159

4.18.3 Memory Block

The EEprom is treated as an one-dimensional array of byte. For this an EEprom is pre-defined within the
system. With this array there is an access by indexes. But array copy is not possible.

Because the index is a constant or a variable, it is comfortably worked with it. The range check, if it is
activated, is also valid. The size of the EEprom array can be established during the run-time by
SizeOF(EEprom).

The disadvantage of this method is, that an index is not that meaningful as a name, and it has to be
administrated.

Basic EEprom Limitations:
Some Read-Modify-Write operations are not possible.

4.18.4 EEprom Access

All three methods have their own advantages for using the EEprom. A combination of the methods offers a
optimal usage. With StartUp for example, data are read out of the array into available RAM-variables by a
pointer within a loop and among other things they are written back later. Within the "normal execution" the
EEprom-variable may be used. Look out for unwanted overlapping!

All CPU’s, which have an internal EEprom, assume that during a writing-access to the EEprom the
interrupts are blocked. The compiler addresses this issue.
While the internal byte-programming-logic is active there can be no further access to the EEprom. Before
there is an access to the EEprom, the state is interrogated, so it is secured. The writing- and reading-routine
waits at the beginning for the release of the EEprom.

{$DATA}
var
 b1 : byte;
 w1 : word;
 i1 : integer;

{$EEPROM}
var
 be : byte;
 we : word;
 ie : integer;
 el[@we] : byte; // low byte
 eh[@we+1] : byte; // high byte

{$DATA}
var
 b1 : byte;
 w1 : word;
 i1 : integer;

b1:= be; {copy out of eeprom to b1}
W1:= we; {copy out of eeprom we to w1}
i1:= ie; {copy out of eeprom ie to i1}

AVRco Compiler-Manual

160 – Heap E-LAB Computers

4.19 HEAP (*P*)

With the standard version of AVRco and also with many other compilers for embedded applications the memory
usage/management is limited to global variables, stack and frame. This means that the memory partitioning is
already known at compile-time and not dynamically changeable. This is not a problem in most cases.

In AVRco the memory is allocated from address 0 (register) over the I/O-area upto the iData (or xData) area
upward. At the end of the used area there are the stacks and frames. The following memory, if any, is normally
not accessible for the program. If there is a need for additional memory at runtime, e.g. for linked lists etc., there
is no possibility to provide and use this memory.

With larger systems, e.g. on the PC, the free unused memory can be required and allocated through the heap
management. The Profi-version of AVRco there is such a heap management implemented. Dependent on which
memory area is defined as the heap (iData, xData), the unused free memory in this area is completely
administrated by the heap system.

A special requirement of the heap is that accesses must be done with pointers. Therefore free memory must be
requested by the program. The address of the assigned block is returned in a pointer from the heap manager.
After the use by the program the memory should be deallocated respectively passed back to the heap manager.
Otherwise the memory stays allocated and can’t be used from other parts of the program.

It’s very important that the address (pointer) at deallocation is the same as with the allocation. Otherwise the
deallocation fails and the heap will eventually become is completely allocated and each memory request will
fail.

4.19.1 Implementation

Imports
The driver must be imported as usual with AVRco.

Import SysTick, Heap, ..;

Defines
The memory area which should be used by the heap manager:

Define ProcClock = 8000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $0030, iData;
 FrameSize = $0030, iData;
 Heap = iData;

4.19.1.1 Functions

Memory allocation and deallocation through the heap management functions:

Function GetMem (var ptr : pointer [; const size : word]) : boolean;
Requests memory from heap with the optional value “size“. If size is not passed, there will be a block of
memory allocated which the structure needs, where the “ptr“ points to. If ptr is a pointer to string[10], so 11
Bytes are allocated. The variable “ptr“ can be a pointer of any type.

 AVRco Compiler-Manual

E-LAB Computers Heap - 161

The function returns a true, if there was sufficient memory for the requested block. The variable ptr returns
the address of this memory block. If the function fails, a false is returned and the variable ptr returns the
value NIL.

Attention:
The optional parameter “size” should only be used with care and is only intended for special cases.

Function FreeMem (var ptr : pointer) : boolean;
Deallocates used memory. The size block of memory deallocated is as large as the structure needs, where
the “ptr“ points to. If ptr is a pointer to string[10], so 11 Bytes are deallocated. The variable ptr should be the
same which was used when this block was requested by GetMem.

If the memory could be deallocated, this means the above conditions are fulfilled, a true is returned,
otherwise a false. A false should never occur with correct programming. The variable ptr is always returned
with NIL.

Function GetMemAvail: word;
Returns the total amount of free memory. With repeatedly allocation and deallocation it’s possible the free
memory is partitioned in several blocks.
The returned value doesn’t say anything about whether it’s available in one piece or not.

Function GetLargestBlock: word;
Returns the value of the largest one-piece unfragmented memory block.

Remarks:
Pointers in general and with the heap in particular are dangerous (Hello C). But if one keeps in mind a few
rules there can be new and streamlined programming possibilities (linked list for example).

1. Always use typed pointers for GetMem and FreeMem.
2. Always use the same pointer variable for GetMem and the corresponding FreeMem.
3. Avoid the usage of the parameter size. It’s unnecessary with typed pointers.
4. Avoid manipulating the pointer itself.
5. Unused memory should be deallocated at soon as possible, so it can be used again.
6. Observe the boolean result of GetMem. If false there is simply no more memory.
7. If there is a false result with FreeMem, you have programmed a big bug.
8. Note that with each allocation additional 4 bytes are required for administration purpose.

 So a request for one byte (with Pointer to Byte) a total of 5 bytes are used.
9. Always use the Simulator to test and debug your program.
10. If you think it’s necessary to use the parameter size, define the amount of used bytes of a type or

structure with the system function sizeOf()

In general, be careful with pointers 

AVRco Compiler-Manual

162 – Heap E-LAB Computers

4.19.1.2 Example

Program AVR_Heap;

Device = 90S8515, VCC=5;

Import SysTick, Heap;

From System Import ;

Define
 ProcClock = 6000000; {Hertz}
 SysTick = 10; {msec}
 Heap = iData;
 StackSize = $0020, iData;
 FrameSize = $0010, iData;

Implementation

{$IDATA}
{--}
{ Type Declarations }
type
 tStr10 = string[10];
 tArr = array[0..23] of byte;
 tRec = record
 rb : byte;
 rw : word;
 end;

 tpStr = pointer to tStr10;
 tpArr = pointer to tArr;
 tpRec = pointer to tRec;

{--}
{ var Declarations }
{$IDATA}
var
 ww : word;
 ptr, ptr1 : pointer;
 pStr : tpStr;
 pArr : tpArr;
 pRec : tpRec;
 bool : boolean;

 AVRco Compiler-Manual

E-LAB Computers Heap - 163

{--}
{ Main Program }
{$IDATA}

begin
 ww:= GetMemAvail;
 ww:= GetLargestBlock;
 bool:= GetMem (ptr, 1);
 ww:= GetMemAvail;
 ww:= GetLargestBlock;
 bool:= GetMem (pStr);
 ww:= GetMemAvail;
 ww:= GetLargestBlock;
 bool:= GetMem (pArr);
 ww:= GetMemAvail;
 ww:= GetLargestBlock;
 bool:= GetMem (pRec);
 ww:= GetMemAvail;
 ww:= GetLargestBlock;

 bool:= FreeMem (ptr);
 ww:= GetMemAvail;
 ww:= GetLargestBlock;
 bool:= FreeMem (pStr);
 ww:= GetMemAvail;
 ww:= GetLargestBlock;
 bool:= FreeMem (pArr);
 ww:= GetMemAvail;
 ww:= GetLargestBlock;
 bool:= FreeMem (pRec);
 ww:= GetMemAvail;
 ww:= GetLargestBlock;

 EnableInts;
 loop
 Nop;
 endloop;
end AVR_Heap.

Sample Program:

A complete example can be found in the directory ..\E-Lab\AVRco\Demos\Heap

AVRco Compiler-Manual

164 – Boot Vectors E-LAB Computers

4.20 BOOT VECTORS

The majority of the mega-AVRs support a second vector table in the Boot area. With this it is possible to use
interrupts also while running updates with the FlashLoader. The UART is an example.

The problem with the Self-Update of an AVRs through the Boot Loader is that at least the original Interrupt
Vector Table must also be rewritten. So it is erased first before being rewritten. Then at least for a short
period of time no interrupts can be executed. Consequently interrupt driven boot loaders cannot be used.

In some cases it makes sense or it is necessary to work with interrupts in the loader. Most of the Mega AVRs
support this by a remapping of the vector table into the start of the boot area. This must be done by the
application by manipulating the IVSEL bit in the MCUCR or GICR register.

Interrupts vector read accesses then go either into the vector table at address 0 (IVSEL =0) or into the
second vector table at the beginning of the boot area (IVSEL = 1).

The AVRco system supports this, and there is another advantage that the interrupt service routines which
reside in the boot area can also be used by the application. In this case the concerning interrupt (vector) is
placed into both tables. The related interrupt service routine then must always be implemented in the Boot
area.

There are three types of interrupts:

1. The service routine is implemented outside of the boot area. This is the standard case and there is no
influence on the boot area and its vector table.

2. The service routine resides in the boot area and has a standard name. Both vector tables have an
entry (vector) of this routine. So both the application and the boot loader can use this interrupt.

3. The service routine is implemented in the boot area and has a name extension _BOOT, INT0_BOOT
for example. Then this routine is only useable by the loader and also only this table contains a
corresponding entry. The application then can define its own INT0 interrupt.

Important
The BootBlock must start always with this statement:

{$PHASE BootBlock nnnnn}

Then a procedure must follow which serves as the entry point (quasi Main) for the BootBlock. Then Interrupt
procedures or other functions/procedures can follow. The last line must always be:

{$DEPHASE BootBlock}

Limitation
If the system uses an interrupt exclusively, as SerPort does with RxBuffer, then the RxRDY interrupt is not
shareable. Each table must have its own entry.

 AVRco Compiler-Manual

E-LAB Computers Boot Vectors - 165

4.20.1 Implementation

Imports
The boot interrupt support must be imported.

Import SysTick, TickTimer, ..;

From System Import BootVectors, ...;

4.20.2 Functions

Procedure SetVectTabBoot (boot : boolean);
This procedure should be used for the time critical switch of the vector tables (IVSEL, MCUCR/GICR).

Procedure Boot_Init;
Provides the stack and frame as defined and initializes the frame and stack pointer and also the XRAM
access, if present.
If structured constants are placed into the BootBlock they also become initialised. Please note that with
BootVectors import this function is always executed and must not be called.

Procedure BootRestart;
Also the application can execute a boot operation by calling this procedure. But this entry is only available if
BootVectors are imported !

4.20.3 Constants

In conjunction with complex Boot drivers sometimes it is necessary to have “nonvolatile“ constants and
structured constants in the BootBlock which can be accessed at any time by the Boot driver.

These constants then must be defined in the BootBlock. They don’t reside in the common Flash constant
pool but in the BootBlock. If BootVectors are imported then the structured constants will be automatically
copied to their correct place in the RAM. Without the BootVectors import the function Boot_Init must provide
this.

All constants are also accessible by the application.
Absolute Constants in the BootBlock are allowed.

Important
Working with these constants in the BootBlock can be dangerous. Because the Flash becomes erased or
rewritten at this time in most cases system functions are invalid or have changed their absolute address.
So many operations with constants may be impossible in the BootBlock. An exact analysis of the involved
system calls (CALL or RCALL) then is necessary. The same is true with the handling of variables

AVRco Compiler-Manual

166 – Boot Vectors E-LAB Computers

type
 tTestrec = record
 b1 : byte;
 b2 : byte;
 end;

{$PHASE BootBlock $0F000}
structconst
 abcde : array[0..3] of byte = ($12, $34, $56, $78);
 TestrecS : tTestrec = (b1 : $12; b2 : $34);
 vStr : string = 'abcdef';

const
 xyz : array[0..3] of byte = ($12, $34, $56, $78);
 cStr : string = '12345';
 TestrecC : tTestrec = (b1 : $12; b2 : $34);

Procedure BootTest;
begin
 if abcde[0] <> xyz[0] then ...
 endif;
 if TestrecS.b1 <> TestRecC.b2 then ...
 endif;
 if cStr[1] <> 'a' then ...
 endif;
 if vStr[1] <> cStr[1] then ...
 endif;

4.20.4 Example Program

The following shows a small example how to use boot vector switching and the interrupt routines.
Then the resulting vector tables are listed.

program AVR_BootVectors;

{$BootRst $0F000} {reset jumps to here}
{$NOSHADOW}

Device = mega128, VCC=5;

Import SysTick;

From System Import BootVectors;

Define
 ProcClock = 8000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $0020, iData;
 FrameSize = $0040, iData;

 AVRco Compiler-Manual

E-LAB Computers Boot Vectors - 167

Implementation

{$IDATA}
{--}
{ Var Declarations }
var
 iii : byte;

{--}
{ functions }

{$PHASE BootBlock $0F000} // start of boot area
Procedure BootTest; // this is the first code building
begin // part of the boot block
 // this is the absolute reset entry
 SetVectTabBoot(true); // vector table in Boot area
 iii:= 0;
 EnableInts;
 repeat // wait for pin interrupts
 until iii > 3; // which increments iii
 DisableInts; // start over to the MAIN
 // enable vector relocation
 SetVectTabBoot(false); // vector table on address 0
 ASM: JMP SYSTEM.VectTab; // absolute address $0000 = RESET vector
end;

Interrupt INT0_BOOT; // only for the Boot vector table
begin // forced by the extension "_boot"
 inc(iii);
end;

Interrupt INT1; // for both vector tables
begin // because there is no extension
 inc(iii); // but it is still located in the boot area
end;
{$DEPHASE BootBlock} // end of boot area

Interrupt INT0; // only for the basic vector table
begin // because it is outside of the boot block
 inc(iii);
end;

{--}
{ Main Program }
begin
 EnableInts;
 loop
 nop;
 endloop;
end AVR_BootVectors.

AVRco Compiler-Manual

168 – Boot Vectors E-LAB Computers

BOOT Area

0243 F000 .PHASE 01E000h BOOT
0244 F046 .ORG 01E08Ch, BOOT
0245 F046 SYSTEM.$BOOT_ENTRY:
0246 F046
0247 F046 .FUNC BootTest, 42, 00020h
0248 F046 AVR_BootVectors.BootTest:
0249 F046 .BLOCK 45
0250 F046 .LINE 45
0251 F046 EF1F LDI _ACCA, 0FFh
0252 F047 2311 TST _ACCA
0253 F048 F009 BREQ AVR_BootVectors.L0000
0254 F049 E012 LDI _ACCA, 2
0255 F04A AVR_BootVectors.L0000:
0256 F04A 91000055 LDS _ACCB, MCUCR
0257 F04C 7F0D CBR _ACCB, 02h
0258 F04D 6001 SBR _ACCB, 01h
0259 F04E 93000055 STS MCUCR, _ACCB
0260 F050 7F0E CBR _ACCB, 01h
0261 F051 2B01 OR _ACCB, _ACCA
0262 F052 93000055 STS MCUCR, _ACCB
0263 F054 .LINE 47
0264 F054 E010 LDI _ACCA, 000h
0265 F055 93100101 STS AVR_BOOTVECTORS.III, _ACCA
0266 F057 .LINE 48
0267 F057 E810 LDI _ACCA, 1 SHLB IntFlag
0268 F058 2A21 OR Flags, _ACCA
0269 F059 9478 SEI
0270 F05A AVR_BootVectors.L0001:
0271 F05A .BLOCK 50
0272 F05A .ENDBLOCK 50
0273 F05A .LINE 50
0274 F05A AVR_BootVectors.L0002:
0275 F05A 91100101 LDS _ACCA, AVR_BootVectors.iii
0276 F05C 3013 CPI _ACCA, 003h
0277 F05D E010 LDI _ACCA, 0h
0278 F05E F011 BREQ AVR_BootVectors.L0004
0279 F05F F008 BRLO AVR_BootVectors.L0004
0280 F060 EF1F SER _ACCA
0281 F061 AVR_BootVectors.L0004:
0282 F061 2311 TST _ACCA
0283 F065 .BRANCH 4,AVR_BootVectors.L0005
0284 F062 F411 BRNE AVR_BootVectors.L0005
0285 F05A .BRANCH 20,AVR_BootVectors.L0001
0286 F063 940CF05A JMP AVR_BootVectors.L0001
0287 F065 AVR_BootVectors.L0005:
0288 F065 AVR_BootVectors.L0003:
0289 F065 .LINE 52
0290 F065 94F8 CLI
0291 F066 E71F LDI _ACCA, 0FEH ROLB IntFlag
0292 F067 2221 AND Flags, _ACCA
0293 F068 .LINE 54
0294 F068 E010 LDI _ACCA, 000h
0295 F069 2311 TST _ACCA
0296 F06A F009 BREQ AVR_BootVectors.L0006
0297 F06B E012 LDI _ACCA, 2
0298 F06C AVR_BootVectors.L0006:
0299 F06C 91000055 LDS _ACCB, MCUCR
0300 F06E 7F0D CBR _ACCB, 02h
0301 F06F 6001 SBR _ACCB, 01h
0302 F070 93000055 STS MCUCR, _ACCB
0303 F072 7F0E CBR _ACCB, 01h
0304 F073 2B01 OR _ACCB, _ACCA
0305 F074 93000055 STS MCUCR, _ACCB
0306 F076 .LINE 55
0307 F076 940C0000 JMP SYSTEM.VectTab; // absolute address $0000
 // = RESET vector
0308 F078 .ENDBLOCK 56
0309 F078 AVR_BootVectors.BootTest_X:
0310 F078 .LINE 56
0311 0000 .BRANCH 19
0312 F078 9508 RET
0313 F079 .ENDFUNC 56
0314 F079

 AVRco Compiler-Manual

E-LAB Computers Boot Vectors - 169

0315 F079 .FUNC INTERRUPT_INT0_BOOT, 58, 00020h
0316 F079 AVR_BootVectors.INTERRUPT_INT0_BOOT:
0317 F079 94E8 CLT
0318 F07A F827 BLD Flags, IntFlag
0319 F07B .BLOCK 60
0320 F07B .LINE 60
0321 F07B 91100101 LDS _ACCA, AVR_BootVectors.iii
0322 F07D 9513 INC _ACCA
0323 F07E 93100101 STS AVR_BootVectors.iii, _ACCA
0324 F080 .ENDBLOCK 61
0325 F080 AVR_BootVectors.INTERRUPT_INT0_BOOT_X:
0326 F080 .LINE 61
0327 F080 9468 SET
0328 F081 F827 BLD Flags, IntFlag
0329 0000 .BRANCH 19
0330 F082 9508 RET
0331 F083 .ENDFUNC 61
0332 F083
0333 F083 .FUNC INTERRUPT_INT1, 63, 00020h
0334 F083 AVR_BootVectors.INTERRUPT_INT1:
0335 F083 94E8 CLT
0336 F084 F827 BLD Flags, IntFlag
0337 F085 .BLOCK 65
0338 F085 .LINE 65
0339 F085 91100101 LDS _ACCA, AVR_BootVectors.iii
0340 F087 9513 INC _ACCA
0341 F088 93100101 STS AVR_BootVectors.iii, _ACCA
0342 F08A .ENDBLOCK 66
0343 F08A AVR_BootVectors.INTERRUPT_INT1_X:
0344 F08A .LINE 66
0345 F08A 9468 SET
0346 F08B F827 BLD Flags, IntFlag
0347 0000 .BRANCH 19
0348 F08C 9508 RET
0349 F08D .ENDFUNC 66
0350 F08D
0351 F08D ; ============ String-constant tables ============
0352 F08D
0353 F08D SYSTEM.BootIntErr:
0354 F08D 9518 RETI
0355 F08E
0356 F08E SYSTEM._Boot_Init:
0357 F08E E011 LDI _ACCA, 01h
0358 F08F BF1B OUT RAMPZ, _ACCA
0359 F090
0360 F090 E110 LDI _ACCA, 010FFh SHRB 8
0361 F091 EF0F LDI _ACCB, 010FFh AND 0FFh
0362 F092 BF1E OUT sph, _ACCA
0363 F093 BF0D OUT spl, _ACCB
0364 F094 E1D0 LDI _FPTRHI, 010BFh SHRB 8
0365 F095 EBCF LDI _FRAMEPTR, 010BFh AND 0FFh
0366 F096
0367 F096 ; no Peripheral sram-waits
0368 F096 B715 IN _ACCA, mcucr
0369 F097 7B1F CBR _ACCA, 040h
0370 F098 BF15 OUT mcucr, _ACCA
0371 F046
0372 F046 .BRANCH 20,AVR_BootVectors.BootTest
0373 F099 CFAC RJMP AVR_BootVectors.BootTest
0374 F09A
0375 F09A SYSTEM.$INTERRUPT_INT0_BOOT:
0376 F09A 93EF PUSH _ACCCLO
0377 F09B 93FF PUSH _ACCCHI
0378 F09C 930F PUSH _ACCB
0379 F09D 931F PUSH _ACCA
0380 F09E B71F IN _ACCA, SREG
0381 F09F 931F PUSH _ACCA
0382 F079 .BRANCH 17,AVR_BootVectors.INTERRUPT_INT0_BOOT
0383 F0A0 940EF079 CALL AVR_BootVectors.INTERRUPT_INT0_BOOT
0384 F0A2 911F POP _ACCA
0385 F0A3 BF1F OUT SREG, _ACCA
0386 F0A4 911F POP _ACCA
0387 F0A5 910F POP _ACCB
0388 F0A6 91FF POP _ACCCHI
0389 F0A7 91EF POP _ACCCLO
0390 F0A8 9518 RETI
0391 F0A9

AVRco Compiler-Manual

170 – Boot Vectors E-LAB Computers

0392 F0A9 SYSTEM.$INTERRUPT_INT1:
0393 F0A9 93EF PUSH _ACCCLO
0394 F0AA 93FF PUSH _ACCCHI
0395 F0AB 930F PUSH _ACCB
0396 F0AC 931F PUSH _ACCA
0397 F0AD B71F IN _ACCA, SREG
0398 F0AE 931F PUSH _ACCA
0399 F083 .BRANCH 17,AVR_BootVectors.INTERRUPT_INT1
0400 F0AF 940EF083 CALL AVR_BootVectors.INTERRUPT_INT1
0401 F0B1 911F POP _ACCA
0402 F0B2 BF1F OUT SREG, _ACCA
0403 F0B3 911F POP _ACCA
0404 F0B4 910F POP _ACCB
0405 F0B5 91FF POP _ACCCHI
0406 F0B6 91EF POP _ACCCLO
0407 F0B7 9518 RETI
0408 F000
0409 F000 .ORG 01E000h, VECTTABB
0410 F000 .VECTTAB_B
0411 F000 SYSTEM.VectTab_B:
0412 F000 940CF08E JMP SYSTEM._Boot_Init
0413 F002 940CF09A JMP SYSTEM.$INTERRUPT_INT0_BOOT
0414 F004 940CF0A9 JMP SYSTEM.$INTERRUPT_INT1
0415 F006 940CF08D JMP SYSTEM.BootIntErr
0416 F008 940CF08D JMP SYSTEM.BootIntErr
0417 F00A 940CF08D JMP SYSTEM.BootIntErr
0418 F00C 940CF08D JMP SYSTEM.BootIntErr
0419 F00E 940CF08D JMP SYSTEM.BootIntErr
0420 F010 940CF08D JMP SYSTEM.BootIntErr
0421 F012 940CF08D JMP SYSTEM.BootIntErr
0422 F014 940CF08D JMP SYSTEM.BootIntErr
0423 F016 940CF08D JMP SYSTEM.BootIntErr
0424 F018 940CF08D JMP SYSTEM.BootIntErr
0425 F01A 940CF08D JMP SYSTEM.BootIntErr
0426 F01C 940CF08D JMP SYSTEM.BootIntErr
0427 F01E 940CF08D JMP SYSTEM.BootIntErr
0428 F020 940CF08D JMP SYSTEM.BootIntErr
0429 F022 940CF08D JMP SYSTEM.BootIntErr
0430 F024 940CF08D JMP SYSTEM.BootIntErr
0431 F026 940CF08D JMP SYSTEM.BootIntErr
0432 F028 940CF08D JMP SYSTEM.BootIntErr
0433 F02A 940CF08D JMP SYSTEM.BootIntErr
0434 F02C 940CF08D JMP SYSTEM.BootIntErr
0435 F02E 940CF08D JMP SYSTEM.BootIntErr
0436 F030 940CF08D JMP SYSTEM.BootIntErr
0437 F032 940CF08D JMP SYSTEM.BootIntErr
0438 F034 940CF08D JMP SYSTEM.BootIntErr
0439 F036 940CF08D JMP SYSTEM.BootIntErr
0440 F038 940CF08D JMP SYSTEM.BootIntErr
0441 F03A 940CF08D JMP SYSTEM.BootIntErr
0442 F03C 940CF08D JMP SYSTEM.BootIntErr
0443 F03E 940CF08D JMP SYSTEM.BootIntErr
0444 F040 940CF08D JMP SYSTEM.BootIntErr
0445 F042 940CF08D JMP SYSTEM.BootIntErr
0446 F044 940CF08D JMP SYSTEM.BootIntErr
0447 F046
0448 F046 .VECTTABE_B
0449 0046 .DEPHASE

 AVRco Compiler-Manual

E-LAB Computers Boot Vectors - 171

Application Area

0749 8004 .ENDCODE
0750 0000 .ORG 0, VECTTAB
0751 0000 .VECTTAB
0752 0000 SYSTEM.VectTab:
0753 0000 940C0065 JMP SYSTEM.RESET
0754 0002 940C00A9 JMP SYSTEM.$INTERRUPT_INT0
0755 0004 940CF0A9 JMP SYSTEM.$INTERRUPT_INT1
0756 0006 940C00FB JMP SYSTEM.DefIntErr
0757 0008 940C00FB JMP SYSTEM.DefIntErr
0758 000A 940C00FB JMP SYSTEM.DefIntErr
0759 000C 940C00FB JMP SYSTEM.DefIntErr
0760 000E 940C00FB JMP SYSTEM.DefIntErr
0761 0010 940C00FB JMP SYSTEM.DefIntErr
0762 0012 940C00FB JMP SYSTEM.DefIntErr
0763 0014 940C00FB JMP SYSTEM.DefIntErr
0764 0016 940C00FB JMP SYSTEM.DefIntErr
0765 0018 940C00FB JMP SYSTEM.DefIntErr
0766 001A 940C00FB JMP SYSTEM.DefIntErr
0767 001C 940C00FB JMP SYSTEM.DefIntErr
0768 001E 940C00FB JMP SYSTEM.DefIntErr
0769 0020 940C0093 JMP SYSTEM.$INTERRUPT_TIMER0
0770 0022 940C00FB JMP SYSTEM.DefIntErr
0771 0024 940C00FB JMP SYSTEM.DefIntErr
0772 0026 940C00FB JMP SYSTEM.DefIntErr
0773 0028 940C00FB JMP SYSTEM.DefIntErr
0774 002A 940C00FB JMP SYSTEM.DefIntErr
0775 002C 940C00FB JMP SYSTEM.DefIntErr
0776 002E 940C00FB JMP SYSTEM.DefIntErr
0777 0030 940C00FB JMP SYSTEM.DefIntErr
0778 0032 940C00FB JMP SYSTEM.DefIntErr
0779 0034 940C00FB JMP SYSTEM.DefIntErr
0780 0036 940C00FB JMP SYSTEM.DefIntErr
0781 0038 940C00FB JMP SYSTEM.DefIntErr
0782 003A 940C00FB JMP SYSTEM.DefIntErr
0783 003C 940C00FB JMP SYSTEM.DefIntErr
0784 003E 940C00FB JMP SYSTEM.DefIntErr
0785 0040 940C00FB JMP SYSTEM.DefIntErr
0786 0042 940C00FB JMP SYSTEM.DefIntErr
0787 0044 940C00FB JMP SYSTEM.DefIntErr
0788 0046
0789 0046 .VECTTABE
0790 0046 SYSTEM.ENDPROG:

Sample Program

An example can be found in the directory ..\E-Lab\AVRco\Demos\BootVectors

AVRco Compiler-Manual

172 – Boot Traps E-LAB Computers

4.21 BOOT TRAPS

If essential parts of the system are placed into the Boot section and these functions must also be accessible
from the application section then there is the problem that with a download of a new application part through
the Boot Loader the new application can use new but illegal physical addresses in the boot section.

A simple call of functions or procedures out of the application can point to wrong or illegal addresses in the
code or the boot block with catastrophic results. In order to avoid this there must be a special interface which
was introduced many years ago by CP/M and DOS for entering the BIOS.

Here a function is never called directly but indirectly through a jump table which is placed at the beginning of
this area on a well known and fixed address. By this theoretically both parts can be changed without leading
to dramatic results. However our table is unchangeable at runtime as is the whole boot area.

How does it work?
The system builds a jump table with 16 entries after the Boot Vector Table. If no Boot Vectors are used this
table is directly placed at the Boot entry address. Each function or procedure in the Boot area which has the
“TRAP“ attribute is entered into this table by its address.

A call of such a function or procedure from the application section then is not built as usual with a
“CALL Procedure“ but the address of this function is read out of this table and used for an ICALL operation.
However a call of such a Trap function from within the Boot area is handled as usual with a standard CALL.

4.21.1 Implementation of the Boot Traps

Imports
The Boot Trap Handler must be imported.

From System Import Traps {,BootVectors};

Defines
There is no special Boot Trap Handler define.

{$PHASE BootBlock $0F000}
…

Procedure TestTrapP(b : byte; w : word); Trap;
begin
 ww:= w;
end;

Procedure TestTrap; Trap;
begin
 TestTrapP (12, 1234); // procedure is called as usual
end;

{$DEPHASE BootBlock}

// MAIN
begin // functions are called through the jump table
 TestTrap;
 bo:= TestTrapF (12, 1234);
 TestTrapP (12, 1234);
 ...

 AVRco Compiler-Manual

E-LAB Computers Inheritance - 173

4.22 Inheritance

The basis for objects is what is known as inheritance. A new object takes on all the properties of an existing
object and extends the new one with additional properties. Objects are special records. If it is possible to
import an existing record into a new one simple objects can be constructed.

The import respectively the inheritance of an existing record into a new one must be done with the use of

inherit RecordName;

type

 tFirstRec = record
 bb : byte;
 ww : word;
 pp : pointer;

 end;

 tObjRec = record
 inherit firstRec; // import of firstRec
 ii : integer;
 pro : procedure;
 end;

"ObjRec" inherits the properties of "firstRec". Please note that the inherit instruction must always be the first
declaration of the new record.
Internally the new records is constructed in this way:

 tObjRec = record
 bb : byte; // inherited
 ww : word; // inherited
 pp : pointer; // inherited
 ii : integer;
 pro : procedure;
 end;

It must be clear that no identifier can be used twice, all must be unique.
A simple application of such a construct is the hiding of the inherited part:

type

 tpFirstRec = pointer to tFirstRec;
 tpObjRec = pointer to tObjRec;

var

 ObjRec : tObjRec;
 pFirstRec : tpFirstRec;
 pObjRec : tpObjRec;
 ...
pFirstRec:= tpFirstRec (@ObjRec); // only FirstRec is visible
pObjRec:= @ObjRec; // all is visible

AVRco Compiler-Manual

174 – Multi Task Programming E-LAB Computers

5 Multi-Tasking Programming

5.1 Introduction

With an Embedded Application (Single-Chip application) often there is the problem, that several jobs should
be done at the same time. For example the characters of a serial interface should be fetched, checked and
perhaps they should be converted from hex into an integer. At the same time ports should be watched by
limit-switches or a LED should flash. Additional a measurement value should be gathered by a pot and this
value should be passed as a control output to an external controller. And the controller should calculate an
output value in a fixed time grid.

So the programmer has the problem with all these targets to do all things concurrently. The programmer is in
the difficult situation to watch several processes at the same time, whereby he must take care that all
functions run concurrently and independently.

With simple time-loops etc. this problem cannot be solved except maybe with tricks, which make the
program inflexible and bovine.

So a solution is needed, which makes it possible to distribute the jobs, that they frequently get a chance to
work, but do not block other jobs. Such a system is called Multi-Tasking, whereby a task is a
job/assignment.

The terms tasks or processes are often treated as synonyms in literature, but within the AVRco they are
distinguished. Details see below.

In connection with Multi-Tasking there is always associated the term Real-Time. Strictly speaking real-time
has nothing to do with multi-tasking. Real-time means to responding to external events as quickly as
possible. In general this is achieved via interrupts. But the reaction-time is not predefined anywhere.
Depending on the requirement this can mean the system has to react within microseconds or sometimes
milliseconds. The application basically determines what is real-time and what is too slow.

5.2 Principle of Operation

Multi-Tasking or Multi-Processing is defined as the ability to process several jobs/tasks quasi-parallel, it
seems as if they run at the same time. Because it is not possible for a processor to read and process several
machine commands at the same time, this must be done sequentially, i.e. one after another.

This sequential processing of jobs (calling of jobs, handout of run-time, switch over to the next job) is done
by what is known as the scheduler. The scheduler is processed in a timer-interrupt (SysTick). It checks if
the running process/task has consumed it’s temporary run-time. If it is consumed, the working-register,
stackpointer, flags etc. are saved in a memory area, which is assigned to this process, and the next
process or task is called.

This method is also called Round-Robin, because the processes are done essentially in a circle. Other
possible methods are not considered, because the administrative outlay is too big.

The scheduler observes the state of the separate tasks. This is the priority, which defines the time-slice, and
waiting flags (pipe, semaphore, sleep), which switch off a process temporarily. Suspend switches a process
completely off and lock ties the CPU completely to this process.

 AVRco Compiler-Manual

E-LAB Computers Multi Task Programming - 175

5.2.1 Processes and Tasks

Processes and tasks are essentially independent programs within an application, which are able to run
independently from other program parts (e.g. main). Processes can not be called like functions or
procedures. Instead of this they are called periodically by the scheduler. If processes have been imported,
the main program runs as a process, too, and also has a priority, name(Main_Proc) and process-ID(0).

If there are several processes/tasks within a program, the processes are done quasi-parallel, i.e. it seems
as if all processes are done at the same time = Multi-Tasking. So an apparently parallel processing for
example of events or data is achieved, although they are always processed sequentially, i.e. one after
another.

A process practically runs for ever, only interrupted by interrupts and other processes and tasks. The ‘begin’
and ‘end’ limits a process and its statements. Because processes cannot be called like functions, they do
not have any passing parameters or results.

With the first call of a process by the scheduler, it is started with the statement which follows directly after the
‘begin’ statement. Then all statements are processed until ‘end’ is reached, perhaps interrupted by a task
change by the scheduler (Switch over to another process/task). If the ‘end’ is reached, it is automatically
continued with the first statement after ‘begin’. So a process runs continuously in a ‘circle’ without ending.
The programmer does not need program a loop, because the jump back to the beginning (begin) happens
automatically.

This is the essential difference to a task. With every call of a task by the scheduler it is started with the
statement which follows immediately after the ‘begin’ statement. Then all statements are processed until
‘end’ statement. If the ‘end’ is not reached within a system tick, the task is interrupted by a task change by
the scheduler (Switch over to another process/task). So the task never reaches the ‘end’, if it’s required run-
time from ‘begin’ to ‘end’ is longer than a system tick. The run-time may never be longer than a system tick.
Similar conditions are also valid for interrupts. A timer-interrupt-service-routine for example, should never
take more time than the period between two interrupts.

If the ‘end’ is reached, the control is automatically passed to the scheduler, which now activates the next
process or task. In contrast to a process a task runs from ‘begin’ until ‘end’ with every call through the
scheduler and then aborts.

5.2.2 Priority

The behavior of a process/task is controlled by a number of corresp. functions and procedures.
An essential parameter is priority.

With priority a part of the globally available run-time is placed at disposal to a process. The higher the value
of priority is, the more run-time is at disposal. At the same time priority predefines the number of system
ticks, which are completely available for the process in a piece. The proportional run-time of the total time in
% is calculated by: Priority / Sum of all priorities.

Assumed there is only the process ‘DoTheJob’ and it has the priority 10 and Main Priority is 5 then is valid:
run-time = 10 / (5 + 10) = 66%. But the exact run-time can only be predefined if no process is suspended or
locked and if no ProcessWaits etc. exist. In practice the proportional run-time can only be estimated.

In contrast to a process the calling interval of the task is predefined by priority. The lower the value of
priority is, the more often is the calling of the task. Assumed the task ‘RunPid’ has the priority 10, so it is
called every 10. Systick. So it is established, that the period between two callings is always 10 ticks.

AVRco Compiler-Manual

176 – Multi Task Programming E-LAB Computers

Note:

If there are several tasks, and if it is possible, that several of them are active, pay absolutely attention that all
priorities have a common denominator.
I.e. all priorities must be a multiple of 2, for example. If this condition is not met, so there are irregular calling
intervals, i.e. the period between two callings is not constant any longer. Further the lowest priority should be
higher than (count of all tasks + count of all processes) but at least higher than the task count.

A process/task is able to take over the CPU completely by lock, so apart from itself only interrupts are
running. This state is terminated by unlock.

If a process/task finds out, that it has nothing to do at the moment, there should be no waste of run-time by
waitloops or delays. There are several possibilities to pass the control to other processes:

With Schedule the process/task is interrupted immediately, but is enqeued again into the waiting loop. With
Sleep a process/task is able to switch itself off for a certain number of system ticks.

With Suspend a process/task switches off. It is not able to switch itself active again. This must be done by
another process/task or by the main program with resume.

Because the communication between tasks/processes is made by pipes and semaphores, the task may
suspend itself by calling WaitSema or WaitPipe. The process/task then becomes active if there is data in the
specified semaphore or pipe. It is also possible that RxBuffer (RxBuffer1, -2, -3) is specified as a pipe.

The process/task is interrupted directly after an above mentioned instruction.

5.2.2.1 Default Priorities
without explicit priority setting the priorities are

Main: Priority 5
Prozess: Priority 3
Task: Priority 5

5.3 Optimal Multi-Tasking

With a multitasking application accurate planning is necessary.

1. With the right strategy and a good partitioning of the jobs into separate tasks and processes fast program

processing is achieved.

2. In spite of the overhead (ca. 330 cycles), which is caused by the scheduler, a multitask program runs
 much faster than a normal programmed program, if there is suitable use of schedule, sleep,
 WaitSema, WaitPipe and suspend.

3. The right distribution of the priorities decides the reaction-time of the separate processes and hence the

real-time capability. If the priorities are dynamic, i.e. they are changed for the needs of the application
during the program run, an additional improvement of the system is achieved.

 AVRco Compiler-Manual

E-LAB Computers Optimising - 177

6 Optimization

6.1 Library

The compiler optimizes the library calls completely, i.e. only those library functions, which are used, are
imported and occupy code space and possible RAM space (variable). So there is no waste of resources.

6.1.1 Variable

The Pascal compiler has no variable optimization at the moment. That means that a variable, which has
been declared, also physically occupies space. If this variable is not used within the program, so the space
is wasted. It is planned about to introduce a variable optimization later, which eliminates the unused
variable.

The programmer must take care to delete the unused variables and to treat the resources with care. The
compiler switch {W+} helps.

6.1.2 Constant

A constant declaration like “Const x = 123;“ occupies no resources within the CPU, whether this constant is
used or not.
Constant expressions for example “a:= (5 * 10) + (24 div 2);“ are parsed by the compiler, if possible. This is
called constant folding. The result of the above expression is “62“. The compiler then uses the constant
result and passes it to the assembler like: LDI _ACCA, 62

6.1.3 Runtime

The generated program within many compilers is what is known as stack machine. All passing
parameters and provisional results within terms are stored in stacks and frames. Often there are
unnecessary PUSH and POP operations connected with it. Also variables are often loaded into the
working register, although this variable is already in this register. This is caused by the formalism, which
exists in every compiler.

A run-time optimization realizes those unnecessary operations and eliminates them. This is built into this
compiler. There are many further possibilities for optimization, which will be reserved for future releases.

6.2 Highly Optimizing?

Many compilers attire themselves (sometimes even with justification) with the attribute “highly optimizing“. A
very hard optimization often has two sides. If, for example, all actual variables are within the register set and
are processed there, there is no possibility for an interrupt-routine or a multitask to get an access to these
actual values! Further this routine cannot be recursive, but at least it must try to save the registers. Highly
optimized code is generally not reentrant also (abort of a routine by an interrupt or multitasking and a calling
of it within the interrupt task).

Because of that it is necessary within certain compilers that certain procedures or functions require a
compiler switch to switch off the optimization.
Beginners as well as experienced users often forget it, and so sometimes there is a crash that cannot be
reproduced. Such a system is not easy to clean. For beginners it is only possible if essential optimizations
are switched off.

The AVRco generally works with stack frames, it is slower, but extremely secure. All system- and user-
functions/procedures are generally reentrant as well as recursive. The recursion depth is only limited by the
Ram and the stack size.

AVRco Compiler-Manual

178 – Optimising E-LAB Computers

Within the AVRco the floating point library is reentrant, i.e. it could be used within interrupts and recursions,
this is not the case with all compilers. (With interrupts save all registers!).

Although the speed and a compact code are necessary targets of a compiler, within the AVRco the most
necessary thing is the reliability requirement and the optimization was secondarily, but this does not mean
that optimization is no theme. As mentioned above in future there will be better optimizing versions, too.

The most compact and fastest code
is reached within every system by the system library. The more functions are within the system, the less
has the programmer to formulate in a high-level language. System functions are completely written in
assembler, so they are highly efficient, i.e. fast and short. The “Librarian“, which is contained in some
compilers, generates out of the high-level language a linkable library. The generated code is exactly the
same as the code, which is made out of the statements by the compiler, if they are directly included in the
program. So there is no profit that way.

An I2C-Bus has to be formulated in a high-level language by the programmer within most of the systems.
This code is many times bigger and slower than the corresponding system functions. By the import of
several system functions, and there are many of them in the AVRco, the moderate optimization of the
AVRco is made much better.

The best optimizer is the programmer himself. There can be an optimal code, if multitasking is used and
local variables are used sparingly.

The generated code of the AVRco (also in connection with Multi-Tasking) can also feel free with the
compare to more complex applications.

A “foolproof“ program is the target of the AVRco. A highest optimized program can only be reached with a
careful using of the compiler switches, and so there can be many mistakes/errors!

As a matter of fact a little bit bigger processor with larger ram/rom gives a better improvement than an
optimization, and often it costs just a little bit more than a weaker version, even the increase of efficient
periphery (ports, timer, interfaces) is better.

6.3 The "Merlin Optimizer"

The Merlin Optimizer is a Plug-In for the Standard and Profi Version of the AVRco System.
It reduces the code size between 5..20%.
The Optimizer is called from inside the IDE with HotKey or SpeedButton.
The complete sequence "compile "" – "optimize" – "assemble" needs also only a single mouse click.

From Version 4 of the AVRco (Standard and Profi) the Merlin Optimizer is included.
For Version 3 the Optimizer has to be purchased separately.

 AVRco Compiler-Manual

E-LAB Computers Compiler Switches - 179

7 Compiler Switches
Compiler Switches are serving to control the behavior of the compiler. These switches are components
of the source.

A switch is started with a { and a following $ without a space. Immediately after the $ the switch name has to
follow. Instruction for further parameters has to be done like the usual conventions.
The switches must start in the first column of a line. The same line may not contain any statements.

Syntax: {$SWITCH [arg] }

Each Import and each Device Define is added to the compiler switch list. This means that:

Import LCDport, ...

is treated like: {$DEFINE LCDPORT} and

Define ProcClock = 8000000;

is treated like: {$DEFINE PROCCLOCK}

7.1 Memory Administration

{$DATA} {$IDATA} {$IDATA1} {$PDATA} {$XDATA} {$XDATA1}..{$XDATA4} {$EEPROM} {$UDATA}
Selects the memory page of the CPU. Most of the small processors are only able to reach a small memory
range if there is a direct address. Possible additional existing memory needs extra processing. This is
specially valid for the external memory, if it existing. The switch assigns the appropriate area to the following
variables.

{$DATA}
$DATA assigns the area, which is found in the processor control file (xxx.dsc) within DATA, to all following
variable declarations (also structconst). With the AVR this area is from $04 upto $1F. The defined variables
now are progressed placed from $04. If another switch of this type occurs later, the following variables are
processed analogously. Variables in the area $DATA are always reachable with very short and fast machine
commands.

{$PDATA}
$PDATA assigns the area, which is found in the processor control file (xxx.dsc) within PDATA, to all following
variable declarations. With the AVR 8515 this area is from $20 upto $5F. The defined variables now are
progressed placed from $20. PDATA is reserved for an IO-area, if existing.

$PDATA mostly is accessed with special machine commands. Within the definition of variables in this area,
the compiler should not allocate the address, but the programmer must/should specify the required address
of every variable:

Var Port1[$35] : byte;

AVRco Compiler-Manual

180 – Compiler Switches E-LAB Computers

{$IDATA}
$IDATA assigns the area, which is found in the processor control file (xxx.dsc) within IDATA, to all following
variable declarations (also structconst). With the AVR 8515 this area is from $60 upto $25F. The defined
variables now are progressively placed from $60. If another switch of this type is found, with the following
variables are proceeded analogously. Variables in the area $IDATA are always accessible with longer and
slower machine commands.

The iData normally includes the whole internal SRAM of the CPU. If necessary this area can be divided into
two parts. This is supported with a Define. With iDATA1 the internal RAM is divided into two parts. The
necessary parameter then defines the end of the first (lower) part and on the other hand the start address of
the second part. (* REV4 *)

 Define iData1 = $800;

Variables now can be placed into the iData or Idata1 area.
Example:

 {$IDATA1}
 Var
 Test1 : word;

 {$IDATA}
 Var
 Test : word;

{$XDATA} {$XDATA1} {$XDATA2} {$XDATA3} {$XDATA4}
$XDATA assigns the area, which is Defined with XDATA, to all following variable declarations (also
structconst). XDATA is external memory, which is only available within the bigger types. If another switch of
this type is found, with the following variables are proceeded analogously. Variables in the area $XDATA are
always accessible with longer and slower machine commands. Often the CPU uses additional Wait states.

Define xDataWaits = nn; // 0..3
Select the xData Waits for e.g. mega8515, mega162, mega64 and mega128.

Define XDATA1 = $8000, $80FF, NoInit;
Each XDATA can be assigned to NoInit within the XDATA definition.

{$EEPROM}
$EEPROM assigns the area, which is found in the processor control file (xxx.dsc) within EEprom, to all
following variable declarations (also structconst). EEprom only can be a chip intern memory.

The EEPROM normally includes the whole internal EEPROM of the CPU. If necessary this area can be
divided into two parts. This is supported with a Define. With EEPROM1 the internal EEPROM is divided into
two parts. The necessary parameter then defines the end of the first (lower) part and on the other hand the
start address of the second part. (* REV4 *)

 Define EEprom1 = $800;

Variables now can be placed into the EEPROM or EEPROM1 area.
Example:

 {$EEPROM1}
 Var
 Test1 : word;

 {$EEPROM}
 Var
 Test : word;

 AVRco Compiler-Manual

E-LAB Computers Compiler Switches - 181

{$UDATA}
$UDATA assigns the area, which is Defined in the definitions section with UserData (UserDevice), to all
following variable declarations. This data area resides in an external device which is not accessible through
the normal CPU-addressings, e.g. a serial EEprom. The programmer must supply a device driver. See also
paragraph Device Driver in the Standard Driver Manual.

The variables always build up from the lower to the higher address. If the memory areas are changed by a
new switch, so it is continued with the actual memory at last specified address.

Memory Initialization
The memory areas $DATA, $IDATA and the $XDATA section basically are initialized to $00. This
initialization can be disabled for the $XDATA areas at the definition time by the attribute NOINIT. This is valid
for the entire area. The following compiler switch can be used for the $DATA and $IDATA sections:

{$NOINIT}
Switch for the $DATA and $IDATA area. The following variables of this section upto it’s end are not
initialized, i.e. they are not filled with zeros.
But you should note that the standard initialization is done in a very fast loop over a single block.
If you insert NoInit variables in between this process may take much more time.
You should group these var definitions to avoid extensive fragmentation.

Variables outside any area
If variable has to be located outside any defined area, the compiler generates an error. The error can be
suppressed with the following Compiler switch:

{$NORAMCHECK}
The following variable is not checked for a valid RAM area.

{$IDATA}
{$NORAMCHECK}
var
 Extreme[@$FFFF] : byte;

{$PHASE} {$DEPHASE}
Switches to a fixed WORD-Address in Flash and back to the standard code page.

{$PHASE $1E00}; places the following code at addr $1E00 and up.
{$DEPHASE} ; switches the address generation back to the default page.

AVRco Compiler-Manual

182 – Compiler Switches E-LAB Computers

7.1.1 Considerations about Memory Usage

The main difference between the separate memory areas is obviously the required time and the program
space consumption, caused by the according addressing types of the CPU. Within time critical applications
the programmer should assign his variables corresponding to the number of accesses to the variables.

Default: {$DATA}

var
 b1 : byte; {$06}
 ch1 : char; {$07}
 w1 : word; {$08}
 bool1 : boolean; {$0A}

{$IDATA}
var
 b2 : byte; {$60}
 ch2 : char; {$61}
 w2 : word; {$62}
 bool2 : boolean; {$64}

{$PDATA}
var
 Port1[$25] : byte; {$25}
 Timer4[$34] : char; {$34}
 Per2[$28] : word; {$28}

{$DATA}
var
 x : byte; {$0B}
 y : char; {$0C}

{$EEPROM}
var
 ex : byte; {$0}
 ey : char; {$1}

7.2 External Memory

If external memory exists and in use then this memory must be declared and defined by the
compiler switches {$XDATA} {$XDATA1} {$XDATA2} {$XDATA3} and {$XDATA4} .

The definition of a XDATA area enables the use of the defined external memory area. The possibility to split
the external memory into max. 5 parts supports the implementation of external peripherals and also battery
buffered RAM.
Normally the compiler initializes the entire memory with “0“. In the case of peripherals and buffered RAM this
is not desirable. Therefore it is possible to append the attribute NoInit to the definition. Then the initialization
of this area is disabled.

Define Xdata = StartAddr, EndAddr [, NoInit];

 AVRco Compiler-Manual

E-LAB Computers Compiler Switches - 183

If external memory is in use and defined, at first the area XDATA must be defined. Following further eternal
areas can be defined with XDATA1 etc. The definition includes the start- and end address of the memory
block, followed by the optional NoInit.

Define ProcClock = 4000000; {4 Mhz }
 SYSTICK = 10; {alle 10msec }
 XData = $1000, $4FFF; {16kB, start = 1000h, end = 4FFFh}
 XData1 = $8000, $80ff, NoInit; {Peripherie, no Init}
 StackSize = 82, iData; {82 Bytes in iData}
 FrameSize = 99, xData; {99 Bytes in xData}

var
{$XDATA}
 abc : integer;
 fix[$3000] : byte;

{$XDATA1}
 port1[$8000] : byte;
 port2[$8001] : byte;

{$IDATA}

System data, which can reside in an external area, for example StackSize or FrameSize, can only be
allocated in the XDATA area.

{$XIO +} {$XIO -}
Can be used in the XDATA area. It can tell the Optimizer about a memory mapped IO-area in XDATA.
The memory area between these two switches then is treated in a different way by the optimizer. For
example redundant accesses are not removed.

7.3 Include Files

{$I Filename.ext}
Reads an include-file, whereby "filename" also can contain a path. If there is no path it is searched within the
working directory of the application. So sources, which are used again and again, can be included. The
include-file can contain assembler or Pascal-source as well as both together. The usual conventions are
further valid.

{$J Filename.ext}
Reads an include-file, whereby "filename" may not contain a path. The "Home-Directory“ of the compiler is
generally prefixed as path. This is very advantageous in case of procedures etc., which return again and
again and it replaces almost a linker in the unit-concept.

7.3.1 Search Path for Include Files

Include files are searched in the following order:
1. actual working/project directory
2. in directories defined in Project Admin (IDE)
3. in directories defined in System Admin (IDE)
4. in the AVRco directory
5. in the "System" directory below the AVRco directory

AVRco Compiler-Manual

184 – Compiler Switches E-LAB Computers

7.4 Runtime Checks

If there is enough memory, “StackSize“ can be enlarged. If the compiler now reports a stack overflow only
the elimination of variables can help. This may be possible by removing unused variables. If there are no
unused variables, it must be solved by a double-assignment of variables. But the programmer has to be
extremely careful, to avoid a time based conflict of the assignment.

Var ch1 : byte;
 ch2[@ch1] : byte; {ch1 and ch2 same Address}

Please pay attention to chapter RunTimeErr.

{$ShowError err: string}
raises an error message
{$ShowError 'Error with ...'} raises an error message at assembly time

{$ShowWarning err: string}
raises a warning
{$ShowWarning 'Attention: ...'} raises a warning at assembly time

7.5 Variable, Constant and Procedure Check

{$WG}
Globaly enables the check of variables and procedures. With obviously unused variables, ROM-constants or
procedures the compiler produces a warning, which is evaluated by the IDE. This switch is off by default and
can only be set to on.

{$W+} {$W-}
Switches the check of variables and procedures on for the actual module (Main/Unit). With obviously unused
variables, ROM-constants or procedures the compiler produces a warning, which is evaluated by the IDE.
(see also optimization)
Default: {$W-}

{$NORETURNCHECK}
Only valid in conjunction with functions. With the following function there is no error message if there is no
Return statement.

{$NOOVRCHECK}
Disables the Check for the following Variable Overlay Declaration.

{$OverLay @VarName[, NoOvrCheck]} {$OverLay 0}
To avoid the separate overlay of each variable with: yyy[@xxx] : byte;
To place more than one variable into the referenced var, e.g. an existing Array or buffer.

"VarName" is must be existing variable (@VarName)in the RAM area.
The optional parameter "NoOvrCheck" defines that no overflow checks must take place. If this switch has a
zero parameter "0" then this is the end of this overlay area.

All variables which are defined between these two switches now get upcounting addresses starting with the
address of "VarName". This means they are placed "over" the basic variable.

Basically this variable at least should occupy the same or more memory as the sum of all overlaying ones.
If an overflow is created it is displayed with the trailing switch. But this overflow is ignored with if the option
"NoOvrCheck" is set with the leading switch.

 AVRco Compiler-Manual

E-LAB Computers Compiler Switches - 185

Instead of a variable as the reference also an absolute address can be defined by
{$OverLay $nnnn, NoOvrCheck}
Then the option "NoOvrCheck" is mandatory.

{$Q-}
disables the need to qualify identifiers within assembler coding.
Only for already existing older programs.

{$TYPEDCONST OFF} {$TYPEDCONST ON}
For a better readability of programs and to avoid compiler errors.
With "ON" the compiler expects with each constant declaration also a proper type declaration. Because of
this a "0" for example becomes unambiguous a byte, word, integer or a float.

const bb : byte = 0;

The switch is default "ON".
If existing programs should not be changed and to avoid error messages the typed const feature must be
disabled in the main file like this:

{$TYPEDCONST OFF}
program ProgName;

{$VALIDATE name}
Constants and variables of the system and also of the application in most cases will be removed by the
compiler/optimizer if they don't appear in the context. This means they must be included at least once in a
statement.

This can lead to problems with inline assembler code in the Pascal sources.
The assembler shows an error because the called procedure etc. is not present in the asm source.
The switch {$VALIDATE name} forces the compiler to import or implement the construct "name" and the
optimizer is disabled for this item. The switch can only be used after the declaration of “name”.
ATTENTION:
this option (is the only one that) is not working with the "Merlin Optimizer"

{$VALIDATE $}
Functions and procedures can be excluded from any optimiser remove with this switch. It must be placed
before a function/procedure declaration.

{$VALIDATE_ALL}
It tells the compiler to place obviously not used constants of type String, Array and Record into the program
code. The optimization for these type of constants is then disabled completely.

{$VALIDATE_ON} {$VALIDATE_OFF}
To set variable blocks as "used" so the message "possibly unused variable" becomes suppressed for this
area.

{$ZeroLocVars +}
If active all local variables in functions and procedures are cleared to zero if a function or procedure is
entered.

{$NOADDRCHECK}
For Mega128..256: Placing of constants always use the highest Flash Page as the destination. Basically
other pages are not usable for this by the system. With this compiler switch the address or page check is
disabled for the following constant definition. This constant can also be an external binary file which should
be placed here. If the address given is not inside the uppermost flashpage (standard constant page), so an
access to this constant by the application with its standard addressing mechanism is impossible. Then the
application must provide very special own access methods.

const
{$NOADDRCHECK}
 LookUpTab[$20000] : array[1..256] of byte = 'Name.ext'; //mega2561

AVRco Compiler-Manual

186 – Compiler Switches E-LAB Computers

7.6 System Controlling

{$NOSAVE}
Is only valid in connection with application interrupt procedures. With the following interrupt procedure the
system does not save the working register automatically (except the status register and 4 main working
registers). The programmer has to do it himself. It only makes sense for fast service - routines, written in
assembler.

{$NOREGSAVE}
is only valid in connection with application interrupt procedures. With the following interrupt procedure the
system does not save any the working registers. The programmer has to do it himself. It only makes sense
for service routines written in assembler.

{$NOSHADOW}
The definition must be, if necessary, before the device declaration. With non-multitask applications only
those working registers are saved, which are used by the interrupts within all interrupts. This saves
essentially ram, rom, and run-time. This switch is overwritten by the import of tasks and processes.

{$NOFRAME}
Is only valid in connection with device driver procedures, which are called by the procedures Write or Read.
With the following device procedure, which may only have one 8-bit passing parameter, this parameter is
passed within a register. A parameter frame is not made. So local variables are not possible. This only
makes sense for fast driver routines, written in assembler.

{$DEBDELAY}
For the simulator. Shortens the mDelays in the Simulators by 90%.
This switch does not have any meanings for the generated Hexfile, i.e. it's not necessary to remove it.

{$D+} {$D-}
Debug informations on or off. If off, the following statements are not stepped by the simulator.
This switch does not have any meanings for the generated Hexfile, i.e. it's not necessary to remove it.

{$X-} {$X+}
Disables the execution of a source code area in the Simulator. Useful if the program polls or waits for an
external hardware.
This switch does not have any meanings for the generated Hexfile, i.e. it's not necessary to remove it.

{$DEVICE}
This is only valid in connection with Device driver procedures, which are called by the procedures Write or
Read. In the following Device procedure, which may only have an 8bit parameter; this parameter is passed
in a register. A parameter frame is not built, so local variables are not possible. It only makes sense for fast
driver routines written in assembler. Identical with the $NOFRAME switch.

{$LCDNOWAIT}
Disables the Busy-Polling of the display driver. Only for debug purpose!

{$LCDNOINIT}
The LCD controller is not initialized at Reset time. The application must do it with a invocation of the system
procedure “LCDsetup“.

{$ENUMTOASM}
Enumerations normally are not exported into the assembler file to save computing time with the compiler and
assembler and to have a good overlook over these files.
If the enum values are needed for inline assembly it is possible to force the export of the values of each
enumeration into the asm-file as constants with this compiler switch.

 AVRco Compiler-Manual

E-LAB Computers Compiler Switches - 187

{$SL+} {$SL-} (*P*)
Enabled or disables the Smart-Linker. Using this switch removing dead code can be enabled (+) or
disabled (-). These switches can be placed anywhere and without limitation Please note that this switch is
always set to "off" at the entry point of an unit. The same is true for the main program file.

{$SL ON} (*P*)
Switches the default mode of the linker at program start to active.
If the switch state is "on" (remove), it can be temporarily set "off" for a specific function or procedure by using
the switch {$VALIDATE ProcedureName}.
But this switch is only valid at locations where the concerned function is already known (defined) by the
system. For validating before a function/procedure declaration use {$VALIDATE $}.

{$PCU} (*P*)
The switch located in the IDE "Project/Project Options" controls all Units of the current project. If activated all
Units of the project are processed by the precompiler and PCU files are build, dependant of the other
"PCU copy" switches.
By the usage of this compiler switch in the source area of an Unit the rebuild of a PCU out of this Unit is
forced, regardless of the meaning of the global switch in the IDE. But the "copy PCU" switches of the IDE are
still valid and control the destination of this PCU.

{$VectTab $nnnn} (*4*)
{$CodeStart $nnnn} (*4*)
With standard AVR applications the Interrupt Vector Table always resides on address $0000 in the code
area (Flash). The same also is true with the Codestart. This means that also the generated code starts with
address $0000, but more exactly immediately behind the vector table. With these two switches the system
can be forced to start the address generation with other addresses as the default ones.
The address parameter for these switches are always word addresses!

{$BootApplication $nnnn} (*4*)
This switch is a combination the above two but in addition enables this application to use the Flash
Downloader. So now it is possible to build an application which completely runs in the boot sections of the
controller and still has access to all of the system resources and drivers because they are also placed into
the boot section. The address parameter of this switche is always a word address and must be placed below
the Device declaration!

A sample application can be found in the Demos Directory in “BootApp“.

AVRco Compiler-Manual

188 – Compiler Switches E-LAB Computers

7.7 Conditional Compile

Sometimes it is necessary to generate different, for example hardware dependant versions of an application.
The respective behavior can be controlled with the help of the compiler switch for depended compilation
(Conditional Compile). The used “Label“ only has a symbolic character. If the result of a switch is “false“,
so the here beginning source-code is treated as a comment as it does not exist until the switch is “true“. All
switches of this group can appear at any position within the source. An “IFxx“-introduction must be finished
with an “ENDIF“. There can be an “ELSE“ in between. Nested IF’s are permitted!

It is also possible to pass one or several DEFINES from the IDE PED32 to the compiler by using the menu item
Project/Project Options and define a Label (without $, parenthesis and DEFINE). The parameters and
labels must be separated with a semicolon. These parameters are then treated by the compiler as if they are in
the first source line and have the outline {$DEFINE Label}.

{$DEFINE label} sets “label” to true

{$UNDEF label} sets “label” to false

{$IFDEF label} If “label“ is true, the following source is compiled upto “ELSE“ or “ENDIF“.
 If “label“ is false, it is processed reverse.

{$ELSIFDEF label} If “label“ is true, the following source is compiled.

{$IFNDEF label} If “label“ is false, the following source is compiled upto “ELSE“ or “ENDIF“.
 If “label“ is true, it is processed reverse.

{$ELSE } Reverses the actual state. If, for example the preceding source was compiled, so the

following source is treated as a comment upto “ENDIF“.

{$ENDIF} Closes an conditional block.

It's also possible to use a boolean expression consisting of DEFINEs. Only the operators "AND" and "OR"
are implemented and as arguments only previously introduced with {$DEFINE ..} can be used.

{$IFDEF ABC AND XYZ}
...
{$ELSIFDEF HIJK OR OPQ}
...
{$ENDIF}

Also parenthesis can be used:

{$IFNDEF ABC and (UVW or XYZ)}
...
{$ENDIF}

Further it is possible to check with IFDEF etc whether a Unit is present or not.
Unit names and Unit filenames are included in the Define pool.

If the Unit-fileName is "ABC.pas" and the internal Unit name is "U245" then the following is possible:

{$IFDEF FILE_ABC} is true because the Unit filename is "ABC".
{$IFDEF U245} is true because the internal Unit name is "U245".

Program Test;
{$DEFINE pp}
{$IFDEF pp}

 AVRco Compiler-Manual

E-LAB Computers Compiler Switches - 189

Procedure ABC; {Procedure head}
begin {will be compiled and executed}
 ...
end;

{$ELSE}
Procedure ABC; {Procedure head}
begin {will be treated as comment}
 ...
end;
{$ENDIF}

{$IF equation = true} {$ELSIF equation = true}
In place of values defined by $DEFINE it's possible to use constants defined by the system or in the program
source:

const

 x : 25;
 y : 1;

{$IF x > y}
...
{$ELSIF x = y}
...
{$ENDIF}

{$IF PROCCLOCK = 8000000}

Examples of System defined constants for the Compiler Switches (and also for Statements):

_iDataStart
_iDataEnd
_EEpromStart
_EEpromEnd
_FlashStart
_FlashEnd

{$IFDEF CPUname}
This switch makes it possible to build CPU type dependent code.

{$HEXPATH 'pathname'}
If "conditional compile" switches generate different firmware out of the same source, it makes sense to place
the generated hex-files also into different directories. This compiler switch serves this purpose.
All involved tools which are called from the IDE like Editor, Compiler, Assembler, Programmer recognize this
switch.
The argument 'pathname' must be delimited like any string in the system.
If the path or directory doesn't exist they will be created by the system.

{$HEXNAME 'filename'}
If "conditional compile" switches generate different firmware out of the same source, it makes sense to save
the generated hex-files also with different file names. This compiler switch serves this purpose.
All involved tools which are called from the IDE like Editor, Compiler, Assembler, Programmer recognize this
switch.
The argument 'filename' must be delimited like any string in the system.
Both switches can also be combined.

Note:
A copy of the Flash and EEprom hex files is also stored in the current project directory with their origin
names so that the incircuit programmer at this point does not handle different locations for the same project.
On the other hand the programmer's project administration must be extended with the different possible
projects.

AVRco Compiler-Manual

190 – Program Structure E-LAB Computers

8 Program Structure

8.1 Program Frame

Because of syntax requirements a certain program frame is necessary. This starts with 'Program name'
and ends with 'End.' As mentioned above in different chapters, diverse devices, system functions etc.
have to be imported to be defined.

The programmer should take the example below as model for his own program structure. If there is a new
project, there is automatically a main-file with the corresponding entries created by the IDE PED32. But the
passumtion is, that a template-file (*.tmpl) exists and the entry of this file in the according “Control“ of
PED32.

Within some versions there is a so called Application Wizard. This is helpful to interactively create
the source of a new application.

Of course the compiler creates a syntax error if there are false or missing imports or defines.

Unnecessary imports or variable declarations should be avoided. Think about the small resources (ram) of
most processors. At least with the overwrite of variables and stacks the compiler gives a warning.

Nested procedures, long arithmetic statements with many brackets or procedure calls within Interrupts leads
to run-time problems with the stack-overflow (parameter stack).

8.1.1 Order

The order of the declarations of program up to implementation must be followed. Const and Var
declarations can be mixed after that. After the first procedure or function declaration it is best to avoid to
use global Var or Const declarations as far as possible.

Local variables or constants within a procedure or function mean a bigger code and a longer run-time. With
procedures or functions, where as short process time as possible is required, it only should be coded with
global variables. That is also true for passing parameters.

With String and Array variables you should be thrifty. The memory consumed can exhaust the system
sources very fast. It is the same with the string conversions.

 AVRco Compiler-Manual

E-LAB Computers Program Structure - 191

8.2 Initializing

After a reset or a program start the complete memory (variables) is set to zero (var:= 0;). So global
variables need not be preinitialized by the program in general.
The initializing is directly after the introduction implementation or after calling the procedure
System_Init, if it exists.

Under some circumstances it could be necessary that some memory location are not initialized or erased.
This can be achieved by the compiler switch {$NOINIT}. But it must be clear that no more initialization is
done after this switch. This means that all memory locations residing before this switch, are erased and all
defined after this switch are unchanged.

The compiler and its system library only does such hardware initialization that is necessary for the function
of the imported functions. If, for example SwitchPort1 is imported, the defined port is switched to input. The
import ADCport initializes all hardware, which is necessary for the execution of the converter. Separate bits
(for example bit7 of LCDport) are not initialized and changed.

So the programmer himself has to initialize the hardware which he requires and which was not imported.
The IO-Ports, which are in the CPU, are defined by the processor description-file xxx.dsc and imported by
the compiler. So a new definition of the port by the programmer is not necessary. Example for PortB
input/output mixed:

var
 DDRB[@PortB -1] : byte; { Data Direction reg PortB}
 Led1[@PortB, 0] : bit;
 Rel1[@PortB, 1] : bit;

begin {Main}
 DDRB:= $0F; {upper 4 bits Input, lower 4 bits output}
 EnableInts; {Interrupt enable if necessary}
 Incl (Led1); {Led1 On}
 Loop
 Toggle (Rel1); {switch Relais1}
 mDelay(1000); {1sec delay}
 endLoop;
end.

AVRco Compiler-Manual

192 – Program Structure E-LAB Computers

Example of a Program Scheme:

Program Test;

Device ... {Hardware declaration}

Import ... {System functions/HardWare}

From System Import .. {System types/Software}

Define ... {Hardware Definition}

Implementation ... {Program start}

Type ... {Type declaration}

Const ... {Constant declaration}

Var ... {Variable declaration}

Procedure System_Init; {optional}
begin
 ...
end;

Procedure ABC; {Procedure head}
begin
 ...
end;

Function CDE : boolean; {Function head}
begin
 ...
 Return(a > b); {Result of the function}
end;

Process PPP (20, 10 : iData); {Process head}
begin
 ...
end;

Task TTTT (iData); {Task head}
begin
 ...
end;

begin {Main program start}
 ...
 EnableInts;
 {Start_Processes;} {if processes imported}
 Loop
 ...
 ABC;
 x:= CDE;
 EndLoop;
end.

 AVRco Compiler-Manual

E-LAB Computers Units - 193

9 Compiler Errors

9.1 Error File

If the compiler notices any errors it generates an error-file with the File Extension ‘xxx.err’. This file is used by
the IDE PED32 to locate errors and their display.

9.1.1 Type Mismatch

Programming beginners will often stumble over the error Type Mismatch. The experienced programmer
would be also astonished by the same fact, because maybe he knows and uses the automatic type
conversion from Turbo Pascal, Delphi or C.

The automatic type-conversion, which is almost not existent within the compiler, gives the above
mentioned error message.

There are several reasons, why this type of conversion does not exist in this compiler:

1. It is difficult and complex to realize a faultless automatic conversion within a compiler.

2. Every Turbo-programmer can sing a song about how to search for the cause of a wrong calculation

result, to recognize finally, after many inspections of nested statements, that the type-conversion was the
reason. To save the honor of Turbo it must be said that the formal compiler always behaves correctly, but
the programmer often thinks in a different way about it. Often there is missing just a bracket pair.

3. With certain security relevant applications this kind of automatic convertion is not desirable.

3. It is the better and safer programming style if the programmer is forced to explain the compiler, what he
 wants. Or better: the programmer knows best, what should happen and how it should happen.

5. Type Casting (type conversion) is clearer and more readable word := word (byte);

A little problem should not kept secret at this point. It might appear that with constants < 256 and with certain
operations, that the compiler does not know if it should treat the constant as an 8-bit or a 16-bit value. This
might lead to a Type Mismatch.

var b : boolean;
 i : integer;

 b:= 5 > i;

When the compiler reaches the position ‘5’ it only knows, that a boolean is expected and ‘5’ can be a byte.
So the ‘5’ is treated as a byte and leads with the following integer ‘i’ to a Type Mismatch.

Remedy:

 b:= integer(5) > i;
or
 b:= i < 5;

AVRco Compiler-Manual

194 – Units E-LAB Computers

10 Units (*P*)

10.1 Declaration and Construction of a Unit

A Unit consists of types, constants, variables and routines (procedures and functions). Each Unit has to
be defined in a separate Unit-file (.PAS).
A Unit-file begins with the Unit-header and contains the sections interface, implementation (and optional
initialization). The structure of a Unit-file looks like this:

unit Unit1;

interface

uses { List of additional Units }

 { interface-section }

implementation

 { implementation-section }

initialization

 { initialization-section }

finalization

 { finalization-section }

end.

A Unit must conclude with the word end followed by a period.

10.1.1 Unit-Header

The Unit-header defines the name of the Unit. It consists of the reserved word unit, a valid identifier and a
semicolon. The identifier must be the same name as the Unit-filename.

unit Hello;

This Unit-header can be used in a source file named Hello.PAS. The file with the compiled Unit then has the
name Hello.PCU.

Unit-names must be unique in a project. Also when the Unit-files reside in different directories it’s not
possible to use multiple Units with identical names in a project.

 AVRco Compiler-Manual

E-LAB Computers Units - 195

10.1.2 Interface-Section

The interface-section of a Unit begins with the reserved word interface. It ends with the begin of an
implementation-section. The interface-section declares constants, types, variables, procedures and
functions which are accessible for Clients. Clients are other Units or the project itself, which import this Unit
by a uses-clause. Such identifiers are called public because the Client can access them as they were
declared in the Client itself.

The interface-declaration of a procedure or a function only contains the header of the routine. The block of
the procedure or function must be declared in the implementation-section only. Procedure- and function
declarations in the interface-section conform to the normal forward-declarations, but the forward directive
must not be written.
The interface-section also can have an uses-clause, which directly must be placed after the interface
statement.

10.1.3 Implementation-Section

The implementation-section of an Unit begins with the reserved word implementation and ends with the
begin of the optional initialization-section or – if there is no initialization-section – with the finalization section
or the end of the Unit. The implementation-section defines procedures and functions, which were defined in
the interface-section. Within the implementation-section order of definitions or call of these procedures and
functions is arbitrary. The parameter lists of functions and procedures must be the same as in the
declarations in the interface section.

Except of the definitions of the published procedures and functions the implementation –section can have
additional declarations of constants, types, variables, procedures and functions, which are private (local) for
the Unit. Clients don’t see this objects and can’t access them.

With Define_USR it is possible to define constants which are visible and accessible from every point of the
program and also from each Unit.
This Define should only be used if it is absolute necessary because it's not a good programming style.
The better way is to place such globals into an Unit which resides in the last position of the Unit chain.
Then the definitions are also visible from all other parts of the application

10.1.4 Initialization-Section

The initialization-section is optional. It begins with the reserved word initialization and ends with the
finalization section or the end of the Unit. The initialization-section contains statements, which are processed
at program start in the given order. If you have to initialize hardware or variables concerning the Unit, it can
be done here before the main program is invoked.

The initialization-sections of Units, which are imported by Clients, are processed in a hierarchical order. This
means: the last Unit, which resides at the end of the chain is the first which is initialized.

10.1.5 Finalization-Section

The Finalization-Section is optional. It begins with the reserved word finalization and ends with the end of
the Unit.
The statements in this block are processed when the application calls the system procedure
"System_ShutDown". The calling order of the finalizations is exactly opposite to the calling order of the
initializations. The procedure "System_ShutDown" simply calls the Finalization Statements and nothing else.
The "Finalization" is useful for a dedicated run down of the system before a switch off or a start of the sleep
mode

AVRco Compiler-Manual

196 – Units E-LAB Computers

10.1.6 Uses-Clause

The uses-clause of the main-program defines all Units, which are imported into the program. These Units
themselves also can have own uses-clauses. A uses-clause in a program or a Unit defines the Units which
are used by this module. A uses-clause can be used in the source of the following files:

Mainfile of a program
Interface-section of a Unit

The Unit System is automatically imported by an application and must not be imported in a uses-clause.
(The Unit System implements routines for hardware and software drivers, string conversion, Floating point
etc.).

A uses-clause always consists of the reserved word uses, one or several unit names, separated by commas.
It concludes with semicolon.

uses Hello, MyMath;

In the uses-clause of a program it’s possible that each Unit name can be extended by the reserved word in
followed by the path and name of the source file. The name is written with or without the path in quotes. The
path can be absolute or relative.

uses Hello, MyMath in 'C:\MyProg\MyMath', InitUnit;

Use in ... after the unit name, if you must define the filename of a Unit source. The reserved word in is only
necessary if the location of the source is ambiguous for the following reason:

the Unit-source file is in a different location than the project itself, and this directory is not in the search path
of the compiler nor in the home path of the compiler.

10.1.6.1 Search Path for Units

Units are searched in the following order:

1. actual working/project directory
2. in directories defined in Project Admin (IDE)
3. in directories defined in System Admin (IDE)
4. in the AVRco directory
5. in the "System" directory below the AVRco directory
 Precompiled Units (PCUs) initially included in the AVRco system are placed here

10.1.7 Info Part of a Unit

The Info part of an Unit consists of any lines at any positions in this Unit.
An Info line must start with

||| and here the info

The three pipe chars must not contain spaces. The system treats an Info line like a comment.

In the IDE (Editor) there is a menu item "Project/Unit infos". All Units which are declared in the
SourceCodeControlSystem (SCCS) are listed here.
A mouseclick onto an Unit name opens a window which shows the Info part of this Unit

 AVRco Compiler-Manual

E-LAB Computers Units - 197

10.1.8 Hardware Imports within Units

If Units are imported the definitions can also be placed into an Unit:

Main Program

Import SysTick, MatrixPort, SerPort;

From System Import longword, longint, float, pipes;

Define
 ProcClock = 8000000; {Hertz}
 SysTick = 10; {msec}
 StackSize = $0020, iData;
 FrameSize = $0040, iData;
 SerPort = 9600;
 RxBuffer = 16, iData;

DefineFrom unit1; // Unit1 defines the Matrixport

Unit

Unit Unit1;

Define
 MatrixRow = PortD, 4; {use PortD, start with bit4}
 MatrixCol = PinD, 0; {use PinD, start with bit0}
 MatrixType = 3, 4; {3 Rows at PortD, 4 Columns at PinD}

Interface
...

The reserved word "DefineFrom" within the main "Define" block switches the scanning from main program to
the given Unit name, where the scanning of the defines continues.
When the word "Interface" appears the scanning is switched back to the main program.

10.2 PreCompiled Units

The Profi-version allows to build precompiled units and also include files.
This works similar like a linker, but isn't really exact the same.

The units will be precompiled and therefore are not readable for others. But in the compiled project one can
see the generated asm sources of these units. Normally this isn't a problem at all, because the generated
asm is also visible in the asm window of all debuggers and simulators.

In the IDE PED32 in the menu "Project/Project options" there is a checkbox "Precompile Units".
If this box is checked, all units and includes are precompiled into files with the extension "filename.PCU".

These files can be passed to others without their accompanying sources.

AVRco Compiler-Manual

198 – Assembler E-LAB Computers

11 Assembler

11.1 Overview

The AVRco System includes an Assembler, which can be used as a stand-alone program. Please note that
all processor mnemonics can be used, but no macros and similar function are possible like complex
assembler have.

Basically the assembler is used for assembly of the asm sources generated by the compiler and also for
asm statements defined with the “ASM“- definitions in the Pascal-Source.

The construction and meanings of the mnemonics can be found in the processor manuals. With some
processors it’s possible that some mnemonics, e.g. register names, can collide with variable names of the
application. Then other names are used for that definition.

ASM: mnemonic ;Definition of a single assembler statement.

11.1.1 ASM;

Start of an assembler text block

A program for Embedded Control does not often work without an assembler code, because either the
compiler generated code is too slow for some operations, or certain assembler commands have to be done,
which are not known or not used by the compiler.

It is possible to include the assembler source directly at every position of the Pascal source. This source is
passed non-tested and unmodified by the compiler to the assembler. Because the compiler also
generates assembler code, the assembler text is seamless inserted.

Asm-syntax errors are only recognized by the assembler, not by the compiler. All declared variables are
accessible in the assembler text.

Warning:
Labels in a assembler-block have to start at the beginning of a line and limited with a ‘:’.
This line may not contain any further instructions, e.g. code. The analysis of the compiler generated
assembler files ‘xxx.ASM’ may help.

ASM;
 LDI _ACCA, 67;
 STS a, _ACCA; {a = Pascal var }
ENDASM;

11.1.2 ENDASM;

End of an assembler text

ASM and ENDASM are Pascal statements and must end with a semicolon ;
Exception: single assembler statement with ASM:

 AVRco Compiler-Manual

E-LAB Computers Assembler - 199

11.2 Assembler - Keywords

11.2.1 Register

With the AVR the register names ‘R0’.. ‘R31’ in the mnemonics are changed to _ACCA, _ACCB etc. in order
to avoid naming conflicts with possible Pascal vars or constants.

Relations between register numbering and pseudo ACCUs:

R0 = _ACCGLO Arithmetic reg and Flash access
R1 = _ACCGHI only with Imports of 32bit Types and Floats
R2 = _ACCHLO only with Imports of 32bit Types and Floats
R3 = _ACCHHI only with Imports of 32bit Types and Floats
R4, R5 = $_CURPROCESS no User Access if defined by the system
R6, R7 = $_CURTASK no User Access if defined by the system
R8, R9 = $_SAVERET no User Access if defined by the system
R10 = FLAGS
R11 = FLAGS2
R12 = _SYSTFLAGS no User Access if defined by the system
R13 = not used and not defined
R14 = not used and not defined
R15 = not used and not defined
R16 = _ACCB main working register

 low byte (16bit and 32 bit types)
R17 = _ACCA main working register
 8bit types

 hi byte (16bit types)
 hi byte of low word (32bit and floats)

R18 = _ACCALO main working register
 Lo byte of hi word (32bit and float)
R19 = _ACCAHI main working register
 Hi byte of hi word (32bit and float)
R20 = _ACCDLO Arithmetic reg
R21 = _ACCDHI Arithmetic reg
R22 = _ACCELO Arithmetic reg
R23 = _ACCEHI Arithmetic reg
R24 = _ACCFLO Arithmetic reg
R25 = _ACCFHI Arithmetic reg
R26 = _ACCBLO Arithmetic reg
R27 = _ACCBHI Arithmetic reg
R26, R27 = X-register second pointer reg
R28, R29 = _FRAMEPTR
R30 = _ACCCLO Arithmetic reg
R31 = _ACCCHI Arithmetic reg
R30, R31 = Z-register main pointer reg

All the above registers _ACCxx, excluding those, which are only present with 32bit types, can be used freely
within the assembler part of the source. Those registers which are named and imported with 32bit imports
(_ACCGHI, _ACCHHI, _ACCHLO) can only be used if a 32bit type is imported by an Import definition
(LongInt, LongWord or Float).

All other registers which are named by the Compiler ($_CURPROCESS, FRAMEPTR etc) should only be
read, but never written or altered in any way, otherwise a system crash at runtime is certain.

AVRco Compiler-Manual

200 – Assembler E-LAB Computers

An exception are the 3 register pairs X, Y and Z. These mnemonics respective register names must be used
in conjunction with pointer operations.

 LDI _ACCCLO, 00h;

LDI _ACCCHI, 10h; load _ACCCLO/HI = Z-reg with 1000h
LD _ACCA, Z+; load _ACCA with contents of RAM loc 1000h

For better readability the registers R28..R30 have additional names:

R26 -> XL LDI XL, 45h
R27 -> XH
R28 -> YL
R29 -> YH
R30 -> ZL
R31 -> ZH LDI ZH, 01

Labels
Within an assembler block labels must start immediately at the line’s start and must end with a colon : .
Appended directives or mnemonics after the colon lead to an assembler error. All other lines, except
comments and definitions, must have at least one leading space.

Definitions
must also start immediately at the line’s start and must end with a assembler directive. No colon is used.
The corresponding assembler directive must be on the same line.

11.2.2 Assembler Directives

 .ORG addr
changes the internal program-counter of the assembler to the address “addr‘. Should not be used by the
programmer, it’s reserved for the Compiler

name .EQU nn
Constant definition. Can be used. The better way is to define constants in the Pascal Code. Then they are
accessible in assembler and also in Pascal.

 .BYTE .WORD .ASCII
Constant placed into the Flash. Should not be used. With the mega it’s forbidden, because here the
constants are always placed into the second 64k-Page.

 .END
End of the assembler text. Is defined by the Compiler.

 ADDI ADCI
The AVR doesn't know the opcodes "ADDI" and "ADCI".
These can be easily implemented wit SUBI/SBCI and a negated argument. But the carry-flag can't
be used as previously. ADDI and ADCI now are implemented as pseudo-ops in the Assembler.

ADDI R16, nn
ADCI R16, nn

 AVRco Compiler-Manual

E-LAB Computers Assembler - 201

 ADIW SBIW
The mnemonics "ADIW" and "SBIW" in the origin Atmel way of writing are related to R26/X R28/Y and
R30/Z. To improve the readability the Assembler is extended to accept the following mnemonics:

 ADIW X, nn
 ADIW Y, nn
 ADIW Z, nn
 SBIW X, nn
 SBIW Y, nn
 SBIW Z, nn

SYSTEM.VectTab
For JUMPs and CALLs to the absolute program start (ResetVector 0) it is possible to use Assembler
statements like

JMP $0000
CALL $0000

This absolute addressing mode is only possible with assembler and restricted to mega16/32/,...
Smaller CPUs don't support absolute CALL/JMPs.
To use it also with these types and also in Pascal there is the call/jump target label "SYSTEM.VectTab"

RJMP SYSTEM.VectTab
RCALL SYSTEM.VectTab
JMP SYSTEM.VectTab
CALL SYSTEM.VectTab

11.2.3 Operators for Constant Manipulation

NOT Inverts the following argument.
 LDI _ACCA, NOT 0FFh; load _ACCA with 00h

AND logical AND of two parameters.
 LDI _ACCA, 0FFh AND 0F0h; load _ACCA with 0F0h

SHRB Shift operation with a byte result.
 LDI _ACCA, 0FF00h SHRB 8; load _ACCA with 0FFh

SHLB Shift operation with a byte result.
 LDI _ACCA, 0FFh SHLB 4; load _ACCA with 0F0h

RORB Rotate with a byte result.
 LDI _ACCA, 0A5h RORB 4; load _ACCA with 05Ah

ROLB Rotate with a byte result.
 LDI _ACCA, 081h ROLB 1; load _ACCA with 03h

The Assembler accept character constants, too.

LDI _ACCA, 'z';

AVRco Compiler-Manual

202 – Assembler E-LAB Computers

11.2.4 Access to Pascal Constants and Variables

As stated above an assembler statement can access constants and vars which are declared in the Pascal
source. Please note that a var normally must be qualified by it’s Modulename. With accesses to words and
longs bear in mind that the AVR uses the “Liitle Endian“ principle. This means that the loByte of a word is
determined by the lower order of the address, the hiByte by the higher order.

var
 bb : byte;
 ww : word;

begin

ASM;
 LDS _ACCA, module.bb ; load byte bb to _ACCA
 ; load address of var ww to pointer reg Z
 LDI _ACCCLO, module.ww AND 0FFh;
 LDI _ACCCHI, module.ww SHRB 8;
 ;
 ; the Z-reg contains now the adr of var ww
 ; store a 0FFh to loByte of ww
 LDI _ACCA, 0FFh;
 ST Z, _ACCA;
 ;
 ; store a 00h to hiByte of ww
 LDI _ACCA, 00h;
 ST Z+1, _ACCA;
 ;
 ; move hiByte of ww to bb
 LDS _ACCA, module.ww + 1;
 STS module.bb, _ACCA;

ENDASM;
End;

The basically necessary Modulname can be replaced by a %.
Example:

 Unit ABC;

 var xyz : byte;
 ...
 ASM
 LDS _ACCA, ABC.xyz;
 ; or
 LDS _ACCA, %.xyz
;

11.3 Assembler Routines

11.3.1 Local Variables and Assembler Access

Local variables in procedures and functions, as well as the passed parameters, are stored temporarily in
the Frame. The addressing of the Frames is via the FramePointer (Y-register). It’s impossible to access
these vars and parameters by their names, because these types are always located relative to the
FramePointer and not absolute.

The FramePointer always points to the last defined variable/parameter. The offset of the previous
respective the above parameters must be calculated by the assembler programmer himself. Here he must
take in account the order of the definitions and also the memory representation in bytes of the used types.

 AVRco Compiler-Manual

E-LAB Computers Assembler - 203

An erroneous offset calculation can lead to a system crash at runtime, at least with a write access.

Procedure LocTest (var x : byte; bb : byte; ww : word; pt : pointer);
var
 Lbb : byte;
 Lww : word;
 Lpt : pointer;

begin

ASM;
; Access to local pointer Lpt
; copy Lpt to Z-reg
LD _ACCCLO, Y ; lo byte of Lpt
LDD _ACCCHI, Y+1 ; Y-reg offset 1
;
; Access to local word Lww
; copy ww to _ACCA, _ACCB
LDD _ACCB, Y+2 ; lo byte of Lww
LDD _ACCA, Y+3 ; hi byte of Lww
;
; Access to local byte Lbb
; copy lobyte of Lww to Lbb
LDD _ACCA, Y+2 ; lo byte of Lww
STD Y+4, _ACCA ; byte Lbb
;
; Access to parameter pointer pt
; copy pt to Z-reg
LDD _ACCCLO, Y+5 ; lo byte of pt
LDD _ACCCHI, Y+6 ; hi byte of pt
;
; Access to parameter word ww
; copy ww to _ACCA, _ACCB
LDD _ACCB, Y+7 ; lo byte of ww
LDD _ACCA, Y+8 ; hi byte of ww
;
; Access to parameter byte bb
; copy lobyte of ww to bb
LDD _ACCA, Y+7 ; lo byte of ww
STD Y+9, _ACCA ; byte bb
;
; Access to parameter byte x
; mov a 00h to x
; remember that a var parameter is passed by it’s address
; and not by it’s value. So this param is always a pointer !!!
LDD _ACCCLO, Y+10 ; lo byte of adr of x
LDD _ACCCHI, Y+11 ; hi byte of adr of x
LDI _ACCA, 00h ; load a zero
ST Z, _ACCA ; store it with Z-Pointer reg to x
;

 ENDASM;
end;

Please note, that addressing with the use of the pointer registers of the AVR, in this case the Y-register
(FramePointer) is only possible with an offset within 0..+63. If the Frame incl. Parameters is larger than 63
bytes, and the offset of the desired parameters/var is larger than 63, so the FramePointer Y must be copied
into another pointer register (eg X or Z) and the offset must be added to this register pair as a constant. Never
manipulate the Y-register !!

AVRco Compiler-Manual

204 – Assembler E-LAB Computers

11.3.2 Procedure Calls and System Functions

Inside an assembler block it’s possible to call user defined Pascal procedures/functions and also system
functions. Please note that the required Jump and Call labels must be qualified. With system functions (ser.
interface etc.) the qualifier “SYSTEM“ must be used. With user functions in the main program the program
name (not the filename) and with functions in Units the Unit name (not the filename) must be used

Program CallTest;
...

Procedure isCalled;

begin
 ...
end;

ASM;
 LDI _ACCA, 2Ah; ” * ”
 RCALL SYSTEM.SEROUT;
 RCALL CallTest.isCalled;
ENDASM;

11.3.3 Function Results and Assembler

The results of a function are always passed in registers to the calling location.

8bit Results (Byte, Char, Boolean etc)

Register _ACCA

16bit Results (Word, Integer, Pointer etc)

Register _ACCA (hiByte) _ACCB (loByte)

32bit Results (LongWord, LongInt, Float etc)

Register _ACCA (hiByte, loWord) _ACCB (loByte, loWord)
Register _ACCAHI (hiByte, hiWord) _ACCALO (loByte, hiWord)

11.3.4 Function/Procedure Exit

The Compiler often generates, depending on the construction of the procedure or function, exit code at the
place of the Pascal End-Statement. Because of this there should be no RET or RETI statement
programmed. The result can be a strange behavior of the procedure or system.
The better way is to place an ASM-Label before the End-Statement and then place a RJMP into the code to
get to the exit code of the compiler.

 AVRco Compiler-Manual

E-LAB Computers Assembler - 205

11.3.5 Interrupt Procedures with Assembler

The Compiler saves at Interrupts always the registers _ACCA, _ACCB, _ACCCLO and _ACCCHI.
If processes or Tasks are imported, before calling the interrupt procedure all registers are saved. This can
be disabled by the compiler switch {$NOSAVE} direct before the interrupt procedure. An other switch is
{$NOREGSAVE} which disables any register saving. For special purposes, (very dangerous).

If no processes or Tasks are imported, the global compiler switch {$NOSHADOW} disables the complete
saving of the registers. Alternatively one can disable the complete saving with {$NOSAVE} and only the 4
Accus are saved.

With complete saving of the registers each ACCU can be used within the assembler code. Otherwise only
the ACCUs _ACCA, _ACCB, _ACCCLO and _ACCCHI can be used. If there is a need for more ACCUs,
these must be saved by a PUSH and restored by a POP.

A complete register saving needs about 20 Bytes in RAM, statically, not on Stack or Frame. Because of
this a stacked interrupt is impossible. That means within an interrupt procedure the interrupt never should
be enabled again. The CPU itself does this enabling with the RETI instruction.

With the minimal saving of the 4 ACCUS (pushed onto the Stack) an Enable Interrupt is possible, but is
strongly discouraged. The results can be catastrophic, depending of the operations within the procedure.

11.3.6 Constants and Optimization

Constants, variables and system functions which are only accessed within an assembler block are normally
removed by the optimizer. Because the Compiler doesn’t analyze the assembler code it doesn’t have any
access to these parts. Therefore there can be errors while assembling the project, because the referenced
labels don’t exist.

In order to avoid optimization removing such constructs (e.g. constants) it is necessary to make at least one
access in HLL (Pascal) of these constants etc.

11.4 Assembler Switches

The assembler knows several command-line switches, which can be specified with the name of the source-
file by a calling within the Batch-Mode by PED32. Because this tool needs many additional infos from the
system it is impossible to run the assembler outside of the IDE PED32.

-R Assembler runs without showing itself in the background
-H Hexfile output with the FileExtension ‘xxx.hex’
-L Listfile output on. FileExtension ‘xxx.lst’

11.5 Assembler Errors

If the assembler recognizes any errors then it generates an error-file with the FileExtension ‘xxx.err’.
This file is used by the IDE PED32 to locate and display the error.

Assembler errors should generally not appear, unless assembler statements are used.

1996-2008 E-LAB Computers
Grombacherstr. 27
D74906 Bad Rappenau

Tel. 07268/9124-0
Fax. 07268/9124-24

Internet: www.e-lab.de
e-mail: info@e-lab.de

	1 Introduction
	1.1 Every Toaster its Processor!

	2 Overview
	2.1 AVRco Versions
	2.2 Manual Versions
	2.3 Structure of the Documentation
	2.4 Known Limitations

	3 Basic AVRco Language Elements
	3.1 Basic Symbols
	3.2 Reserved Words
	3.3 Standard Identifier
	3.4 Delimiters
	3.5 Program Lines

	4 Language Reference
	4.1 Types
	4.1.1 Standard scalar Types
	4.1.2 Type Conversion
	4.1.3 Variable Overlay
	4.1.4 BOOLEAN
	4.1.5 BIT
	4.1.6 BITSET
	4.1.7 BYTE
	4.1.8 CHAR
	4.1.9 STRING
	4.1.10 ARRAY
	4.1.11 TABLE
	4.1.12 RECORD
	4.1.12.1 WITH Statement for Access to Records

	4.1.13 PROCEDURE
	4.1.14 WORD
	4.1.15 INT8 or ShortInt
	4.1.16 INTEGER
	4.1.17 POINTER
	4.1.17.1 Pointer AutoIncrement

	4.1.18 LONGWORD
	4.1.19 WORD64 (*4*)(*P*)
	4.1.20 LONGINT
	4.1.21 INT64 (*4*)(*P*)
	4.1.22 FLOAT
	4.1.23 DOUBLE (*4*)(*P*)
	4.1.24 ENUM
	4.1.25 SEMAPHORE
	4.1.26 PIPE
	4.1.26.1 Pipe for ordinal Types
	4.1.26.2 Pipe of Bit
	4.1.26.3 Pipe for complex Types

	4.1.27 SYSTIMER
	4.1.28 SYSTIMER8
	4.1.29 SYSTIMER32
	4.1.30 PIDCONTROL

	4.2 Operators
	4.2.1 NOT
	4.2.2 DIV
	4.2.3 MOD
	4.2.4 AND
	4.2.5 OR
	4.2.6 XOR
	4.2.7 SHL
	4.2.8 SHLA
	4.2.9 SHR
	4.2.10 SHRA
	4.2.11 ROL
	4.2.12 ROR
	4.2.13 IN
	4.2.14 +
	4.2.15 -
	4.2.16 /
	4.2.17 *

	4.3 Pseudo Operators
	4.3.1 @
	4.3.2 ^
	4.3.3 #
	4.3.4 $
	4.3.5 %

	4.4 User Defined Language Elements
	4.4.1 Identifier
	4.4.2 Numbers
	4.4.3 Strings
	4.4.4 Control Characters
	4.4.5 Comments

	4.5 Expressions
	4.5.1 Operators
	4.5.1.1 Unary Minus
	4.5.1.2 Not Operator
	4.5.1.3 Multiplying Operators
	4.5.1.4 Adding Operators
	4.5.1.5 Relational Operators

	4.5.2 Function Designators

	4.6 Keywords
	4.6.1 PROGRAM
	4.6.2 DEVICE
	4.6.3 IMPORT
	4.6.4 FROM
	4.6.5 DEFINE
	4.6.6 Hardware Imports within Units
	4.6.7 DEFINE_USR
	4.6.8 DEFINE_FUSES
	4.6.9 IMPLEMENTATION
	4.6.10 TYPE
	4.6.11 CONST
	4.6.11.1 Predefined Constants
	4.6.11.2 Type Specification with Constant Declaration
	4.6.11.3 Constant Load from File
	4.6.11.4 Constant Located in Flash

	4.6.12 STRUCTCONST
	4.6.13 VAR
	4.6.14 LOCKED

	4.7 Procedures and Functions
	4.7.1 PROCEDURE
	4.7.2 PROCEDURE SYSTEM_INIT
	4.7.3 PROCEDURE SYSTEM_MCUCR_INIT
	4.7.4 FUNCTION
	4.7.5 PROCESS
	4.7.5.1 Define Options

	4.7.6 TASK
	4.7.6.1 Define Options

	4.7.7 FORWARD
	4.7.8 BEGIN
	4.7.9 RETURN
	4.7.10 END
	4.7.11 ASM:
	4.7.12 ASM;
	4.7.13 ENDASM

	4.8 INTERRUPTs, TRAPs and EXCEPTIONs
	4.8.1 INTERRUPT
	4.8.1.1 Push, Pop
	4.8.1.2 PushAllRegs, PopAllRegs
	4.8.1.3 External Interrupts
	4.8.1.4 Interrupt Pins INT0..INTx
	4.8.1.5 PinChangeInterrupts PCINT0..PCINT3 (*4*)

	4.8.2 TRAPS and Software Interrupts (SWI)
	4.8.2.1 Implementation of the Traps

	4.8.3 EXCEPTIONS
	4.8.3.1 Implementation
	4.8.3.2 Functions

	4.9 Statements
	4.9.1 Simple Statements
	4.9.2 Assignment Statement
	4.9.3 Procedure Statement
	4.9.4 Empty Statement
	4.9.5 Structured Statement
	4.9.6 Compound Statement
	4.9.7 NOP Statement
	4.9.8 Conditional Statements
	4.9.8.1 IF Statement
	4.9.8.2 GOTO Statement
	4.9.8.3 CASE Statement
	4.9.8.4 FOR Statement
	4.9.8.5 WHILE Statement
	4.9.8.6 REPEAT Statement
	4.9.8.7 CONTINUE
	4.9.8.8 LOOP Statement

	4.10 System Library - Standard
	4.10.1 TRUE
	4.10.2 FALSE
	4.10.3 PI
	4.10.4 NIL
	4.10.5 Type Conversion
	4.10.5.1 BOOLEAN
	4.10.5.2 BYTE
	4.10.5.3 Int8
	4.10.5.4 CHAR
	4.10.5.5 WORD
	4.10.5.6 INTEGER
	4.10.5.7 LONGWORD
	4.10.5.8 LONGINT
	4.10.5.9 FLOAT
	4.10.5.10 FLOATASLONG
	4.10.5.11 LONGASFLOAT
	4.10.5.12 POINTER

	4.10.6 Character and String Functions
	4.10.6.1 ORD
	4.10.6.2 UPCASE
	4.10.6.3 LOWCASE
	4.10.6.4 UPPERCASE
	4.10.6.5 LOWERCASE
	4.10.6.6 COPY
	4.10.6.7 STRREPLACE
	4.10.6.8 TRIM
	4.10.6.9 TRIMLEFT
	4.10.6.10 TRIMRIGHT
	4.10.6.11 PADLEFT
	4.10.6.12 PADRIGHT
	4.10.6.13 LENGTH
	4.10.6.14 SETLENGTH
	4.10.6.15 POS
	4.10.6.16 POSN
	4.10.6.17 APPEND
	4.10.6.18 INSERT
	4.10.6.19 DELETE
	4.10.6.20 STRCLEAN
	4.10.6.21 STRTOINT
	4.10.6.22 HEXTOINT
	4.10.6.23 STRTOFLOAT
	4.10.6.24 STRTOARR
	4.10.6.25 ARRTOSTR
	4.10.6.26 EXTRACTFILEPATH
	4.10.6.27 EXTRACTFILENAME
	4.10.6.28 EXTRACTFILEEXT

	4.10.7 Access to Parts of Variable / Constants
	4.10.7.1 SWAP
	4.10.7.2 SWAPLONG
	4.10.7.3 MIRROR8
	4.10.7.4 MIRROR16
	4.10.7.5 MIRROR32
	4.10.7.6 LONIBBLE
	4.10.7.7 LO (Function)
	4.10.7.8 LO (Assignment)
	4.10.7.9 LOWORD (Function)
	4.10.7.10 LOWORD (Assignment)
	4.10.7.11 HINIBBLE
	4.10.7.12 HI (Function)
	4.10.7.13 HI (Assignment)
	4.10.7.14 HIWORD (Function)
	4.10.7.15 HIWORD (Assignment)

	4.10.8 ABS
	4.10.9 Negate
	4.10.10 INC
	4.10.11 INCTOLIM
	4.10.12 INCTOLIMWRAP
	4.10.13 DEC
	4.10.14 DECTOLIM
	4.10.15 DECTOLIMWRAP
	4.10.16 VALUETRIMLIMIT
	4.10.17 VALUEINTOLERANCE
	4.10.18 VALUEINTOLERANCEP
	4.10.19 VALUEINRANGE
	4.10.20 MULDIVBYTE
	4.10.21 MULDIVINT8
	4.10.22 MULDIVINT
	4.10.23 SQUAREDIVBYTE
	4.10.24 SQUAREDIVINT8
	4.10.25 SQUAREDIVINT
	4.10.26 INTEGRATEB
	4.10.27 INTEGRATEI8
	4.10.28 INTEGRATEI
	4.10.29 INTEGRATEW
	4.10.30 Even
	4.10.31 ODD
	4.10.32 PARITY
	4.10.33 ISPOWOFTWO
	4.10.34 SIGN
	4.10.35 SGN
	4.10.36 PRED
	4.10.37 SUCC
	4.10.38 MIN
	4.10.39 MAX
	4.10.40 SIZEOF
	4.10.41 BitCountOf
	4.10.42 ADDR

	4.11 System Library - Bit Processing
	4.11.1 INCL
	4.11.2 EXCL
	4.11.3 TOGGLE
	4.11.4 SETBIT
	4.11.5 BIT

	4.12 System Library - Diverse System Functions
	4.12.1 SYSTEM_RESET
	4.12.2 DELAY
	4.12.2.1 mDelay
	4.12.2.2 uDelay
	4.12.2.3 uDelay_1
	4.12.2.4 sDelay

	4.12.3 SYSTIMER
	4.12.3.1 SetSysTimer
	4.12.3.2 SetSysTimerM
	4.12.3.3 GetSysTimer
	4.12.3.4 ResetSysTimer
	4.12.3.5 IsSysTimerZero

	4.12.4 LOWER
	4.12.5 HIGHER
	4.12.6 WITHIN
	4.12.7 VAL
	4.12.8 Block Functions
	4.12.8.1 FILLBLOCK
	4.12.8.2 FILLRANDOM (*4*)
	4.12.8.3 COPYBLOCK
	4.12.8.4 COMPAREBLOCK

	4.12.9 Pointer Access Outside the Linear Adress Range
	4.12.9.1 FlashPtr
	4.12.9.2 EEPromPtr
	4.12.9.3 UsrDevPtr
	4.12.9.4 BankDevPtr

	4.12.10 FLUSHBUFFER
	4.12.11 CRC Checksum
	4.12.11.1 CRC CHECK
	4.12.11.2 CRC STREAM
	4.12.11.3 FLASH CHECKSUM
	4.12.11.4 EEPROM CHECKSUM

	4.12.12 RANDOM
	4.12.13 RANDOMRANGE (*4*)
	4.12.14 SQR, (*4*)(*P*): SQR_D
	4.12.15 SQRT, (*4*)(*P*): SQRT_D
	4.12.16 POW, (*4*)(*P*): POW_D
	4.12.17 POW10, (*4*)(*P*): POW10_D
	4.12.18 EXP, (*4*)(*P*): EXP_D
	4.12.19 LogN, (*4*)(*P*): LogN_D
	4.12.20 Log10, (*4*)(*P*): Log10_D
	4.12.21 Trigonometrical Functions
	4.12.21.1 TAN, (*4*)(*P*): TAN_D
	4.12.21.2 TAND, (*4*)(*P*): TAND_D
	4.12.21.3 ARCTAN, (*4*)(*P*): ARCTAN_D
	4.12.21.4 SIN, (*4*)(*P*): SIN_D
	4.12.21.5 SININT
	4.12.21.6 SININT16
	4.12.21.7 SIND, (*4*)(*P*): SIND_D
	4.12.21.8 COS, (*4*)(*P*): COS_D
	4.12.21.9 COSINT
	4.12.21.10 COSINT16
	4.12.21.11 COSD, (*4*)(*P*): COSD_D
	4.12.21.12 DEGTORAD, (*4*)(*P*): DEGTORAD_D
	4.12.21.13 RADTODEG, (*4*)(*P*): RADTODEG_D
	4.12.21.14 ROTATEPNTi

	4.12.22 TRUNC, (*4*)(*P*): TRUNC_D
	4.12.23 ROUND, (*4*)(*P*): ROUND_D
	4.12.24 FRAC, (*4*)(*P*): FRAC_D
	4.12.25 INT, (*4*)(*P*): INT_D
	4.12.26 GETTABLE
	4.12.27 SETTABLE
	4.12.28 Conversion to Strings
	4.12.28.1 BYTETOSTR
	4.12.28.2 INTTOSTR
	4.12.28.3 LONGTOSTR
	4.12.28.4 FLOATTOSTR
	4.12.28.5 BOOLTOSTR
	4.12.28.6 LONG64TOSTR (*4*)(*P*)
	4.12.28.7 BYTETOHEX
	4.12.28.8 INTTOHEX
	4.12.28.9 LONGTOHEX
	4.12.28.10 LONG64TOHEX (*4*)(*P*)
	4.12.28.11 BYTETOBIN
	4.12.28.12 INTTOBIN

	4.12.29 BYTETOBCD
	4.12.30 WORDTOBCD
	4.12.31 BCDTOBYTE
	4.12.32 PCU SI-Conversion (*P*)
	4.12.32.1 Utility Functions
	4.12.32.2 Temperature
	4.12.32.3 Volume
	4.12.32.4 Pressure
	4.12.32.5 Length
	4.12.32.6 Area
	4.12.32.7 Weight
	4.12.32.8 Energy
	4.12.32.9 Integer Functions
	4.12.32.10 Constants

	4.12.33 Interpolation
	4.12.33.1 InterPolX, InterPolY

	4.12.34 Moving Average Filter
	4.12.34.1 PresetAVfilter
	4.12.34.2 SetAVfilter
	4.12.34.3 AddAVfilter
	4.12.34.4 GetAVfilter
	4.12.34.5 DeclAVfilter

	4.12.35 Network-Functions
	4.12.35.1 Predefined Types
	4.12.35.2 Converting Functions
	4.12.35.3 Compare Functions
	4.12.35.4 Miscellaneous Functions

	4.13 System Library - String Formatting
	4.13.1 Decimal Separator
	4.13.2 WRITE
	4.13.3 WRITELN
	4.13.4 READ
	4.13.5 READLN

	4.14 Error Handling
	4.14.1 RUNERR
	4.14.2 RUNTIMEERR
	4.14.3 CLEARRUNERR

	4.15 Multi-Task Functions
	4.15.1 SLEEP
	4.15.2 SUSPEND
	4.15.3 SUSPEND ALL
	4.15.4 RESUME
	4.15.5 RESUMEALL
	4.15.6 PRIORITY
	4.15.6.1 GetPriority

	4.15.7 MAIN_PROC
	4.15.8 IDLE PROCESS
	4.15.8.1 On Idle Process

	4.15.9 SCHEDULE
	4.15.10 SCHEDULER ON/OFF
	4.15.11 LOCK
	4.15.12 UNLOCK
	4.15.13 RESET PROCESS
	4.15.14 SEMAPHORE
	4.15.14.1 WAITSEMA
	4.15.14.2 ProcWaitFlag
	4.15.14.3 SETSEMA
	4.15.14.4 INCSEMA
	4.15.14.5 DECSEMA
	4.15.14.6 SEMASTAT

	4.15.15 PIPES
	4.15.15.1 WaitPipe
	4.15.15.2 PipeFlush
	4.15.15.3 PipeSend
	4.15.15.4 PipeRecv
	4.15.15.5 PipeStat
	4.15.15.6 PipeFull

	4.15.16 PROCESS ID
	4.15.16.1 ISCURPROCESS
	4.15.16.2 GETCURPROCESS
	4.15.16.3 GETPROCESSID

	4.15.17 PROCESS STATE
	4.15.18 DEVICE LOCK
	4.15.18.1 SetDeviceLock
	4.15.18.2 ClearDeviceLock
	4.15.18.3 TestDeviceLock
	4.15.18.4 WaitDeviceFree

	4.15.19 Stack and Frame Usage
	4.15.19.1 GETSTACKFREE
	4.15.19.2 GETFRAMEFREE
	4.15.19.3 CHECKSTACKVALID
	4.15.19.4 CHECKFRAMEVALID

	4.15.20 SCHEDULER CALL BACK

	4.16 PID-Controller
	4.16.1 pFACTOR
	4.16.2 iFACTOR
	4.16.3 dFACTOR
	4.16.4 sFACTOR
	4.16.5 NOMINAL
	4.16.6 ACTUAL
	4.16.7 EXECUTE

	4.17 Functions depending on HardWare
	4.17.1 PROCCLOCK
	4.17.2 STACKSIZE, RAMpage
	4.17.3 FRAMESIZE, RAMpage
	4.17.4 TASKSTACK, RAMpage
	4.17.5 TASKFRAME
	4.17.6 SCHEDULER
	4.17.7 SYSTICK
	4.17.7.1 OnSysTick
	4.17.7.2 SysTickStop
	4.17.7.3 SysTickStart
	4.17.7.4 SysTickRestart
	4.17.7.5 SysTickDisable
	4.17.7.6 SysTickEnable
	4.17.7.7 SystemTime (*4*)

	4.17.8 ENABLEINTS
	4.17.9 START_PROCESSES
	4.17.10 DISABLEINTS
	4.17.11 NOINTS, RESTOREINTS
	4.17.12 CPUSLEEP
	4.17.13 POWERSAVE
	4.17.14 WATCHDOG
	4.17.15 WATCHDOGSTART
	4.17.16 WATCHDOGSTOP
	4.17.17 WATCHDOGTRIG
	4.17.18 GETWATCHDOGFLAG
	4.17.19 {$NOWATCHDOGAUTO}
	4.17.20 ENABLE_JTAGPORT
	4.17.21 DISABLE_JTAGPORT

	4.18 EEPROM
	4.18.1 Structured Constant
	4.18.2 Variable
	4.18.3 Memory Block
	4.18.4 EEprom Access

	4.19 HEAP (*P*)
	4.19.1 Implementation
	4.19.1.1 Functions
	4.19.1.2 Example

	4.20 BOOT VECTORS
	4.20.1 Implementation
	4.20.2 Functions
	4.20.3 Constants
	4.20.4 Example Program

	4.21 BOOT TRAPS
	4.21.1 Implementation of the Boot Traps

	4.22 Inheritance

	5 Multi-Tasking Programming
	5.1 Introduction
	5.2 Principle of Operation
	5.2.1 Processes and Tasks
	5.2.2 Priority
	5.2.2.1 Default Priorities

	5.3 Optimal Multi-Tasking

	6 Optimization
	6.1 Library
	6.1.1 Variable
	6.1.2 Constant
	6.1.3 Runtime

	6.2 Highly Optimizing?
	6.3 The "Merlin Optimizer"

	7 Compiler Switches
	7.1 Memory Administration
	7.1.1 Considerations about Memory Usage

	7.2 External Memory
	7.3 Include Files
	7.3.1 Search Path for Include Files

	7.4 Runtime Checks
	7.5 Variable, Constant and Procedure Check
	7.6 System Controlling
	7.7 Conditional Compile

	8 Program Structure
	8.1 Program Frame
	8.1.1 Order

	8.2 Initializing

	9 Compiler Errors
	9.1 Error File
	9.1.1 Type Mismatch

	10 Units (*P*)
	10.1 Declaration and Construction of a Unit
	10.1.1 Unit-Header
	10.1.2 Interface-Section
	10.1.3 Implementation-Section
	10.1.4 Initialization-Section
	10.1.5 Finalization-Section
	10.1.6 Uses-Clause
	10.1.6.1 Search Path for Units

	10.1.7 Info Part of a Unit
	10.1.8 Hardware Imports within Units

	10.2 PreCompiled Units

	11 Assembler
	11.1 Overview
	11.1.1 ASM;
	11.1.2 ENDASM;

	11.2 Assembler - Keywords
	11.2.1 Register
	11.2.2 Assembler Directives
	11.2.3 Operators for Constant Manipulation
	11.2.4 Access to Pascal Constants and Variables

	11.3 Assembler Routines
	11.3.1 Local Variables and Assembler Access
	11.3.2 Procedure Calls and System Functions
	11.3.3 Function Results and Assembler
	11.3.4 Function/Procedure Exit
	11.3.5 Interrupt Procedures with Assembler
	11.3.6 Constants and Optimization

	11.4 Assembler Switches
	11.5 Assembler Errors

