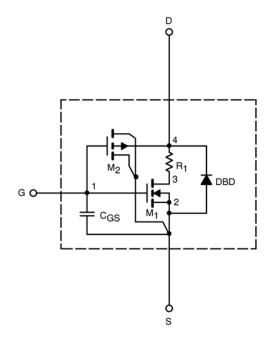


SPICE Device Model Si9936BDY Vishay Siliconix

Dual N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- · Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0 to 10V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

SUBCIRCUIT MODEL SCHEMATIC

DataShe

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

WWW.DataSheet4U.com

Document Number: 72573 www.vishay.com

02-Jun-04

SPICE Device Model Si9936BDY

Vishay Siliconix

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Conditions	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.9		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	165		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 6 A	0.027	0.028	Ω
		V_{GS} = 4.5 V, I_{D} = 4.9 A	0.038	0.041	
Forward Transconductance ^a	g _{fs}	V _{DS} = 15 V, I _D = 6 A	13	12	S
Forward Voltage ^a	V _{SD}	I _S = 1.7 A, V _{GS} = 0 V	0.80	0.80	V
Dynamic ^b					
Total Gate Charge	Q_g	V_{DS} = 15 V, V_{GS} = 10 V, I_{D} = 6 A	8	8.6	nC
Gate-Source Charge	Q_{gs}		1.8	1.8	
Gate-Drain Charge	Q_{gd}		1.5	1.5	
Turn-On Delay Time	$t_{d(on)}$	V_{DD} = 15 V, R_L = 15 Ω $I_D \cong 1 \text{ A, } V_{GEN}$ = 10 V, R_G = 6 Ω	16	10	ns
Rise Time	t _r		8	15	
Turn-Off Delay Time	$t_{d(off)}$		23	25	
Fall Time	t _f		6	10	

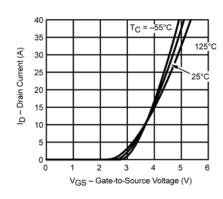
et4U.com

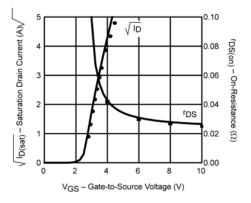
Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. Guaranteed by design, not subject to production testing.

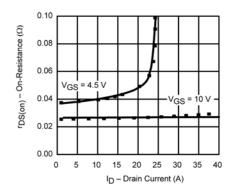
DataSheet4U.com

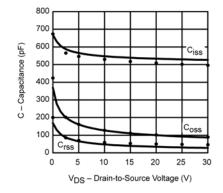
DataShe

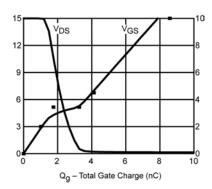

www.DataSheet4U.com DataSheet4U.com


www.vishay.com Document Number: 72573 02-Jun-04


SPICE Device Model Si9936BDY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)





et4U.com

Note: Dots and squares represent measured data

DataSheet4U.com www.DataSheet4U.com

www.vishay.com