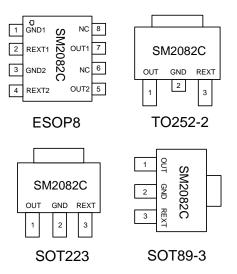
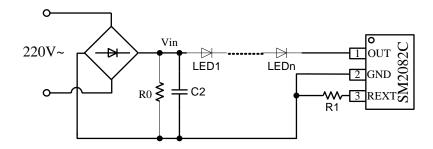
SM2082C

Feature

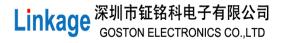
- Patented constant current technology;
 - a) The output current is adjustable, ranges from 5mA~60mA;
 - b) Precision of CC: $<\pm4\%$
- OTP
- Sharing PCB board with LED lamps
- Excellent EMC performance
- Simple circuit and lower cost
- Package: ESOP8 TO252-2


Application

- T5/T8 LED tube lamp
- LED street lighting
- LED bulb lamp, LED ceiling lamp

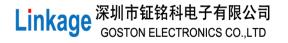

Description

The SM2082C is a single channel LED linear constant current driver which integrates patented constant current technology. The output current is designed by REXT to be 5mA~60mA, and is invariant to the output voltage variation, which demonstrates the good constant current precision. The cost is low with simple system structure and few peripheral components.


Pin Diagram

Typical Application

Note: The above power supply can be AC or DC.



Pin Description

		ESOP8	
Name	No.	Pin Description	
GND1	1	Ground 1	
REXT1	2	Output current setting port of Chip 1	
GND2	3	Ground 2	
REXT2	4	Output current setting port of Chip 2	
OUT2	5	Power supply input and constant current output of Chip 2	
OUT1	7	Power supply input and constant current output of Chip 1	
NC	6、8	No connection	
	TO25	2-2/SOT223/SOT89-3	
Name	No.	Pin Description	
OUT	1	Power supply input and constant current output	
GND	2	Ground	
REXT	3	Output current setting port	

Order Information

Model	Doolrogo	Pack	Reel Size		
Model	Package	Tube	Tape	Keer Size	
	ESOP8	100000 pcs/box	2500 pcs/tape	13 inches	
SM2082C	T0252-2	15000 pcs/box	2500 pcs/tape	13 inches	
SM2002C	S0T223	/	2500 pcs/tape	13 inches	
	S0T89-3	/	1000 pcs/tape	7 inches	

Absolute Maximum Parameter

Unless otherwise stated, the ambient temperature is 25°C.

Symbol	Description	Range	Unit
Vouт	Voltage of OUT	-0.5 ~ +500	V
Іоит	Current of OUT	1~ 60	mA
Торт	Operating temperature	-40 ~ +120	°C
T _{STG}	Storage temperature	-50 ~ +150	°C
V _{ESD}	НВМ	2	KV

Thermal Resistor Parameter

Symbol	Description	ESOP8	TO252-2	Unit
R_{THJA}	Thermal resistor(1)	89.2	74.9	°C/W

Note (1): The chip needs to be welded to the PCB with 200 mm² cooling copper foil, and the thickness of the copper foil is 35um.

Electric Operating Parameter

Unless otherwise stated, the ambient temperature is 25°C.

Symbol	Description	Condition	Min.	Тур.	Max.	Unit
Vout_min	Input voltage of OUT	IOUT = 30mA	-	-	6.5	V
V _{OUT_BV}	Withstand voltage of OUT	IOUT = 0	500	-	-	V
Гоит	Output current		5	-	60	mA
I _{DD}	Quiescent current	VOUT = 10V, REXT is opened	-	0.16	0.25	mA
V _{REXT}	Voltage of REXT	VOUT = 10V	-	0.6	-	V
D _{IOUT}	Error between chips and chips of IOUT	IOUT = 20mA	-	±4	-	%
Tsc	Initial point of the negative temperature compensation of	-	-	110	-	$^{\circ}\! \mathbb{C}$
	the current					

Output Current Characteristic of OUT

The output current of the OUT of SM2082C is given by: $I_{OUT} = \frac{V_{REXT}}{rext} = \frac{0.6V}{rext(\Omega e)}$

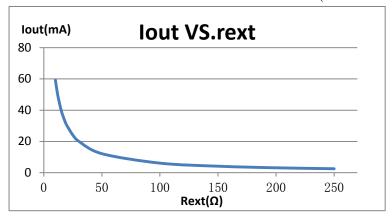


Diagram 1. Relation curve of the output current and rext resistor

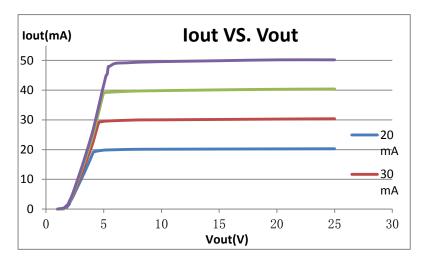


Diagram 2. Constant current curve graph

The minimal voltage of the OUT in normal temperature can be told from the constant current curve, VOUT_MIN: IOUT = 20mA, VOUT_MIN = 4.1V; IOUT = 30mA, VOUT_MIN = 4.6V; IOUT = 40mA, VOUT_MIN = 5.0V; IOUT = 50mA, VOUT_MIN = 5.5V.

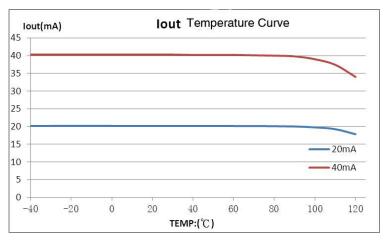
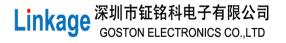



Diagram 3. SM2082C Temperature characteristics of the output current (IOUT = 20mA; IOUT = 40mA)

Temperature Compensation

The exceeded interior temperature of the LED lamp will cause severe light failure and the life span of the LED will be reduced. The SM2082C integrates temperature compensation, when the interior temperature of the chip exceeds 110° C, the output current will be reduced automatically to lower down the interior temperature of the lamp.

Schematic Design of the System

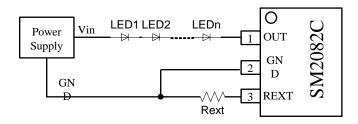


Diagram 4.Schematic Diagram of the application circuit

Design Theory of Efficiency

The operating efficiency of the application circuit shown in Diagram 4 is given by:

$$\eta = \frac{P_{\text{LED}}}{P_{\text{IN}}} = \frac{n * V_{\text{LED}} * I_{\text{LED}}}{V_{\text{IN}} * I_{\text{LED}}} = \frac{n * V_{\text{LED}}}{V_{\text{IN}}}$$

Vin is the input power supply and voltage of the system, V_{LED} is the operating voltage drop of a single LED, I_{LED} is the breakover current of LED. It can be told that the larger the number of the series LED n is, the higher the operating efficiency is.

In the designing process of the system, the operating voltage of the OUT needs to be adjusted according to the application environment to optimize the value of η .

Design of the number of the series LED

Two aspects need to be considered in the design of the number of the series LED:

- 1) In the circuit of Diagram 4, the voltage of the OUT VOUT = $Vin n^*V_{LED}$, the voltage of the OUT needs to be guaranteed to be VOUT > VOUT_MIN to guarantee the proper functioning of the chip;
- 2) The lower the voltage of the OUT is, the higher the operating efficiency is.

To sum up the above two points, the operating voltage range of the OUT is VOUT_MIN ~ VOUT_MAX, the number of the series LED n is given by:

$$\frac{Vin - V_{OUT_MAX}}{V_{LED}} < n < \frac{Vin - V_{OUT_MIN}}{V_{LED}}$$

Typical Application

Single-chip Application

Diagram 5 is the circuit diagram of the AC power supply application, the LED lamps in the LED tube can be connected in series or parallel way or in the way of the mixture of both; C1 is the high-voltage ceramic capacitor, which is used to lower down the voltage of Vin; C2 is the electrolytic capacitor, which is used to lower down the voltage ripple of Vin; The Rext resistor is used in the setting of the operating current of the LED tube.

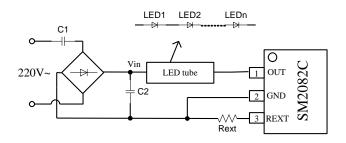


Diagram 5: Typical Application Circuit-----Input of AC Power Supply

The capacity value of the ceramic capacitor C1 depends on the AC voltage and the number of the series LED lamps in the LED tube, normally it takes from $0uF \sim 4.7uF$. The C1 capacitor is not needed when the number of the series LED lamp is more enough.

The larger the electrolytic capacitor C2 is, the smaller the ripple of the voltage Vin is, and the smaller the voltage ripple of the OUT is. The value of C2 depends on the total operating current of the LED tube: the larger the current is, the larger the capacity value of C2 is, normally it takes from 4.7uF/400V~22uF/400V, which is given by:

The capacity value of the filter capacitor C2:
$$C_2 = \frac{I_{LED} * t}{\Lambda V}$$

ILED is the constant current of the whole scheme, time t: (1/4)*(1/fAC) = 5ms when it is at 50Hz, ΔV is the voltage ripple of the OUT.

Parallel Application of the Chip

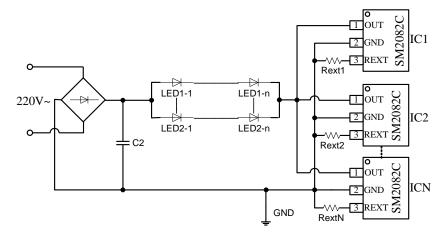
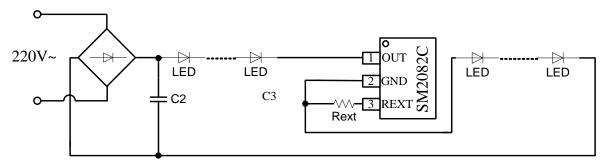
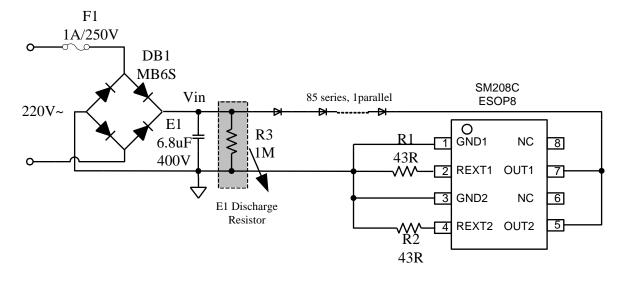


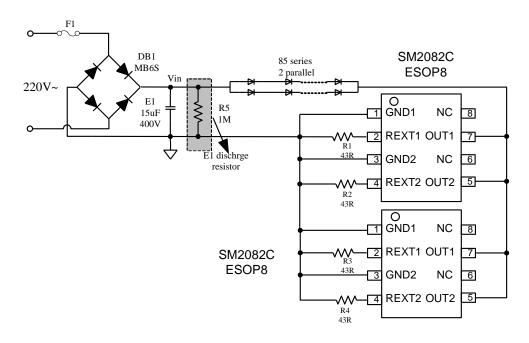
Diagram6. Schematic diagram of the parallel application circuit

Select the number of the parallel chips according to the number of the parallel LED lamps and the operating current of the LED lamp, the resistance of Rext1~RextN can be set to be the same or to be different.

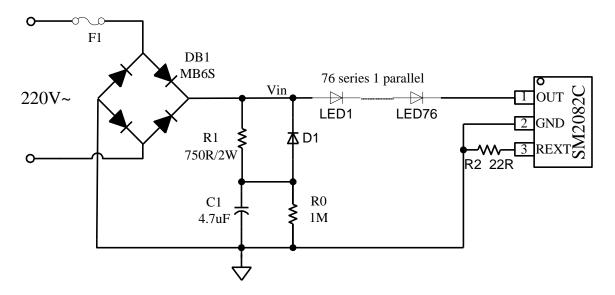
In the parallel application of the chip, when the value of the resistor Rext is different, the constant current threshold voltage of the complete system is the maximal threshold voltage of the parallel chip.

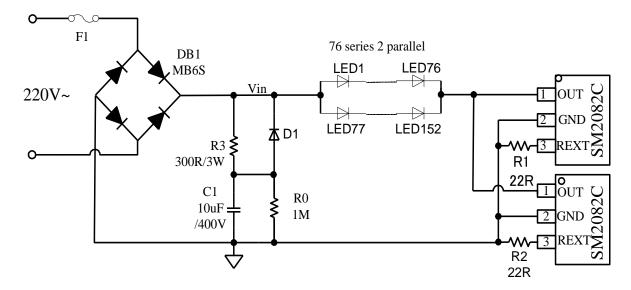
The Series Connection of the Chip in the LED Tube

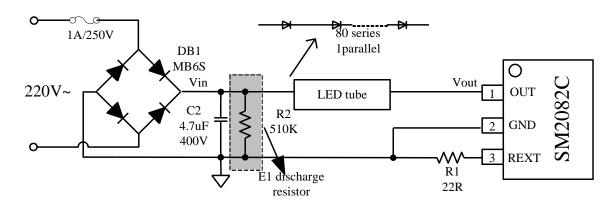




Diagram 7.The series connection of the SM2082C in the LED tube

The chip is connected to the GND, the middle of the LED lamp or ahead of the LED lamp according to different application.


ESOP8 Package Application: 8W


ESOP8 Package Application: 16W


Application with Valley Fill Circuit: 8W

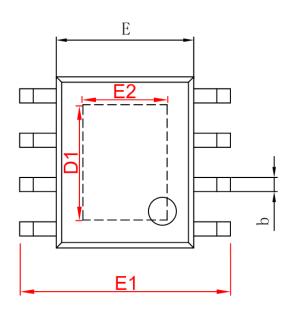
Application with Valley Fill Circuit: 16W

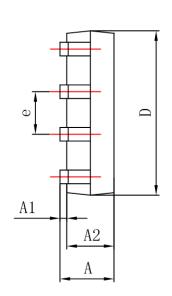
EMI Test of Typical Application:

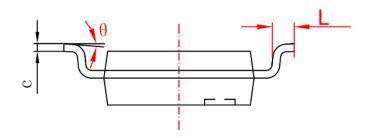
EMI Test: Test result of Wire N.

EMI TEST REPORT

Organizatior Place: Detector: Limit: Remark:	: MW PK+AV EN550	15		or: ne(ms): uctor(PK			EUT: Test e SN:	quipme 1135:	ent:KH393	imete
Start(MHz) 0.150 2.000 10.000			End(Mi 2.000 10.000 30.000	Hz)	 		Step(N 0.002 0.010 0.025	MHz)	freq	
dBuV			 						scan	resu
100 90 80					 					
70 30										
50 10 30										
20	harden	May buy		A.		Janes I			A STATE OF THE STA	
0 0.150 M Hz		0.50	1.00		5.00		10.00	30.	000 MHz	

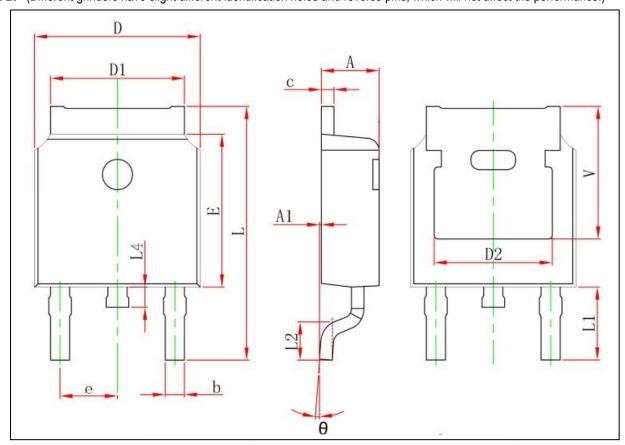

EMI test: Testing result of line L

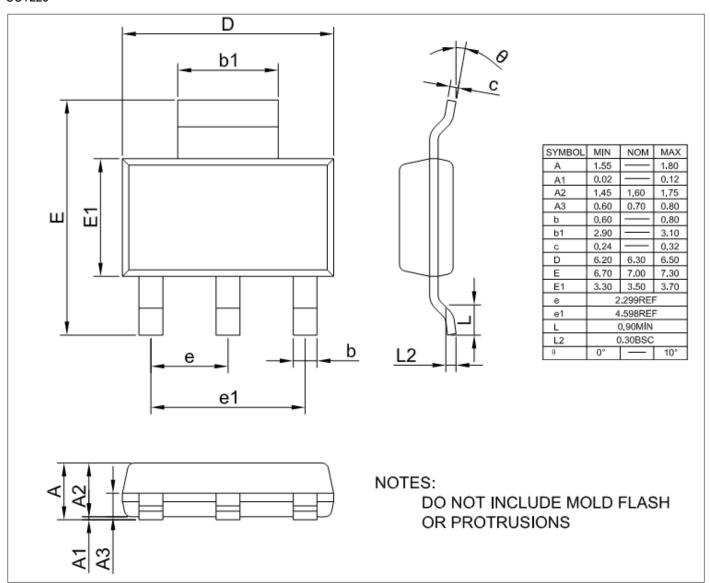

EMI TEST REPORT


EUT: Organization: MW Operator: ZXAPlace: Time: 2013/6/18/14:20 Test equipment: KH3935 Detector: PK+AV Test-time(ms): 20 SN: 1135217 Limit: EN55015 Transductor(PK/AV): PK-1 / AV-1 Remark: ····· freq, step Start(MHz) End(MHz) Step(MHz) 2.000 0.002 0.150 2.000 10.000 0.010 30.000 0.025 10.000 dBuV 100 90 80 70 60 50 40 30 20 10 0 10.00 0.50 1.00 5.00 0.150 MHz 30.000 MHz

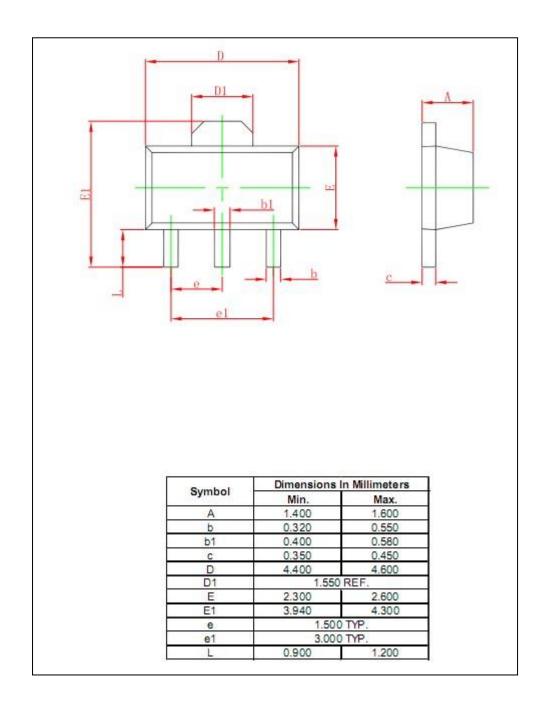
Package

ESOP8




	MILLIM	ETERS		
	MIN	MAX		
A	1.35	1.75		
A1	0.05	0.25		
A2	1.25	1.65		
b	0.31	0.51		
С	0.17	0.25		
D	4.70	5.10		
D1	(1.803.40) FYR			
E	3.80	4.00		
E1	5.80	6.20		
E2	(1.802	.60) FYR		
е	1.270(BSC)			
L	0.40	0.80		
Θ	0°	8°		

TO252-2: (Different grinders have slight different identification holes and reverse pins, which will not affect the performance.)



Complete	Dimensions In Millimeters				
Symbol	Min.	Max.			
Α	2.200	2.420			
A1	0.000	0.127			
b	0.550	0.850			
С	0.450	0.600			
D	6.400	6.700			
D1	5.100	5.500			
D2	4.830	REF.			
E	5.950	6.250			
е	2.280	REF.			
L	9.400	10.400			
L1	2.750	REF.			
L2	1.400	1.700			
L4	0.600	1.000			
θ	0° 8°				
V	5.350 REF.				

SOT223

SOT89-3

